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The algebraic system formed by Dirac bispinor densities Pi =¢Fi t/! is discussed. The inverse 
problem-given a set of 16 real functions Pi> which satisfy the bispinor algebra, find the spinor t/! 
to which they correspond-is solved. An expedient solution to this problem is obtained by 
introducing a general representation of Dirac spinors. It is shown that this form factorizes into the 
product of two noncommuting projection operators acting on an arbitrary constant spinor. 

I. INTRODUCTION: THE ALGEBRA OF DIRAC BISPINOR 
DENSITIES 

In the context of quantum mechanics all physical obser
vables are represented by real quadratic functionals of the 
quantum wave function. For a Dirac particle, represented by 
a four-component spinor wave function t/!, there exist 16 real 
quadratic forms Pi =¢Fi t/!, which do not involve deriva
tives l

: 

0' = ¢tf;, 1T = ¢irst/!, ~I'V = ¢O'l'vt/!, 
(1.1) 

il" = ¢rl't/!, kl' = ¢rsrl't/!. 

These 16 bispinor densities are not independent since the 
spinor wave function, being composed of four independent 
complex functions, contains only eight independent func
tions. Furthermore, as the overall phase of the spinor has no 
effect on the bispinor densities Pi we conclude that these 16 
functions must satisfy a total of nine algebraic equations. 
This "Dirac bispinor algebra" was first discussed by Paule 
and somewhat later was examined in detail by Fierz.3 These 
nine equations are most easily written as4 

i/=o2+rr, 

kl'kl' = - i/, 

(1.2a) 

(1.2b) 

il'kl'=O, (1.2c) 

~I'V = (02 + rr) - 1 [O'EI'VPTjk T - 1TUl'kv - ivkl') ]. 
(1.2d) 

Note, however, that Eq. (1.2d) is not valid in the case where 
both 0' and 1T are zero. An additional overcomplete set of 
equations is easily derived from Eqs. (1.2) and, as presented, 
are valid even when both 0' and 1T vanishs: 

~I'v.j" = 1Tkl" ~I'vk v = 1Til" 

il'v/' = O'kl" il'vk v = O'jl' 
.~ .~ - 'Pk T O'..:JI'V - 1T..:Jl'v - EI'VPTi , (1.3) 

O'il'v + 1T~l'v = -lil'kv - k~v)' 
il'v~I'V = - 4u1T, ~I'V~l'v = 2(02 - rr). 

These equations are given here for the convenience of the 
reader, as in what follows we will assume that 0' and 1T are not 
both zero. 

An interesting question now arises: Given a set of real 
functions {Pi} which satisfy the bispinor algebra, how can 
we reconstruct the spinor to which they correspond? This 

problem has most recently been discussed by Takahashi. 6 

We present here a new and concise method of solution. 
In order to solve this problem in a completely general 

and very efficient fashion it is convenient to first consider the 
general structure of an arbitrary spinor. 

II. GENERAL SPINOR EXPANSION AND 
FACTORIZATION THEOREM 

We begin this section with an assertion concerning the 
general form that an arbitrary spinor wave function may 
take: 

t/! = e - itp [~- llirs + Jp'Y' - Kp rs'Y' + !Spvd"V] 1] 

= e-itpR iFi1], (2.1) 

where the set {fjJ,R i } contains seventeen real functions, and 
1] is an arbitrary constant spinor.7 Clearly, even for a specific 

choice of 1] we will still have great freedom in choosing the 
set {fjJ,R i }, since t/! contains only eight independent func
tions. To restrict this choice further we make a second asser
tion: The set of functions {Ri} can always be chosen such 
that they satisfy the bispinor algebra [Eqs. (1.2) and (1.3)]. 
That this statement is true will be clear when we prove the 
inversion theorem in the next section and explicitly con
struct the set off unctions {Ri } . For now we simply note that 
since the set {Ri } satisfies nine independent algebraic equa
tions, there are a total of eight independent functions in the 
set {fjJ,R i }. We now have the first important result of this 
paper, which we state as a theorem. 

Factorization Theorem: When the set of functions {Ri } 
form a bispinor algebra [i.e., satisfy Eqs. (1.2) and (1.3)], the 
general form for a spinor [Eq. (2.1)] may be factorized in the 
following manner: 

t/! = e - itp [~ - llirs + JI' 'Y'] 
X [1 - (~2 + ll2)-1(~ + frsll )Kvrsrv]1J. (2.2) 

Proof; The proof is quite straightforward and, starting 
from Eq. (2.2), follows: 

t/! = e- itp [~- irsll + JI''Y' - Kl'rs'Y' 
_ (~2 + ll2) -1(~ - frsll)JpKv'Y'rsrV] 1], 

where we have used rs = 1 and {rs, rl' } = O. Now we make 
use of the identities 

rl'rsrv = - rs(gpv - fO'l'v)' 

r sO'l'v = (i/2)El'vpT oPT 
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to obtain 

f/! = e-i<p{I - iYsfl + J,..y'" -K,..ysY'" 
+ !(I 2 +fl 2)-1 [I€,..vp-rJPKT 

-fl(J,..Kv -JvK,..)]O",..v}7] 

= e - Up [I - iYsfl + J,.. Y'" 

- K,.. YsY'" + !S,..vO",..V] 7]. Q.E.D. 

In the last step we have made use of Eq. (1.2d), since the set 
{Ri} satisfies the bispinor algebra by assumption.s 

To gain insight into the meaning of this factorization 
consider the special case where 

I=m, fl=O, J,.. = PI" K,.. = -mS,.., 

p2=m2, S2= -1, lP=P,..x" 

This is the solution to the free massive Dirac equation where 
the first operator, (/' + m), is the "positive energy projection 
operator" and the second operator, (1 + Ys$), is the "spin 
projection operator." This observation leads us to the fol
lowing definitions: 

A ± ==[I +=iYsfl ±J,..r"], 

S± ==[ 1 += (I2 + fl2)-I(I + iYsfl)K,..ysr"]. 

(2.3a) 

(2.3b) 

These operators have the following properties, which are 
easily verified: 

A 2± = 2IA ±' A+A_ = 0 =A_A+, 

A+ +A_ = 2I, S2± = 2S±' 

S +S _ = 0 = S _S +' S + + S _ = 2, 
(2.4) 

and, therefore, satisfy the requirements for projection opera
tors.9 With these definitions, we can write 

f/! = e- i<pA+S+7]. (2.5) 

These definitions prove quite useful in what follows. 

III. INVERSION THEOREM 

We are now in a position to efficiently solve the problem 
posed in the first section of this paper. Given a set of real 
functions {Pi}, which satisfy the bispinor algebra, find the 
spinor f/! to which they correspond. To begin, we substitute 
the general factorized expansion of the spinor f/! (to be deter
mined) into the definition of the functions Pi: 

Pi=¢rif/! = 1jS+A+riA+S+7], (3.1) 

where the Dirac adjoint of an operator A is defined in the 
usual way asA = yoA t Yo' From the definitions given in Eqs. 
(2.3) it is quite easy to show that .1+ =A+ and S+A+ 
= A +S + (see Ref. 10) so we now have 

0" = 4NI, 1T = 4Nfl, I,..v = 4NS,..v, 

j,.. = 4NJ,.., k,.. = 4NK,.., 

where we have defined 

N = 1jA+S+7]. 

(3.4) 

(3.5) 

The desired inversion now follows trivially from Eqs. (3.4), 

(3.6) 

the only complication being the calculation of N in terms of 
the given functions {Pi}' Substitution of Eq. (3.6) into Eq. 
(3.5) yields II 

N 2 = !1j[ 0" - iYs1T + J'r,..] 

X [1- (uZ +~) -1(0" + iYs1T)k,..rsr"17J. (3.7) 

So we have found a simple and general inversion of the bi
spinor algebra {Pi} (see Ref. 12). We summarize this as a 
theorem whose proof is given by the above construction. 

Inversion Theorem: The spinor f/! which generates the 
given bispinor algebra {Pi} is determine by use ofEqs. (2.2), 
(3.6), and (3.7). 

This inversion is not unique, as we may arbitrarily 
choose both the phase function lP and the constant spinor 7]. 

However, the choice of 7] is essentially irrelevant since the 
projection operators generate the required direction in 
spinor space l3 and a change in normalization of 7] is compen
sated by a corresponding change in N. Hence, regardless of 
the choice of 7], the spinor wave function is uniquely deter
mined up to an arbitrary phase. As expected, the phase of the 
spinor wave function cannot be determined from the observ
able quantities {Pi }. 

The inversion theorem can also be used to cast any giv
en Dirac spinor f/! into the general form given in Eq. (2.1). To 
proceed, first calculate the 16 bispinor densities Pi using Eq. 
(1.1). Next choose any constant spinor 7] (this choice is com
pletely arbitrary). The overall phase lP and the normalization 
function N can now be determined using 

(3.8) 

Note that the function N can also be determined by use ofEq. 
(3.7). Finally, the spinor f/! is then given by 

(3.9) 

This construction constitutes the proof that any spinor 
f/! can be written in the form of Eq. (2.1). 

(3.2) IV. CONCLUDING REMARKS 

In addition, we easily find the useful identities 

ysA ± = A 4= Ys + 2ifl, (3.3a) 

y,..A ± = A 4= Y,.. ± 2J,.., (3.3b) 

Ysy,..S± =S4= rsY,.. ± 2K,..(I 2 +fl2)-I(I + iYsfl). 
(3.3c) 

It is now straightforward to calculate the Pi using Eqs. (2.4), 
(3.2), and (3.3), and we find 
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We have shown that an arbitrary spinor wave function 
can be written as the product of two projection operators 
acting on an arbitrary constant spinor and with this result 
have found a concise and general inversion of the bispinor 
algebra. We have then used this result to construct the spe
cific factorized form for any given spinor wave function. 

This work arose out of a study of nonlinear Dirac equa
tions, and the application of the general spinor expansion 
(Sec. II) to this problem is the subject of ongoing research. 
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IFor the 16 Dirac matrices r l we use the conventions of J. D. Bjorken and 
s. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 
1964). 

2W. Pauli, Ann. Inst. H. Poincare 6,109 (1936). 
3M. Fierz, Z. Phys. 104, 553 (1937). 
4F. A. Kaempffer, Phys. Rev. D 23, 918 (1981). 
sThe dual tensor is defined in the usual manner: .I"v==!E".",...!"'", where 

E".",. is the completely antisymmetric tensor of rank 4 and 
tJl23 = - EOl23 = l. 

6y. Takahashi, Phys. Rev. D 26, 2169 (1982); Prog. Theor. Phys. 69, 369 
(1983). See also V. A. Zhelnorovich, Sov. Phys. Dok!. 24, 899 (1979); A. A. 
Campolataro, Int. J. Theor. Phys. 19,99, 127 (1980). 

'For the purposes of this paper, 11 need not be taken as a constant spinor. 
This restriction becomes useful when this expansion is substituted into the 
Dirac equation. In this case, the Dirac equation for t/l is replaced by differ
ential equations for the functions [tp,R I }. 
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8Note that the factorization theorem fails when..! and n are both zero. 
9Strictly speaking, the properly normalized projection operators are !oS ± 

and (l/U)A ±. 

l~ote that as defined 8+#S+ (and also [S+..4+]#O) for the case n #0, 
and therefore is itself not an observable. It may be possible to factor Eq. 
(2.1) in a manner different from Eq. (2.2) yielding projection operators S ± 

and Ii ± ' which are both Dirac self-adjoint and which mutually commute, 
but as yet I have been unable to do so. 

I lOne can verify that the right-hand side of Eq. (3.7) is positive definite so 
long asjo> 0 and the set [PI} forms a bispinor algebra. Note that ifjo<O 
there is no solution for t/l sincejo = t/lt t/l > o. However, in this case a t/l can 
be found which generates the bispinor algebra [ - Pi J. 

l2Compare, for example, this inversion with the forms appearing in the pa
pers of Ref. 6. 

13We assume, of course, that Ii +S + 11 #0. 
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A generating function, or Molien function, the coefficients of which give the number of 
independent polynomial invariants in G, has been useful in the Landau and renormalization 
group theories of phase transitions. Here a generalized Molien function for a field theoretical 
Hamiltonian (with short-range interactions) of the most general form invariant in a group Gis 
derived. This form is useful for more general renormalization group calculations. Its Taylor series 
is calculated to low order for the Fr 2- representation of the space group R 3e and also for the I = 1 
(faithful) representation of SO(3). 

I. INTRODUCTION 

The idea of a generating function, sometimes known as 
a Molien function, 1 the coefficients in the Taylor's series ex
pansion of which give meaningful information about a parti
cular group, has proven2

--4 to be very useful in constructing 
free energies for use in the Landau theory of structural and 
magnetic phase transitions in solids. In Ref. 5, it was shown 
that an effective Hamiltonian or field theoretical Hamilton
ian could be constructed for structural phase transitions of 
the form 

H(c)= i ~f···fdkl ... dkm(21T)-lm-l)d 
m=O m. 

X8(k l + ... +km)IHZm(kp ... ,km) 

XCI, (kIl'" eIJkm ), 

leading to a free energy of 

F= - ; In f Dee-Hie). 

Lm 

(1) 

Here S Dc indicates a functional integration over the collec
tion of cj(k) and k ranges continuously over a sphere with 
k <A, the cutoff parameter. Lm is the compound index 
11/2 ••• 1m· 

Furthermore, the form of H (c) must be invariant when 

e j (k)-cj (S -lk)Djj(g), (2) 

or equivalently, when k~Sk, Hm~HmD mIg), where 
g = (S It + t) is a space group element in G, the space group 
of the higher symmetry phase. It would be desirable if a 
generating function could be found for the more general field 
theoretical or Landau-Ginzburg-Wilson Hamiltonian of 
Eq. (1), given Eq. (2). In Ref. 6 the authors pointed out that a 
term not previously considered, but present in the most gen
eral invariant free energy form, contributes significantly to 
renormalization group behavior. A generalized Molien 
function for the H of Eq. (1) would be of aid in other such 
general considerations. Also, the D (g) of Eq. (2) could be 
replaced by a general representation of any compact group, 
particularly any unitary compact group, and the following 
analysis would hold, if the group mean is suitably defined. 
(This does not take into account the anti unitary (j or complex 
conjugation, but a generalization is easily accomplished to 
include it.) 

II. DERIVATION AND CALCULATION 

Define a function F (s,t ), analytic in s,t, such that if 
00 00 

F(s,t) = I I cnmsnt m, 
n=Om=O 

then enm will be the number of invariants of order n in the 
components ofk and order min e in H (c). To find F(s,t) we 
pursue a method which is motivated by procedures con
tained in Refs. 1, 2, and 7. The invariance group of a term in 
Eq. (1) includes the symmetry ofEq. (2) and in addition each 
term must be invariant under any exchange of indices, either 
on k or e. Such an invariance group is known formally as a 
wreath product; however, here we need only recognize the 
existence of both kinds of symmetries. The condition that a 
term of given order be invariant will be taken to mean that it 
transforms identically under an arbitrary product of a trans
formation gin G, and one in Sm, call it 1T, where Sm is the 
symmetric group in m objects. Note that the essential sym
metry is in k space. One can be misled in attempting to find 
invariant forms in real space.5

,6 

To find the number of invariants of given order nand m 
we construct a general basis of the right order and find the 
subduction frequency of the identity representation on the 
representation induced by this basis. 

For m = 0, there is only one basis functional, i.e., a con
stant, independent of e and k, hence 

For m = 1, the basis functionals in Eq. (1) are5 

'/II, = el, (0). 

The permutational invariance subgroup is just SI so that 

where 

M=_I_I 
g IG I gEG 

(3) 

(4) 

is the group mean, or its suitable generalization to an infinite 
group. 

For m;::: 2, define a vector ainNlm-l)d, the (m - l)dth 
Cartesian product of N, the set of non-negative integers, with 
componentsaij, i = 1,2, ... ,m - 1, andj = 1,2, ... ,d, such that 
~jjajj = n. Here d is the spatial dimension. Then a basis of 
functionals of order n,m in H, with m ;::: 2, will have inte-
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grands of the form 
In-I d 

1ft(a,Lm) = II II (kij)aUc,,(k l) 
i= I j= I 

XC'z(k2)·· .c,Jkm), 

where k m = - kl - .•• - kin _ I and kij is the jth compo
nent of k j • This particular 1ft has the advantage of already 
being symmetric in the kij for a fixed i. No sums are implied 
here or in the aftermath. 

Suppose the basis of the k j has been chosen so that 
gkij = pjkij, wherepj is an eigenvalue of V(g), a matrix in the 
vector representation of G. Then 

glft(a,Lm) = II (pj)aU(kij)aU LD"/j(g)··· 
ij L;" 

Further, 

Here 1f = tr- I. 

Now suppose that 1f(q) = m. Then in the above expres
sion there occurs a factor 

(k;;jq)j)a'l = (- k lj - k2j - .•• - km-IX,j 

= ( - l)a,j L aqj!(aqjl! ... aqjm _ I !)-I 

X (k )aij ••• (k )a'l'" - , Ij m-Ij , 

where the sum is over all aqji ~ 0 such that 
m-I 
L aqji = aqj . 
i=1 

Writing 

trgt/J(a.Lm) = L r (a.Lm ;a'.L ;,. )(trg)t/!(a'.L ;"), 
a'L:n 

we see that 

r(a.Lm;a'.L;") = II (- Itq/aqj! II (pjtu 
j i 

X(aqji !)-18(aij - atrl,IY - aqji ) 

XD", ~'1 (g), (5) 

where all restrictions on the aij and aqji as noted before hold, 
and we have defined Il",j = 0 for allj. In this we have written 

where appropriate and 8 (n) is the Kronecker delta 8,,0' 
We can then form the trace ofEq. (5) to find the charac

ter of r, giving 
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tr r(trg) = L II( - l)aq/aqj! II (pjt o1'l1 

aLm j i 

X(aqji !)-18(aij -atrl,l)j -aqjiJD"'Oiij(g)· (6) 

Now the sum over the Lm gives a factor, if tr (and hence 1f) 
has cycle structure (VI ,V2, ... ,vm ), 

U' (g)tJU' ~))"z ... U' (g'"))""', 

which follows by writing 

II DI,/0i4 (g) 
i 

= D"/Oi'1 (g) ... D,,;,vs - 1)I,h (g) ... , 

if, for example, 1 lies in a cycle oflength vs ' etc. 
To carry out conveniently the sum over a we use the fact 

that a Kronecker delta 8 (n) may be represented by 

8(n)=~idzz-("+I), (7) 
2mYc 

where the contour c includes the origin. With this we can 
extend the sum over a in Eq. (6) to all aeN(m - l)d, by includ
ing 8 (n - 1: aij) in this form. Then 

tr r(tr g) = ~ i dzz-("+ I) L II (- It91aqj! 
2m Yc a j 

II 1 ( )a,.a"j~( ) X --I Pj Jz' u aij - atrl,l)j - aqji 
i aqji · 

(8) 

Now suppose m lies in cycle of length I in tr, i.e., 
(q • .. sm). The Kronecker delta in the sum over a in Eq. (8) 
constrains aij ~ atrl,.y' Then 

aqj ~ atrl,q)j ~ a""(q)j ~ .• , ~ asj ~ amj = 0, 

such that 

a""_'(q)j -a""(q)j =aqj""_'(q)' 

Note that s = ~ - 2 (q). Also, for Ij in another cycle in 
tr = (/1/2 ••• It), the Kronecker delta restricts the sum to all 
ai j such that 

which implies that they are all equal. 
The portion of Eq. (8) involving aij' i in the cycle con

taining m, is then 

00 aq/ (z p t o1qV 
II L (- l)aq/aqj !(zpj)aq/ L _---"-'J_-:-:-

j aq) = 0 ao1'li = 0 (aqj - atrl,q)j)! 

ao1qV (z P (,.llqli 

X L -----'-1-
a,.llqli=O (atrl,q)j - a~(q)j)! 

Noting that 

± Xi =~ ± (P)XilP - i = (1 +x)p 
i=O (p -1)b1 p! i=O i p! 

and performing the last I - 2 sums in Eq. (9), it becomes 
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II L ( - 1t<ll(z pjt<ll(l + z pj(l + z Pj( ... (1 + ZPj)))t<ll 
j a<ll 

= II (1 + ZPj( •• , (1 + Zpj)))-I 
j 

(

I-I )-1 
= n .L (Zpj)i 

J ,=0 

(10) 

Furthermore the contribution to Eq. (8) from the sum 
over a for the cycles of length r [if the length of (q ••. sm) is 
not r] is [wherep = v,r - (r - 1) = (v, - l)r + 1] 

00 ra,,, 00 rat II L (ZPj) .,. L (ZPj) pi 

j a,,,=O a,pI=O 

= II (1 - Z(Pj)1 -v, 
j 

= det(I _zV'(g))-v,. 

Combining the results of Eqs. (6)-( 11) we have 

tr r(1rg) = ~,( dz z-(n+ I) det(I - zV(g)) 
2m! 

m 
X II det(I - ziV;(g)) - v'(x ~))Vi. 

;=1 

(11) 

(12) 

The contribution Cnm (g) of the element g to Cnm is given 
by the number of times r (1rg) contains the identity represen
tation of Sm. From Eq. (12) it is clear that tr r(1Tg) is a class 
function on Sm in that it depends only on the cycle structure 
of 1T. The number of elements in a class (v) is m!ll;(;"'v;!)-I so 
that 

Cnm (g) = M tr r (1Tg) 
1T 

= L~ldzz-(n+l) 
(v) 2mX 

( 
~) )Vi 1 

xdet(I-zV(g))I) idet(/-ziVi(g)) v;!' 

(13) 

where the sum over (v) is restricted to all (v) such that 
~Jv; = m as i ranges from 1 to m. Using Eq. (7) to constrain 
the Vi and then summing over all (v) leaves Eq. (13) 

cnm(g) = (2~J2 f f dzdu z-(n+ I)U -(m+ I) 

Xdet(I _ zV(g)) II" _1 ( uX~) )Vi 
i ~ Vi! i det(I - ziVi(g)) 

= (21Ti)-2 f f dzdu z-(n+ I)u-(m+ I) 

Xdet(I-zV(g))exp(f U;X~).). (14) 
i = I i det(I - z'V'(g)) 

Equation (14) was derived for m ~ 2 but can be extended 
to m = 1. This may be seen by noting that 

_1_,(duu-(m+lY(u)=_I_d
jm

(U)I. (15) 
21Ti j m! dum u=O 
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When Eq. (15) is applied to Eq. (14) for m = 1, one obtains 
Eq. (4). Note, however, that Eq. (14), when m = 0, gives 

1 d n 

cno(g) = - - det(I - sV(g))ls=o, (16) 
n! dsn 

rather than Eq. (3). 
From Eq. (15) one can quickly see that the summation 

in Eq. (14) on i can be extended to infinity. This fact also then 
allows us to recognize Eq. (14) as just the coefficient of snt m 

in the power series 

nm 
if we identify 

FI(s,t,g)=det(I-sV(g))exp(f tiX~~.). 
i= I i det(I - s'V'(g)) 

Taking into account the discrepancy between Eqs. (3) and 
(16), and since 

Cnm = M Cnm (g), 
g 

it then follows that 

F (s,t ) = M F (s,t, g), 
g 

where 

F(s,t, g) = F'(S,t, g) - det(I - sV(g)) + 1 

or 

F(s,t) = 1 + M det(I - sV(g)) 
g 

X [exp( f tx~).) - 1]. (17) 
i= I i det(I - s'V'(g)) 

It does not appear at present that Eq. (17) can be simpli
fied further. As a check set s = ° in Eq. (17), leaving 

F (O,t ) = M exp(.f tr( tiD. (gy)) 
g ,= I I 

= M exp( - tr IntI - tD (g))) 
g 

= M det(I - tD(g))-I, 
g 

which one recognizes as the expression for the simple Molien 
function. 2 

Equation (17) still is not entirely satisfactory for general 
calculations. However, it is useful in finding particular terms 
of arbitrary order m and n. This is so particularly if one uses 
computer algebra to perform the expansion. Indeed, for 
most representations of a space group G of interest, there are 
afinitenumberofD (g) and V (g) and one can readily findF(s,t ) 
to any desired order in s,t. 

As an example, fortheFr 2- representationofR 3c(no
tation is that of Ref. 8) 
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F(s,t) = 1 + t 2(1 + 4s2 + 9s4 + 1&6 + ... ) 
+ t 3(S + 1O~ + 4~ + ... ) 

+ t 4(2 + 14r + 103s4 + ... ) 

+ t 5(3s + 5()s3 + ... ) 
+ t 6(3 + 31s2 + ... ) + .. " 

where the computer algebra MAC8YMA9 has been em
ployed. 

As an example of the application of Eq. (17) to an infi
nite group, apply it to the faithful, or 1 = 1, representation of 
80(3); The calculation is greatly simplified by noting that 
F(s,t, g) is a class function, since it involves only similarity 
invariant traces and determinants. Then the sum over g re
duces to an integral over the rotation angle, with an appro
priate weighting factor. The result is 

F(s,t) = 1 + (1 + s + 2s2 + S3 + 2s4 + ... )t 2 
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+ (s + r + 5~ + .. . )t 3 + (1 + s + 6.r + ... )/4 

+ (s + ... )t 5 + (1 + ... )t 6 + .... 
Thus, for example, this representation has a Lifshitz invar
iant, i.e., C12 = 1. 
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A projection-based solution to the symplectic group state labeling problem is presented. The 
approach yields a nonorthogonal Gel'fand-Tsetlin basis for the irreducible representations of 
Sp(2n). A method for evaluating the corresponding overlap coefficients is discussed. The action of 
the Sp(2n) generators, in the basis obtained, is determined and some matrix element formulas are 
derived. The results obtained are comparable to the matrix element formulas for O(n) and Urn). 

I. INTRODUCTION 

The theory of Lie groups has been established as an 
invaluable tool in physical applications where they usually 
appear as the symmetry group of the system. The states of a 
physical system are then to comprise irreducible representa
tions of the symmetry group. Lie groups afford not only con
venient analytic methods but in practice are essential to the 
numerical solution of the equations of motion of the system 
by allowing the Hamiltonian to be broken into a convenient 
block form. Lie groups also provide suitable labels (i.e., 
quantum numbers) for physical states, even though such Lie 
groups need not be symmetry-groups. 

Thus, from the point of view of physical applications 
the principle problem to be solved in the representation the
ory of a semisimple (compact) Lie group is the complete de
termination of the basis states of an irreducible representa
tion. The first major step in this direction was made by 
Gel'fand and Tsetlin,l who constructed, with a full set of 
labels, a complete set of basis vectors for the irreducible re
presentations of the orthogonal and unitary groups. The 
work ofGel'fand and Tsetlin on Urn) was extended by Baird 
and Biedenharn,2 who revealed the group theoretic nature of 
the Gel'fand-Tsetlin results. The work of Baird and Bieden
ham has recently been extended to O(n) by Gould.3 

The solution to the O(n) and Urn) state labeling prob
lem, as proposed by Gel'fand and Tsetlin,l relies on the fact 
that O(n) and Urn) admit a so-called canonical4 chain of sub
groups whose Casimir invariants provide a complete set of 
labels for the irreducible representations. For general sub
group chains, however, this method oflabeling is incomplete 
and it is necessary to supplement the Casimir invariants of 
the subgroup chain one is considering with additional label
ing operators. In such a case there still remains the problem 
of finding the eigenvalues of these extra invariant operators, 
which are known to be irrational in general (and thus the 
action of the group generators in such a basis is likely to be 
complicated). This behavior is typical of the general state 
labeling problem. Examples are afforded by the subgroup 
embeddings U(2npSp(2n), U(npO(n), Urn + mpU(n) 
XU(m), Sp(2npSp(2n - 2), etc. 

An alternative approach to the state labeling problem is 
to use the method of projection, which has proved in the past 
to be a powerful tool for handling the multiplicity problem 

numerically and, in some cases, analytically. The methods of 
projection have been successfully employed by Elliot5 to the 
U(3PO(3) state labeling problem. More recently the meth
ods of projection have been applied to give a solution to the 
Clebsch-Gordan multiplicity problem for a semisimple Lie 
group G (i.e., the G XG:JG state labeling problem). A de
tailed account of the various methods of projection can be 
found in Moshinsky et 01.,6 Asherova and Smirnov,1 and 
Edwards and Gould.8 

In this paper we present a projection-based solution to 
the symplectic group state labeling problem. Our method 
consists of embedding an irreducible representation of the 
symplectic group Sp(2n) in a suitable representation of the 
unitary group U(2n). A basis for the irreducible representa
tions ofSp(2n) is.then obtained by (central) projection from a 
suitable set of Gel'fand-Tsetlin (GT) basis states for U(2n). 
This leads to a GT-type labeling scheme for Sp(2n) in ana
logy with the solutions to the O(n) and Urn) state labeling 
problems. The principle feature of our approach is that the 
action of the Sp(2n) generators in the basis obtained is simple 
and comparable to the O(n) and U(n) cases. By expanding the 
Sp(2n) generators in terms ofU(2n) generators we are able to 
deduce the action of the Sp(2n) generators in the basis ob
tained. We give explicit matrix element formulas for certain 
generators but only give the general form of action for the 
remaining generators. However, as it turns out, the matrix 
elements of the elementary generators (which generate the 
symplectic group Lie algebra) are not difficult to obtain and 
will be evaluated in a forthcoming pUblication. It is evident 
that the approach of this paper may be extended to other 
subgroup embeddings such as, for example, the problem of 
obtaining a weight basis for the irreducible representations 
ofO(n). 

The solution to the symplectic group state labeling prob
lem, as proposed in this paper, suffers from the disadvantage 
that the basis obtained is nonorthogonal. To this end we have 
found it convenient to introduce a dual Gel'fand-Tsetlin 
pattern labeling. One (upper) pattern, which has direct group 
theoretical significance, refers to the representation labels of 
the group Sp(2n) and its subgroups Sp(2n - 2), ... , Sp(2). The 
other (lower) pattern carries the labels of the U(2n) GT states 
from which we are projecting. Thus our basis is orthogonal 
with respect to the upper patterns but not with respect to the 
lower ones. However, the projection operators used may be 
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constructed as a polynomial in the universal Casimir ele
ments of the subgroups Sp(2n), Sp(2n - 2), ... , Sp(2) and thus 
the overlap coefficients may, in principle, be evaluated using 
the known matrix element formulas ofthe U(2n) generators. 
The problem of evaluating the overlap coefficients and var
ious simplifications is discussed in the final section of the 
paper. 

The dual pattern labeling of this paper may be com
pared to the approach of Louck et al.9

,10 to the U(N) tensor 
operator problem. In this case two GT patterns appear. One, 
which has direct group theoretical significance, refers to the 
components of the tensor operator. The other is an operator 
pattern which was shown in Ref. 8 to correspond to a projec
tion-type labeling in analogy with the labeling scheme pro
posed in this paper. We remark that this dual pattern label
ing for the symplectic groups also appears in the work of 
Zhelobenko ll but without any group theoretical signifi
cance. 

Other developments in connection with the symplectic 
group have been made by Lohe and Hurst,12 who have advo
cated the use of modified boson operators as a method of 
constructing basis states for the irreducible representations 
ofSp(2n) in analogy with the boson polynomials used in the 
theory ofU(n). Explicit matrix element formulas, in certain 
degenerate representations ofSp(2n), have recently been ob
tained by Klimyk. 13 The method of raising and lowering 
operators to construct a basis for the irreducible representa
tions ofSp(2n) has been advocated by Bincerl4 and Mickels
son. 15 The symplectic groups also figure prominently in Car
tan's classification of homogeneous spaces, which afford 
certain degenerate representations of Sp(2n) which have 
been studied by Pajas and Raczka 16 and Kalnins and 
Gould. 17 

II. FUNDAMENTALS 

We begin by introducing the symplectic group Sp(2n) as 
a subgroup ofthe unitary group U(2n). The (2nf generators 
aij (i,j = 1, ... ,2n) of the Lie group U(2n) satisfy the commuta
tion relations 

and are, moreover, required to satisfy the Hermiticity condi
tion 

on finite-dimensional (i.e., unitary) representations of the 
group. In order to define the symplectic subgroup of U(2n) 
we introduce a nonsingular antisymmetric metric 
gij = - gji(iJ = 1, ... , 2n). One may then take for the infini
tesimal generators of the Lie group Sp(2n) the n(2n + 1) in
dependent operators 

aij = gipapj + gjpapi = aji' 

where we have summed over repeated indexp from 1 to 2n. 
These generators satisfy the commutation relations 

[aij,ak/] = gkjajJ - gjJakj + gkiajl - gj/aki · 

Without loss of generality we choose the symplectic 
group metric gij to be given by 
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{
8j 'i + I , i odd, 

gij = _ £ i,j = 1, ... , 2n. 
Uj,i _ I, i even, 

We remark that as far as the representation theory is con
cerned the actual choice of symplectic group metric is imma
terial and there exist several other standard choices, all of 
which should lead to equivalent formalisms. 

It is useful to introduce the inverse metric gij defined by 

gijgjk = 8i
k . 

This equation is to be understood in the sense of the summa
tion convention, which we employ throughout the paper, 
where any repeated index is to be summed from 1 to 2n 
(unless otherwise stated). Note that the metricgij satisfies the 
property gijgjk = - 8ik (i.e., Ii = - I) from which it fol
lows that gij = - gij = gji' Using the inverse metric we de
fine generators 

i ik a j =g a kj , 

which satisfy the commutation relations 

[ ik ki ik Ok ki 
a j,a /] = 8 P / - 8 /a j + g' ajl - gjla , 

where we define 

a ki =gija~. 

(1) 

(2) 

We note moreover that the generators (1) satisfy the Hermiti
city condition 

° t ° 

(a'j) = ali' 

The advantage of working with the generators (1) is that 
they are automatically in Cartan-Weyl form. We choose as a 
Cartan subalgebra (CSA) the diagonal generators 

a i
i = au - (giP)2app , i = 1, ... , 2n 

(where the repeated indexp is to be summed from 1 to 2n). 
However, only n ofthese operators are linearly independent 
so we only need consider the Cartan generators 

hi = a 2i - 12i _ 1 = a2i - I ,2i- 1 - a2i,2i 

= - a 2i
2;o i = 1, ... , n, 

whose eigenvalues provide a unique labeling for the system 
of weights. Note, with our choice of metric, that the eSA for 
Sp(2n) is embedded in the CSA for U(2n). 

To see that the generators (1) are in Cartan-Weyl form 
we note that the commutation relations (2) imply the result 

[h;oak/] = (8k
2i _ 1 - 8/2i - 1 + 8/2i - 8k

2;)a
k/. (3) 

Ifwe introduce the fundamental weightsA,(r = I, ... , n) con
sisting of 1 in the rth position and zeros elsewhere one sees 
immediately from Eq. (3) that the roots for the symplectic 
group Lie algebra are given by the weights 

±(Ai+Aj ), i<J and ±(Ai-Aj ), kj. 

We take as a system of positive roots the weights 

Ai + Aj (i<.J), Ai - Aj (i <JJ. 
The corresponding generators are given by 

a2i-12j (i<J) and a 2i - 12j_1 (i <Jl, (4) 

respectively, which we henceforth refer to as raising genera
tors. Note that the raising generators (4) are given in terms of 
U(2n) generators by 

M. D. Gould and E. G. Kalnins 1447 



                                                                                                                                    

2i-1 + 2j-1 a 2j = 02i _ 1,2j 02j _ 1,2i = a 20 

(5) 

a2i-12j_ I = 02i_I,2j_ I - 02j,2i = - a 2j
2i · 

By taking the Hermitian conjugate of Eqs. (4) and (5) we 
obtain the set of lowering generators. 

We draw particular attention to the generators 
a 2i - 12i' a 2i

zi _ I which may be expressed in terms of U(2n) 
generators according to 

a 2i - 12i = 202i -1.20 a 2i
2i _ 1 = 202i,2i-I' (6) 

The operators 

(7) 
form the generators of the subgroup Sp(2) of Sp(2n). The 
generators (7) together with the Sp(2n - 2) generators 
a~(i,j = I, ... , 2n - 2) form the generators of the subgroup 
Sp(2n - 2) X Sp(2) ofSp(2n). 

We note that the symplectic group Lie algebra is gener
ated (as a Lie algebra) by the elementary generators 

(8) 
i = I, ... , n - 1. 

Every symplectic group generator a i 
j may be obtained by 

repeated commutation with generators of the form (8). 
With regard to the group U(2n) we follow the notation 

of Gould. 18 We choose as a eSA for the Lie algebra ofU(2n) 
the Abelian Lie algebra spanned by the diagonal generators 
Oil (i = I , ... ,2n) whose eigenvalues uniquely label the weights 
ofU(2n). With respect to the usual lexicographical ordering 
imposed on the weights we see that the U(2n) generators oij 

with i <j (resp. i>J1 are raising (resp. lowering) generators. 
We let L (resp. Lo) denote the Lie algebra ofU(2n) [resp. 

Sp(2n)] and we letH (resp. Ho) denote the eSA of L (resp. Lo). 
The weights for L (resp. Lo) may be identified with the eSA 
dualH* (resp.H *0) in an obvious manner. WeletB (resp.Bo) 
denote the nilpotent Lie subalgebra of L (resp. Lo) generated 
by the raising generators and we let N (resp. No) denote the 
nilpotent Lie subalgebra of L (resp. Lo) generated by the low
ering generators. We furthermore set 

N=N$H, B=B$H, 

No = No$Ho, Bo=Bo$Ho. 

Note that the subalgebras N, B (resp. No:Oo) are reductive Lie 
algebras. In this notation the Lie algebras L, Lo may be writ
ten 

L =H$N$B=N$B=N$B, 

Lo = Ho $ No $ Bo = No $ Bo = No $ Bo. 

We let U (resp. Uo) denote the universal enveloping al
gebra of L (resp. Lo) and we denote the universal enveloping 
algebras of H, N, B, H o' No, Bo etc., by U(H), U(N), U(O), 
U(Ho), U(No), U(Oo), respectively. 

We now recall some basic facts on the structure of un i
versal enveloping algebras (see, e.g., Humphreys I9). Accord
ing to the PBW theorem the universal enveloping algebra U 
of L may be written 
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U= U(N)U(H)U(B). (9) 

Now the Lie algebra L is generated (as a Lie algebra) by the 
eSA H together with the elementary generators 

Xi=Oi,i+I' Yi=Oi+I,i' i=I, ... ,2n-1. 

The nilpotent subalgebra 0 (resp. N) is generated as an alge
bra by the set {Xi Y" - Ii = I (resp. (Pi yn - 1 i = I)' Again, by 
the PBW theorem, we may choose as a basis for the universal 
enveloping algebra U(B) the identity lee together with the 
set of all basis monomials of degree k (k = 1,2,3, ... ) 

Xi,Xi2 ,··Xi., ·1<ir <2n-1. 

Letting k range over all positive integers and letting the inte
gers ir (r = I, ... , k) take all possible values in the range I, ... , 
2n - I we thereby get a basis for U (B). A similar analysis 
may be applied to the universal enveloping algebras U (H) 
and U(N). In view ofEq. (9) we may choose as a basis for U 
the set of all monomials of the form 

u = nhb, 

where n, h, and b are basis monomials for U(N), U(H), and 
U(B), respectively. 

We remark that we may impose a total ordering on the 
basis monomials with respect to their degrees. One may also 
impose a partial ordering on the basis monomials according 
to their weights under the adjoint action of H in U. A similar 
analysis may be applied to the algebras Uo, U (Ho), U (No), and 
U(Bo)· 

We conclude this section by setting up an (associative) 
algebra homomorphism of U (B ) into Uo which will be needed 
in the following section. From Eq. (5) we may write 

a
Zi

2i+ I = 02i,2i+ I + 02i+ 2,Zi-I' 

a2i-IZi = 202i - I,2i' 

We then define a mapping 

O:U(B )---+Uo, 

defined by 

o (02i _ 1,2i) = ~a2i - Izo 

0(1)=1, i=I, ... ,n-l, 

(10) 

(11) 

which we extend to an algebra homomorphism to all of U (0 ); 
that is, if b = Xi, ., 'Xik is a basis monomial of U (0 ) we define 
() (b) = () (Xi,) •.. () (Xi) and extend linearly. It is easily veri
fied that the mapping (), as defined above, satisfies the alge
bra homomorphism requirements 

o (ab l + f3b2) = a() (btl + f3() (b2), 

() (b lb2) = () (bl)O (b2), for all b l , b2 e U (0 ), 

and is well defined. One may check moreover that () is one
to-one (although this fact will not be required). 

In view of Eq. (10) we may write ()(x;) in the form 
()(xi ) =Xi + ni, where nieN. We see from this that ifb is a 
basis monomial of U (B ) then we may write 

()(b)=b+w, (12) 

where w is a sum of basis monomials in U with U (2n) weight 
strictly less than b. 
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III. PROJECTED GEL'FAND BASIS FOR Sp(2n) 

In this section we obtain a (nonsymmetry-adapted) ba
sis for the irreducible representations ofSp{2n) by a method 
of projection from the unitary group Gel'fand-Tsetlin (GT) 
basis. We begin by recalling the solution to the unitary group 
state labeling problem obtained by Gel'fand and Tsetlin. I 

The U{2n) generators Qij' where i andj are restricted to 
values 1, ... , m (for some positive integer m less than 2n) form 
the generators of the unitary subgroup U{m) ofU{2n). We see 
therefore that U{2n) admits the canonical chain of subgroups 

U{2n):>U{2n - I):>U{2n - 2):> ... ::JU{I). (13) 

Following Baird and Biedenharn,2 the Casimir invariants, 
for each subgroup occurring in the chain (13), provide a com
plete set of commuting (Hermitian) operators whose normal
ized eigenstates form an orthonormal basis (ONB) for the 
irreducible representations ofU{2n). Now the eigenvalues of 
the Casimir invariants for the subgroup U{m) uniquely label 
the irreducible representations ofU{m). An alternative char
acterization of the irreducible representations of U{m) is in 
terms of their highest weights (A. 1m , A.2m , ... , A.mm ), where 
the A. im are integers satisfying the inequalities 
A. 1m >A. 2m > •• ·>A.mm · 

By virtue ofWeyl's subgroup branching laws the high
est weights of two groups U{m + 1) and U{m) occurring in 
the chain (13) are related by the inequalities 

The set of partitions for the chain (13) is most conveniently 
arranged into a GT pattern which labels the GT basis states 
for the irreducible representations ofU{2n). More details are 
given in the paper by Baird and Biedenharn.2 

The crucial property that makes the GT scheme work 
for U{2n) is that in the reduction of an irreducible representa
tion ofU{m + 1) into irreducible representations ofU{m) all 
irreducible representations occur with unit multiplicity. 
This property is also shared by the orthogonal groups for 
which a GT scheme exists (see, e.g., Gould3

). 

One would ideally like to obtain a similar solution to the 
symplectic group state labeling problem. One method is to 
consider the subgroup chain 

Sp{2n):>Sp{2n - 2):> .. ·::JSp(2):>U{I), (14) 

but it is well known (see Zhelobenkoll) that the Casimir in
variants for the subgroups occurring in the chain ( 14) do not 
give a complete labeling. The situation may be improved by 
considering the refinement 

Sp{2n):>Sp{2)X Sp{2n - 2):>Sp{2n - 2) 

::J ... ::J Sp(2) X Sp(2):>Sp{2):> U{ 1). (15) 

The subgroup chain (IS) in fact works for the cases n<2, 
where we have the local isomorphisms Sp(4)~O{5), 

Sp(2)XSp{2)~O{4), and Sp(2)~O{3). However, for n > 2 the 
chain (IS) fails in general to provide a complete set oflabe1s. 

This failure is due to the fact that in the reduction of an 
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irreducible representation of Sp{2n) into irreducible repre
sentations of its subgroups Sp{2n - 2) or Sp(2) X Sp{2n - 2) 
multiplicities may occur and extra invariants are required to 
completely specify the irreducible representations. 

One method of obtaining a solution to the symplectic 
group state labeling problem is to supplement the Casimir 
invariants of the chain (15) with an additional set oflabeling 
invariants. However, there still remains the problem of ob
taining the eigenvalues of these additional invariants which 
are known to be irrational in general (and thus the action of 
the generators in such a basis is likely to be complicated). We 
propose here an alternative solution based on projection. 

For our purposes it suffices to consider irreducible re
presentations V(A.) of U(2n) with highest weights A. of the 
special form 

The space V (A. ) constitutes a reducible representation of the 
subgroup Sp(2n). The branching rules for the reduction of 
V(A.) into irreducible representations ofSp(2n) are given by 
Hamermesh20 and Zhelobenko. 11 In general the irreducible 
representations of Sp(2n) occurring in the space V (A. ) occur 
with mUltiplicities [the U(2n):>Sp(2n) state labeling prob
lem]. 

We recall however that the space VIA. ) contains exactly 
one copy of the irreducible representation of Sp(2n) with 
highest weight A. = (A.I, ... ,A.n)' which we denote by Vo(A.). 
Thus the space VolA. ) may be obtained by central projection 
from VIA. ). To this end let a (A. ) denote the set of all Sp(2n) 
highest weights occurring in V(A.) but excluding 
A. = (A.I, ... ,A.n). Then set 

(16) 

where U 2 = a~di is the second-order invariant ofSp(2n) and 

n 

Xv{U2) = 2 L v,(v, + 2n - 2r) 
,= I 

is the eigenvalue of U 2 in the irreducible representation Vo{v) 
ofSp{2n) (see, e.g., Green21 ). We have explicitly included the 
SUbscript n on the left-hand side of (16) to indicate we are 
considering the group Sp{2n). We have 

(17) 

We remark that the proof of Eq. (17) follows from noticing 
that the universal Casimir element separates A. from the 
weights in a (A. ), a fact which is easily deduced from the 
known form of the weights in a (A. ) (see, e.g., Hamermesh20

). 

Thus we may obtain a set of vectors spanning the irre
ducible representation VolA. ) by considering the central pro
jector (16) applied to the U(2n) GT basis states ofthe space 
V(A.). However, such a basis will be overcomplete and we 
need to consider a certain restricted set of GT vectors to 
yield a complete basis for the space Vo(A.). To this end we 
restrict ourselves to Gel'fand vectors of the form 
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Aln A2n Ann 0 0 0 

ILln 1L2n ILnn 0 0 

AI,n-1 A2,n_1 An_I,n_1 0 0 

ILI,n- I 1L2,n - 2 

. . . . . . 
..1. 1,2 ..1. 2,2 

ILI,2 

..1. 1,1 

From the Gel'fand betweenness conditions the integers lLij 
and Aij in the above pattern must satisfy 

A I,m ';FILI,m ';FA2,m ';F1L2,m ';F •• '';FAm,m ';FlLm,m ';FO, 

(19) 

ILI,m ';FA I,m - I ';F1L2,m ';FA2,m - I 

';F •• • ';FAm - I,m _ I ';FlLm,m ';FO. 

For simplicity we denote the GT state (18) by 

Aln A2n 

ILln 1L2n ILnn 
A

ln
_

1 
A2n _ 1 An_I,n_1 

ILln -I 1L2n - I An_I,n_1 (20) 

1L12 1L22 
..1.11 

ILI1 
We remark that these are the patterns appearing in the work 
of Zhelobenko ll (although no group theoretic meaning is 
attached to such patterns in his work). 

It is our aim now to show that we may obtain a complete 
set of basis states for the space VolA ) by central projection 
from the GT states (20), For simplicity we denote the space 
spanned by the GT basis states of the special form (18) by 
Ao(A ) which we refer to as the space of allowed GT states, 

Now from the work of Zhelobenko, II the number of 
allowed Gel'fand states (20) is precisely equal to dim VolA ); 
that is, 

dim Ao(A ) = dim Vo(A). (21) 

Thus in order to prove our result it suffices to prove that the 
central projector pi n is one-to-one on AdA ), that is, 

(ker PAn) nAo(A) = (0), 

where 

kerP\ = {VEV(A)!P\V=O} , 

Equation (21) then guarantees that P\Ao(A) = Vo(A), 
Note that the GT state (20) has U(2n) weight 

ipl,p2" .. ,p2n ), where 
i i-I 

P2i- I = I. ILj,i - I. Aj,i_I' 
j= I j= I 

i i 

P2i = I. Aj,j - I. ILj,j' i = l, ... ,n, 
j= I j= I 
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ILn-I,n-1 0 0 
.. . . . 

0 0 
(18) 

1L2,2 0 

0 

ILI,I 

INOW, since the CSA Ho ofSp(2n) is contained in the CSA H 
of U(2n) we see that the state (20) is also a weight state of 
Sp(2n) with weight (vl, ... ,vn ), where 

Vi = P2i _ I - P2i' i = l, ... ,n. 

In particular the maximal allowable GT state 

flAo= 

Aln 

Aln 

A ln 

A ln 

Aln 

Aln 

A2n 
A2n 

A2n An-In 

A2n An-In (22) 

has Sp(2n) weight ..1.= (A I,A2, ... ,An) which is the highest 
weight of VolA ). It is easily shown that the GT state (22) in 
fact constitutes a highest weight state for Sp(2n) by verifying 
that the elementary raising generators [see Eq. (8)] vanish on 
the state flA o' Thus we have immediately fl A oE VolA ) whence 

p\flAO=flAO' 

We note moreover that flA 0 has U(2n) weight 
(A I,0,A2,0, ... ,An ,0) which is conjugate under the Weyl group 
to the U(2n) highest weight (AI,A2, ... ,An ,0, ... ,0) and hence 
occurs with unit multiplicity in VIA ). 

Some of the properties of the space Ao(A ) are summar
ized in the following (notation as in Sec. II). 

Lemma 1: (a) If flEAo(A) is a U(2n) weight vector then 
there exists a basis monomial bE U (B ) such that bfl = aflA 0' 

O#aEc' 
(b) If flEA 0(..1. ) is arbitrary then there exists bEU (Ii) such 

that bfl = flA O. 

(c) Ao(A ) is a module over the algebras U (N) and U (N) 
and is cyclically generated by do; that is, 

- A A Ao(A) = U(N)fl 0 = U(N)IJ o· 

Proof: (a) Our proof of this result is based on a lengthy 
induction argument (which is not relevant to the remainder 
of this paper) and is presented in Appendix A for clarity of 
presentation. 

(b) The proof of (b) is an immediate consequence of (a) 
since one may project out weight states from a general state 
with elements from U (H), 

(c) From the known action of the U(2n) generators on 
GT states (see Baird and Biedenharn2 and Gould22

) it is clear 
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that the space Ao(A ) is stable under the action of Nand N. 
HenceAo(A ) constitutes a module over U (N) and U (N). Now 
set 

A ~(A) = U(N).OAO~Ao(A). 
We prove A o(A) = Ao(A ) by a contradiction argument. For 
suppose on the contrary A ~ (A ) #Ao(A ) and choose I1EAo(A ) 
orthogonal to A ;, (A ). Then we have 

0= (11 IU(N)I1Ao) = (U(B)11 111"0) . (23) 

But by (b) there exists beU(iJ) such that bl1 = do whence 
(23) implies 0 = (bl1 111"0) = (11'<0111"0) = 1 and a contra
diction has been reached. Thus our assumption was false and 
we must have A ~ (A ) = U (N)11 A 0 = Ao(A ). From the PBW 
theorem we may write 

U(N)= U(N)U(H), 

whence 

Ao(A) = U(N).O'<o = U(N)U(H)I1Ao = U(N)I1'<o. 
Q.E.D 

Now from Sec. II there exists an algebra homomorphism 0: 
U(B l-Uo [see Eq. (11)]. This result together with the pre
vious lemma implies the following. 

Lemma 2: If I1EAo(A ) there exists ueUo such that 

(11 Aolul1 ) = 1. 

Proof: LetI1EAo(A )bearbitrary. Thenl1maybedecom
posed into a sum of weight vectors 

k 

11= I 111',' 
;=1 

where 111', has U(2n) weight,u;. Assume the weights,ul, ... "uk 
are ordered in decreasing order with respect to the partial 
ordering induced by the positive roots (i.e., lexical ordering). 
Thus,ul is maximal in the set of weights {,ud k; = I' Then 
there exists heU(H) such that hl1 = Ill'" Then by Lemma 
l(a) there exists a basis monomial beU (B) such that 

bhl1 = bill', =al1'<o, a#O. 

Ifwe denote the U(2n) weight of the state do by Ao then we 
see that the basis monomial b has weightAo - ,u I and we may 
write bh = h 'b for suitable h 'eU(H). Thus we have 

a = (11 Aolh 'bl1) = (h '11 "0 1 bl1 ) =/3 (11 Aolbl1 ) , (24) 
I 

AI,n A2,,, 

,ul" ,u2" 
Al,,_l ,.1.2"_1 ,.1."-1,,,-1 

,uln-I ,u2" - I ,u"-l,,,-I 
=p\ 

A12 A22 
,u12 ,u22 
All 

,ull 

These states form a complete basis (of weight vectors) 
for the space Vo(A) which we refer to as the projected Gel
'fand-Tsetlin (PGT) basis. We remark however that the 
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All. 

,uln 

for some/3 #0. Now we let u = O(b )eUo. From Eq. (12) we 
have u = b + w where w is a sum of basis monomials in U 
with U(2n) weight strictly less than Ao - ,ul' We may thus 
write 

k 

ul1 = bl1 + wl1 = bl1 + I will'" 
;=1 

Since,ul is maximal in the set ofU(2n) weights {,uj} kj = I and 
since w has U(2n) weight strictly less thanAo -,ul it follows 
that will', has weight, strictly less than Ao - ,u I +,u;, which 
cannot equal ,.1.0' Thus each state will" must be orthogonal to 
11'< 0' from which we obtain, in view of (24), 

(l1'<olul1) = (11 Aolbl1 ) = al/3 #0. 

Replacing ueUo by I,f3 la)u the result is seen tofoUow.Q.E.D. 
We are now in a position to prove our main result. 
Theorem 1: [ker p.<,,] nAo(A) = (0) and PA"Ao(A) 

= VolA ). In particular if {11; } is a basis for Ao(A ) then the 
projected states ii; = p.< ,,11; constitute a basis {iii 1 for 
VolA ). 

Proof: Clearly P'<"Ao(A)~ Vo(A). We prove pA" is one
to-one on Ao(A ) using a contradiction argument. Suppose on 
the contrary there exists I1EAo{A ) such that PA,,11 = O. But 
Lemma 2 implies there exists ue Uo such that 
(ul1 111'<0) = 1. NowsinceP\ commutes with the action of 
Sp(2n) we have 

O=P\11 = uPA,,11 =pA"ul1. 

Thus 

0= (P A"ul1 111'<0) = (ul1 IP'<nl1'<o) 

= (ul1 111'<0) = 1 

and a contradiction has been reached. Thus our assumption 
was false and P\ must be one-to-one on Ao(A); that is, 
[ker p\] nAo(A) = (0). Since P\Ao{A)~ Vo(A) Eq. (21) 
implies that P'< "Ao(A ) = VolA ). 

Thus if {l1ili= 1, ... ,d" = dim VolA)} denotes a basis 
for Ao{A ) then the projected states P\l1i constitute a basis 
for VolA ). Q.E.D. 

As a particular case of the above result we may choose 
the GT states (20) as a basis for Ao(A ) and the projected states 
constitute a basis for VolA ) which we denote by 

A2n 

,u2n 

,.1.1'1_1 A2n _
1 An-I,n-I 

,uln-I ,u2n - I ,un-I,n -I 

,.1.12 

,u12 
All 

,ull 

I 

(25) 

,.1.22 

,u22 

PGT basis (25) is not orthonormal and moreover is not sym-
metry adapted to either of the subgroup chains (14) or (15). 
We shall consider the problem of constructing a symmetry-
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adapted basis for the space VOlA ) in the next section. 
The labels appearing in the PGT basis for the space 

VolA ) are those of the GT states from which we project. This 
method of labeling may be compared with a recently an
nounced solution (see Edwards and GouldS) to the Clebsch
Gordan multiplicity problem (for arbitrary semisimple Lie 
algebras) where the highest weight states occurring in the 
tensor product representation V (A ) ® V ( ft) are obtained by 
central projection from states of the form e j ® eP +' where 
lei J denotes a basis for the irreducible representation V(A) 
and eP + is the maximal weight vector of V( ft). Thus the 
maximal weight states (and hence the irreducible representa
tions they generate) may be labeled by the vector e; ® eP + (or 
equivalently ei ) from which these states are projected. In the 
case of U(N) where {ei J is the GT basis, this leads to a GT 
pattern labeling for the irreducible representations occur
ring in the tensor product representation V (A ) ® V ( ft). In 
terms of the equivalent problem of determining all tensor 
operators for a semisimple Lie algebra this leads to a GT 
pattern labeling for tensor operators which is closely related 
to the operator patterns of Biedenharn et al.9

•
10 More details 

are given in Ref. 8. 
Although the basis (25) is nonorthogonal one may ob

tain, at least in principle, the overlap coefficients for this 
basis from the known matrix elements of the U(2n) genera
tors together with the explicit form (16) for the projection 
operators r ,,' Whether this leads to an efficient algorithm 
for adaption to computers (or ideally analytic manipulation) 
remains to be seen. However having obtained the overlap 
coefficients the action of the symplectic group generators in 
the basis (25) may be obtained from the known matrix ele
ments of the U(2n) generators, viz., 

aij i(A» = aijP""I(A )) 

= P""aij i(A )) 

= pA" [gipapj + gjpapi ] I(A )), 

where (A) denotes an allowed GT pattern for Sp(2n). The 
trouble with this method, however, is that the Sp(2n) genera
tors aij do not leave the space Ao(A ) invariant and hence it is 
necessary to obtain the matrix elements of P"" in the GT 
basis for V(A ) [and not just for Ao(A I]. This deficiency will be 
removed, by considering a symmetry-adapted basis, in the 
following section. 

IV. SYMMETRY-ADAPTED BASIS FOR Sp(2n) 

As mentioned in Sec. III the trouble with the PGT basis 
(25) is that it is not symmetry adapted to the subgroup chain 
(14). In order to obtain a symmetry-adapted basis we need to 
apply the above projective scheme recursively for each of the 
subgroups Sp(2n), Sp(2n - 2), ... ,Sp(2). 

We denote the PGT state (25) by the simpler notation 

I (A )) = p A I (A )) 
(ft) " (ft) , 

where (A ) and (ft) denote the patterns 
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AI" A"" 
Aln -I An_I,,_1 

(A)= 

AI2 A22 

All 

ftn" 

ft,,-I,,-I 
(ft)= 

ftl2 ft22 

ftll 
The numbers Aij and ftij satisfy the betweenness conditions 
ofEq. (19). Corresponding to each row in the (A) (i.e., upper) 
pattern 

Am = (A lm .A.2m, .. ·.A.mm), 

we construct the associated Sp(2m) projector pAmm [cf. Eq. 
(16) for Sp(2n I]. Clearly these subgroup projectors satisfy the 
rules 

(p Am )2 = pAm pAm pA, = pA, pAm (26) 
m m' m k k m . 

We now consider the compound projector 

n A 
p(A) = II P m m . (27) 

m=l 

In view ofEq. (26) it is clear that the projection operators (27) 
obey the rule 

PIA)p(A') =pIA,)p(A)' p 2(A) = PIA) . 

By repeated application of Theorem 1 it is easily de-

duced that the states p(A) I :~~) form a basis for the irreduci

ble representation VolA ) which, by our construction, is sym
metry adapted to the subgroup chain (14). For ease of 
notation we denote these symmetry-adapted states by 

I (A )) I (A )) 
(ft) 0 = PIA) (ft) . (28) 

The group theoretical interpretation of the (upper) (A ) 
pattern is now obvious and refers to the highest weights (or 
equivalently the eigenvalues of Casimir invariants) of the 
groups in the subgroup chain (14) in analogy with the GT 
states for U(n) and O(n). This implies that two symmetry
adapted states (28) are orthogonal unless they have the same 
upper pattern, i.e., 

( (A :) I (A)) = 0, unless (A ') = (A ). 
o (ft) (ft) 0 

The (lower) (ft) pattern is a multiplicity label which, in our 
approach, refers to the representation labels of the groups 
U(2n - 1),U(2n - 3), ... ,U(3),U(I) of the U(2n) GT vectors 
(20) from which we are projecting. This dual-pattern labeling 
may be compared to the pattern calculus of Biedenham et 
al., 9.10 developed for the tensor operator problem ofU(N). In 
this latter approach two GT patterns appear, one (which has 
group theoretical significance) for labeling the components 
of the tensor operator and the other a multiplicity label (i.e., 
operator pattern). This dual-pattern idea also appears in the 
work ofZhelobenkol1 but without any group theoretical sig
nificance. 
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We note that the basis (28) is not symmetry adapted to 
the subgroup chain (15). However the generators of the sub
group 

G = Sp(2)XSp(2)X···XSp(2) (n times) 

ofSp(2n) have a simple action on the basis states (28). To see 
this consider the infinitesimal generators of the subgroup G 
[see Eqs. (6) and (7)) 

2m- I 20 a 2m = 2m - 1,2m' 
2m 20 a 2m-1 = 2m,2m-I' 

(29) 

hm = 02m _ 1,2m _ I - 02m,2m' m = 1, ... ,n. 

The Cartan generators hm are diagonal in the basis (28) with 
eigenvalue given by 

I 
(A)) [m m 

hm (II.) = 2.r I"j,m - .r Aj,m 
r- 0 }=I }=I 

m - I ) I (A)) 
- /~I Aj,m_ I (1") 0 • 

(30) 

The generators (29) ofthe group G moreover commute with 
the Casimir invariants of the subgroup chain (14) so that we 
may write 

a 2m - I I (A)) = a 2m - I P I (A )) 
2m (I") 0 2m (.-1.) (I") 

=P(.-1.)a2m-12m I~~~)· 
Note that the generators (29) leave the space Ao(A ) (to which 

the GT state I ~~ D belongs) invariant, and moreover the gen

erators a 2m - 12m (and a 2m 2m _ I) can only effect the mth row 
I"m = (1"Im" . ·,J.Lmm) of the (lower) (1") pattern. Using the 
known matrix element formulas of the U(2n) generators (see, 
e.g., Gould22

) we have 

a
2m 

- 12m I ~~D = 202m - 1,2m I ~~D 

= 2 '~1 Nm, \(1") ~~ mJ, 
where (I") + ~ m, is the pattern obtained from (I") by the 
shifts 

I"k,r-+l"k,l, I""m---+I""m + 1, for (k,/)¥=(r,m). 

From the known matrix elements of the U(2n) generators we 
deduce the result (see Appendix B) 

N m = lu + m + 1 _ r)I/2 

, X ("( - 1)m + 1":,= I (Ap,m - I""m + r - p)"i=-, 'lur,m -AI,m _ I + /- r + 1))112 
"1= ,lur,m - I"l,m + /- r)lur,m - I"l,m + /- r - 1) 

#r 

(31) 

Thus we obtain the result 

a 2m - 12m I ((A ))) = 2 i: N m, \ ( ) (+A ~ m) , 
1"0 r=1 I" ,0 

withN m, as in Eq. (31). Similarly for the lowering generator a 2m 2m _ I we obtain 

a2m2m_1 I((A))) =2 i: Hm
, \( )~~m) , 

1"0,=1 I" rO 

Thus using the matrix element formulas (31) and (32) 
one may obtain, in principle, a basis symmetry adapted to 
the subgroup chain (15). This can be done using either a 
lowering operator method or by construction of projection 
operators for the subgroup chain (15) in analogy with the 
projection operators ofEq. (27) for the subgroup chain (14). 
We aim to consider this aspect of the problem in a future 
publication. 

Although the generators (29) of the subgroup G have a 
simple action on the basis states (28) the action of the remain
ing generators a iJ is not so clear. It suffices, in principle, to 
determine the action of the elementary generators (8). The 
matrix elements of the remaining generators can then be ob
tained using repeated commutation. However, unlike the 
generators (29), the elementary generators (8) do not com
mute with the projection operators P (.-1.) so it is necessary to 
proceed indirectly. From Eq. (5) we may expand the genera
tors a 2m - 12m + I and a 2m + 12m _ I in terms of U(2n) genera
tors according to 
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a 2m - 12m + 1 = a2m _ 1,2m + 1 - a2m + 2,2m , 

(33) 

a 2m 
+ 12m _ 1 = a2m + 1,2m _ 1 - a2m,2m + 2 • 

Using the known action of the U(2n) generators on the GT 
basis states (20) together with the shift properties of the 
Sp(2n) generators (33) on the representation labels of the sub
group Sp(2m), we deduce that the action of the generators 
(33) on the basis states (28) is of the form 

2m- I I (A)) 
a 2m + 1 (I") 0 

m 

= "" Nm,+ 
"'" r,l r,l= I 

m m+1 m '(A)-~mr) 
+ r r N ,- r,l () A m+ 1 ' 

r=I/=1 I" --'I I 0 

(34) 
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a2m + 1 I (A)) 
2m -1 (,u) 0 

= i Nm,+ I(A) -..1 mr) 
r,l= 1 r,l (,u) -..1 m l 0 

We hope to be permitted to evaluate the matrix elements in 
Eqs, (34) and (35) [which follow directly from the U(2n) ma
trix element formulas] in a future publication, Since the basis 
states (28) are nonorthogonal there still remains the problem 
of evaluating overlap coefficients, to which we now tum. 

V. OVERLAP COEFFICIENTS 

The overlap coefficients for the basis states (28) are giv
en by the matrix elements of the projection operator (27) 
between GT basis states in the space Ao(A ), viz., 

( (A ') I (A)) _ ((A ') I p I (A )) (36) 
o (,u') (,u) 0 - (,u') (A) (,u) . 

Since the projection operator P (A) may be expressed as a 
polynomial in the second-order Casimir invariants for the 
groups in the chain (14) one may in principle calculate these 
overlap coefficients using the matrix element formulas for 
the U(2n) generators. Whether this yields an effective algo
rithm for adaption to computers (or ideally analytic manipu
lation) remains to be seen. Nevertheless we may deduce some 
elementary properties of the coefficients (36) from general 
considerations. 

We have already noted that the overlap coefficient (36) 
vanishes unless the (upper) (A ) patterns coincide. Thus we 
have 

(
(A ') I (A)) _ ~ ( (A ) I (A )) 

o (,u') (,u) 0 - W)M)o (,u') (,u) 0 • 
(37) 

Next, since the states (28) are eigenstates of the Cartan gener
ators hm Eq. (30) implies that the overlap coefficient (37) 
vanishes unless N m ( ,u) = N m ( ,u') where we define 

m 

Nm(,u) = L ,ui,m . 
i=1 

Thus we obtain 

(
(A) I (A )) ( (A ) I (A )) 

o (,u') (,u) 0 = ~lJ(P)'lJ(P')o (,u') (,u) 0' (38) 

where N(,u) = (Nl(,u),N2(,u), .. . ,Nn(,u)). Note that the 
maximal state 

I(A)) I(A)) 
(A) 0 = (A) 

[see Eq. (22)] satisfies 

( O) I(A)) 
o (,u') (A) 0 =~(P,),(A)' (39) 

Now in view of Schur's lemma we may write 

(
(A) IpAn pAn_I I (A)) 
(,u1 n n-I (,u) 

_ ((A)n-llpAn-, I(A)n-l) 
- a (,u')n-I n-I (,u)n-I ' 
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for some constant a, where the patterns (A )n _ I ,(,u)n _ I are 
obtained from the patterns (A ), ( ,u), respectively, by omission 
of the top rows. We call the constant a the reduced 
Sp(2n ):Sp(2n - 2) overlap coefficient and write it in the form 

(
An) An_I 

,u~ :,un 

(40) 

to indicate that it depends only on the labels 
An' An_I ,,un-I' and,u'n_I' Thus we may write 

(
(A) I (A)) _ A { (A )n - I I (A )n - I ) 

(
An) 

o (,u') (,u) 0 - ,u~~ln 0 (,u')n-I (,u)n-I 0' 

showing that the Sp(2n) overlap coefficients may be written 
as an Sp(2n):Sp(2n - 2) reduced overlap coefficient times an 
Sp(2n - 2) overlap coefficient. Thus it suffices to evaluate 
only the reduced overlap coefficients (40) [for each group in 
the chain (14)]. Ifwe choose the representation labels of the 
subgroup Sp(2n - 2) to be maximal, Eq. (39) implies 

(A )max (A )max 

In other words it suffices to evaluate the matrix elements of 
the projector pAnn between the GT states of the space Ao(A ) 
which are maximal in the subgroup Sp(2n - 2) (i.e., semi
maximal states). This observation clearly reduces the prob
lem of evaluating the overlap coefficient (37). 

From Eqs. (37) and (39) we deduce that the reduced 
overlap coefficients satisfy 

/ A~: I) = 0, unless Nn(,u) = Nn(,u'). 

\,u~ :,un 
Moreover for the maximal reduced overlap coefficients 
(i.e., Ai,n _ I = Ai,n,i = 1, ... ,n - 1 and ,ui,n = Ai,n' for 
i = 1, ... ,n) we have 

( ~: )=~" . /-Ln'''''" 

,u~:A.n 

Since the matrix elements of the U(2n) generators in the GT 
basis may be chosen real we deduce that the reduced overlap 
coefficients are real and satisfy 

(
An ) ( An ) An_1 = An_I . 

,u~ :,un ,un :,u~ 

Also, due to the properties of projectors, we must have 
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We do not consider the problem of overlap coefficients 
any further here. We remark however that there still remain 
other general features of the labeling scheme we have advo
cated which may be studied from general considerations. 
One of these is the property of asymptotic orthogonality 
where the basis (28) becomes orthogonal in a certain limit of 
large quantum numbers. This property is satisfied by the 
solution to the Clebsch-Gordan multiplicity problem (for 
semisimple Lie algebras) given by Edwards and Gould. 8 An
other example of this asymptotic behavior is afforded by EI
liot's5,23 well-known solution to the U(3)::J 0(3) state labeling 
problem where the projected 0(3) states of Elliot rapidly ap
proach orthogonality when the U(3) quantum numbers get 
sufficiently large. It would be of interest to determine 
whether such an asymptotic orthogonality is satisfied by the 
states (28). In terms of reduced overlap coefficients this 
would require that the coefficients (40) approach unity as the 

quantum numbers Ai,n,Aj,n _ I "Li.n = f-Li.n become suitably 
large. This problem has been considered by Biedenharn et 
al.,9 for the U(N) tensor operator problem, who investigate 
the behavior of certain coupling coefficients in various lim
its. It would be of interest to see whether analogous results 
could be obtained for the reduced overlap coefficients (40). 
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APPENDIX A 

We prove here part (a) of Lemma 1. We adopt the nota
tion ofSecs. II and III of the paper. Let IJEAo(A) be a U(2n) 
(allowable) weight state. We prove that there exists a basis 
monomial beU (B) such that bIJ = aIJA 0,0 # aeC, by induc
tion on n. Since we shall be proceeding down the subgroup 
chain we adopt the notation of Secs. II and III, except that 
we add a subscript n to everything to indicate precisely 
which unitary group we are considering. The notation we 
adopt is obvious in the present context. 

The result holds for n = I since U(2) is trivial. Proceed
ing inductively assume the result holds for U(2n - 2); that is, 
if IJ is any allowable U(2n - 2) GT state ofU(2n - 2) weight 
v, in the irreducible representation V(An _ I ) of U(2n - 2), 
then there exists a basis monomial be Un _ I (B ) such that 

bIJ=aIJ An
-

l
o, O#aeC, 

where 

IJ An-Io = I AI,n - I' ,.1,2,'1 [~:-]:]. , An -1,'1 - I) (AI) 

is the Sp(2n - 2) maximal weight state ofSp(2n - 2) weight 
(,.1,1,'1 _ I , ... ,An _ 1,'1 _ I) [cf. Eq. (22)]. We recall, from the re
marks of Sec, III, that IJ An - lois the unique vector in 
V(An_ l ) with U(2n - 2) weight 

,.1,0,'1 -I = (,.1,1,'1 _ I ,0, ,.1,2,'1 _ 1,0, ... ,An _ I,n _ 1,0). (A2) 

Now let IJ be any allowable U(2n) basis state of U(2n) 
weight v. Then IJ may be expressed as a sum of Gel'fand 
states 
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An ) 
IJ = L S(f-Ln,An_ I ,(1')):n , 

I'n' An _ I,(T) ,,- I 

(1') 

(A3) 

where the sum is over all allowable GT states of weight v. 
Choose An _ I to be maximal (under the lexical ordering) 
such that S {,un, An _ I ,(1'))#0 [for some (1') andf-Ln]. Then for 
f-L" fixed we see that 

IJ' = I slJ.tn, An - 1'(1')) 
(T) 

An ) f-Ln 

A(~I 
is a U(2n - 2) weight state of weight (VI,V2,··. ,V2n - 2 ). 

Hence, by our inductive hypothesis, there exists a basis mon
omial beUn _ I (B), of U(2n - 2) weight ,.1,0,,, _ I - v, such 
that 

bIJ'=a 
An ) f-Ln 

An_I ' 

(max) 

For other labels A '" _ I , occurring in the sum (A3)' we neces
sarily have 

An ) 
b f-Ln = 0 

1, , 
/l, n-I 

(1') 

since this state has U(2n) weightAo,n _ I [see Eq. (A2)] which 
is conjugate under the Weyl group to the maximal weight 
(An _ I ,0) and hence, in view of the maximal nature of An _ I , 
cannot occur unless A ~ _ I = An _ I [recalll9 that the weights 
in V (A '" _ I) consist of all integral weights v n _ I < A ''1 - I 
together with their Weyl group conjugates]. 

For all labels f-L~ occurring in the sum (A3) such that 
S(f-L~,An_l>(1'))#O, for some (1'), we have, since the state 
(AI) is the unique U(2n - 2) weight state of weight Ao,n _ I' 
that 

Thus we must have 

An ) 

bIJ = ~ a(f-Ln) A~~ I ' 

(max) 

for suitable scalars a( f-Ln )eIC. 

(A4) 

Now choosef-Ln to be maximal (under the lexical order
ing) such thata{,un )#0 (by the above such af-Ln exists) and set 

b ' - (a )I'n - I.n - An - I.n - I 
- 2n - 3,2n-1 

•• • (a "p2,n - A2.n - I(a "pl,n - AI.n - I 
3,2n - I I 1,2n - I I . 
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From the known action of the U(2n) generators we deduce 

An ) 

b' ~~) ~O 
Moreover this state has weight 
(,ul,n .0. /-l2,n •...• /-In _ I,n .0. /-In,n) which is conjugate under the 
Weyl group to the U(2n - 1) maximal weight 
(,u I,n' /-l2,n ..... /-In,n .0) and thus occurs with unit multiplicity. 
We thus deduce 

b ' O#aeC. 
An ) An ) Itn Itn 

=a • A
n

_
1 

(max) (max) 

For other labels It~ #/-In occurring in the sum (A4) we 
deduce. in view of the maximality of /-In. that 

b ' It~ = O. for It~ #ltn . 
An ) 

A
n

_ 1 

(max) 

We thus obtain 

An ) 
b 'bn =/3 /-In , 

(max) 

O#/3eC. 

Now set 
b H = (a )An•n - /.In.n 2n - 1,2n 

X (a )An - I.n - /.l. - I •••• • (a )A I •• - /.ll .• 2n - 3,2n 1,2n' 
Again. in view of the known action of the U(2n) generators 

I 

on GT basis states, we deduce, as before 

An ) An ) 
b" /-In =/3' • 

(max) (max) 

/3'#0. 

Thus we have 

b H b'bl1=r/ An )=rI1Ao. O#yeC. 
(max) 

Thus we have established the result that given a U(2n) 
weight vector l1eAo(A). of weight v. there exists beU(B), of 
weightAo - v [whereAo is the U(2n)weightofn" 0] such that 

bl1 = rl1 A
o, O#reC. 

Now b may be expressed as a sum of basis monomials of 
weight Ao - v: 

b = L a;b;. a;eC. 
; 

Then for some i we must have b;11 #0. Since n" 0 is the 
unique vector in V (A ) of weight Ao we must have 

b;l1=aI1 A
o• O;faeC. 

Our argument is now complete and the result is proved. 
We remark that, in view of the simplicity of the final result. 
there probably exists a simpler proof of this result. 

APPENDIX B 

Let IAiJ) denote a GT basis state for U(2n). Then from 
the known matrix element formulas of the U(2n) generators 
(see. e.g .• Gould22) we have 

2m-1 
a2m-I.2m IAjj) = L N 2m - \IAjj +,J 2m- \). 

r~ I 

where 

N 2m _ I = (( - Ifm - In;,: I (Ap,2m - Ar,2m _ I + r - p)m: i2(Ar,2m _ I - AI,2m _ 2 + /- r + 1))112 

r m:il(Ar,2m-1 -AI,2m_1 +/-r)(Ar,2m_1 -AI.2m_1 +/-r+ 1) 
(B1) 

Now for the special representations ofU(2n) we are considering, we have 

A j ,2m =A j ,2m_1 =0, fori>m, A j ,2m_2 =0, fori>m-l. (B2) 

For this case only the matrix elements N 2
m -I r for r<.m are nonzero. Substituting Eq. (B2) into Eq. (B1) we obtain (for r<.m) 

N 2m-1 = (( - l)n;~ dAp,2m -Ar,2m-1 + r - p)n~-II(Ar,2m_1 -AI,2m-2 + /- r + 1) 

r n7'~ I(A r,2m-1 -AI,2m_1 + /- r)(Ar,2m_1 -AI,2m_1 + /_ r+ 1) , 
#r 

n;':m+ I (r- P -Ar,2m_1 )m:;;;2(Ar,2m_1 + /- r + 1))112 

m:;;;~ dAr,2m-1 + /- r)(Ar,2m_1 + /- r + 1) 

=(( - l)m+ In;~ I (Ap,2m - Ar,2m- I + r - p)n7'~II(Ar,2m_1 - AI,2m-2 + /- r + 1))112 (1 1 _ )1/2 
m A r,2m-1 + m + r . 

nl~ I(Ar,2m_1 -AI,2m_1 + /- r)(Ar,2m_1 -AI,2m-1 + /- r+ 1) 
#r 

(B3) 

In the dual pattern notation of Sec. IV we set Ar,m =Ar,2m./-lr,m =Ar,2m_l(r= l, .... m), and Ar,m_1 
=Ar,2m_2(r = 1, .... m - 1) and we denote the matrix element (B3) by N'" r' Thus we obtain, in the notation of Sec. IV 
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Nmr = [Jlr,m + m + 1 _ r] 112 (( - 1)m + 1":= dAp,m - Jlr,m + r - P)"~II(.ur,m - A/,m _ I + /- r + 1))112, 
"/= l(.ur,m - Jl/,m + /- r)(.ur,m - Jl/,m + /- r + 1) 

#r 

which gives the matrix element formula of Eq. (31) as required. A similar analysis may be applied to the matrix element 
formula (32). 
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The definition of a canonical unit SU(3) tensor operator is given in terms of its characteristic null 
space as determined by group-theoretic properties of the intertwining number. This definition is 
shown to imply the canonical splitting conditions used in earlier work for the explicit and unique 
(up to ± phases) construction of all SU(3) WCG coefficients (Wigner-Clebsch-Gordan). Using 
this construction, an explicit SU(3 )-invariant denominator function characterizing completely the 
canonically defined WCG coefficients is obtained. It is shown that this denominator function 
(squared) is a product of linear factors which may be obtained explicitly from the characteristic 
null space times a ratio of polynomials. These polynomials, denoted G ~, are defined over three 
(shift) parameters and three barycentric coordinates. The properties of these polynomials (hence, 
of the corresponding invariant denominator function) are developed in detail: These include a 
derivation of their degree, symmetries, and zeros. The symmetries are those induced on the shift 
parameters and barycentric coordinates by the transformations of a 3 X 3 array under row 
interchange, column interchange, and transposition (the group of 72 operations leaving a 3 X 3 
determinant invariant). Remarkably, the zeros of the general G ~ polynomial are in position and 
multiplicity exactly those of the SU(3) weight space associated with irreducible representation 
[q - l,t - 1,0]. The results obtained are an essential step in the derivation of a fully explicit and 
comprehensible algebraic expression for all SU(3) WCG coefficients. 

I. INTRODUCTION AND REVIEW 

Applications of symmetry group techniques in quantal 
physics depend in an essential way on the algebraic construc
tion, for a given group, of suitable analogs to the Wigner
Clebsch-Gordan coefficients I for SU(2) (the quantal angular 
momentum group). From an operator perspective this is the 
problem of explicitly constructing all canonical unit tensor 
operators, a problem that in this detail has been resolved, so 
far, only for SU(2). 

opment and study of the denominator function for the sym
metry group SU(3). We show that, in the general case, the 
denominator function is a ratio of two explicitly defined 
polynomials and develop in detail the many remarkable 
properties not only of the denominator function, but also of 
these polynomials [see Eqs. (3.3) and (3.6)] themselves. We 
demonstrate, in fact, that these polynomials are character
ized by surprisingly elegant symmetry properties. 

We show in this paper that for the unitary group 
SU(3)-a symmetry group of fundamental importance in 
physics-the canonical construction of any unit tensor oper
ator is uniquely defined (to within ± phase conventions) by 
an associated invariant function: the denominator function 
of the tensor operator [see Eq. (2.26) below]. 

The explicit construction of the denominator function 
is the necessary first step in the complete construction of all 
canonical unit tensor operators. In contrast to the construc
tion of the denominator function for SU(2)-which is an ele
mentary product of linear factors I-the task of constructing 
the denominator function for SU(3) is far from elementary 
and embodies considerable group-theoretic information. 
This single function encodes the canonical resolution of the 
multiplicity problem for SU(3), and implies, among other 
things the Littlewood-Richardson numbers for SU(3) as we 
shall discuss below. 

The purpose of the present paper is the detailed devel-

Let us briefly sketch the relevant background for the 
problem of determining the Wigner-Clebsch-Gordan 
(WCG) coefficients for the group SU(3), so that we can be 
more precise about the properties of the denominator func
tion. 

The unitary irreps (irreducible representations) ofSU(3) 
are uniquely labeled by two-rowed Young frames corre
sponding to the partition [m 13,m23,0], with the integers mj3 
obeying m 13>mZ3 >0. The orthonormal basis vectors 11,;:)1) 
spanning each irrep space are uniquely labeled by the Gel
'fand-Weyl patternZ 

(1.1) 

where the integers mij obey the betweenness conditions 

ml3>mIZ>m23>mZ2>m33 = 0, 

m 12>mll >mZZ' 

(1.2) 
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The Hilbert space 71' on which the tensor operators act 
is defined to be the direct sum of the vector spaces carrying 
the unitary irreps of SU(3), each irrep (and hence each Gel
'fand-Weyl vector) occurring once and only once. 

In order to preserve the underlying symmetry between 
the labels 1,2,3- and moreover to make this symmetry evi
dent-it is convenient, in defining the space on which the 
tensor operators act, to allow basis vectors having m33>O, 
thus admitting carrier spaces of U(3) irreps labeled by the 
partition [mI3,m23,m33] (three-rowed Young frames). The 
Hilbert space 71' then consists of a direct sum of such U(3) 
irrep spaces, each such space occurring exactly once. The 
inequivalent SU(3) irreps are then obtained by declaring an 
equivalence relation on U(3) irreps: 

[m13 + k,m23 + k,m33 + k] - [m13,m23,m33] , (1.3) 

for k a finite integer. 
Let us now recall the definition of Ref. 3 of a tensor 

operator on 7I'belonging to SU(3) symmetry. A tensor oper
ator is a set oflinear operators 0 (M) indexed by SU(3) Gel
'fand-Weyl patterns (M) and obeying the equivariance con
dition 

(1.4) 

for every gESU(3), where Ug is the unitary transformation of 
71' associated with g. 

An irreducible tensor operator is indexed by patterns 
belonging to a single SU(3) irrep [M13,M23,O]. The unit ten
sor operators are not uniquely specified by the SU(3) labels 
(M) alone. A linear basis for the tensor operators in SU(3) is 
provided by the unit tensor operators (operators with unit 
norm phased conventionally) having scalar operators as 
multipliers.4 The unit tensor operators are continuous, and 
may be uniquely determined by giving all their matrix ele
ments on the basis 11:)1) of 71'. 

It has been shown2.4 that irreducible unit tensor opera
tors having the same (M) index may be distinguished by a 
second triangular pattern of integers (also obeying the con
straints of a Gel'fand-Weyl pattern) called the operator pat
tern: 

(1.5) 
r l1 

The significance ofthis operator pattern may be seen in 
this way: the action of a tensor operator is a transformation 
of 71' into 71'; for unit tensor operators, the operator label 
(r) specifies the shift (.:11.A2.A3) induced by the operator 
when acting on vectors belonging to the irrep space 
7I'([m))C7l'. That is, 

Or:7I'([m]) = 7I'([m13,m23,m33])~7I'([m +.:1 ]) 

= 7I'([m13 + .:1 1,m23 + .:12,m33 + .:1 3 ]), 

(1.6) 

where 

.:11 = rw .:12 = r l2 + r22 - rw 
(1.7) 

.:13 = M13 + M 23 + M33 - r l2 - r22· 

The shift labels.:1 do not in general distinguish among 
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all unit tensor operators with the same Gel'fand-Weyllabel, 
but the complete operator pattern (r) does provide such a 
distinction. Since the Gel'fand-Weyl pattern and the opera
tor pattern share a common row (the irrep label [M)), it is 
convenient to designate a unique element of the irreducible 
unit tensor operator by writing the two patterns together by 
inverting the operator pattern and placing it above the Gel
'fand-Weyl pattern, writing the common labels [M) only 
once: 

r l1 

r l2 r 22 
M 23 (1.8) 

M12 M22 
Ml1 

or more briefly by 

/[~\), 
\(M) 

in which the common irrep label [M] is set apart from the 
patterns 

and 

(r)=( 
\r12 

Let us summarize: A given element, denoted 

of a canonical SU(3) unit tensor operator denoted 
([M» = (M13 M 23 M 33 ) is uniquely labeled by three 
patterns: (i) a Young frame pattern (partition), 
[M) = [M13.M23.M33]' which specifies the SU(3) equivalence 
class irrep carried by the operator; (ii) a Gel'fand-Weyl pat
tern, 

(1.1') 

Ml1 

which specifies the vector component ofthe operator [irredu
cible transformation property under the group action (1.4)]; 
and (iii) an operator pattern, 

(1.5') 

M23 
which specifies the operator component of the tensor opera
tor (shift action in 71'). 

It is important to note that a tensor operator possesses 
two distinct weights: (i) an ordinary weight in U(3), which is 
denoted by W, associated with the Gel'fand-Weyl pattern 
(Ll'), 

W= (WI,W2,W3) with WI =MII , 

W2 = MI2 + M22 - Mw 

W3 = M13 + M23 + M33 - M12 - M 22; 

Biedenharn. Lohe. and Louck 
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and (ii) a "shift" weight, which is denoted by .d, associated 
with the operator pattern (1.5'), 

(
[r ]) 

.d=.d (M) = (.d 1..d2..d3), (1.10) 

with component.d; defined in analogy with the W; as given 
explicitly by Eqs. (1.7). 

The two weights, Wand.d, do not completely specify a 
unique vector component or a unique operator component 
of the tensor operator ([M]); both weights have multiplicity 
(see below). In general, it requires both the operator pattern 
and Gel'fand-Weyl pattern to specify a unique element of 
the operator as discussed above. (The canonical unit tensor 
operator ([M]) has (Dim [M]f elements.) 

Let us now give the multiplicity of a given weight. 
Equivalently, this is the question: How many operator pat
terns Or,]) are there having given irrep labels 
[M13.M23,M33] and given shift pattern (.d 1..d2..d3)? The an-

I 

cr.))=( .d l 

.d l +.d2 -M33 -,1.3 M33 +,1.3 
[M] M13 M23 

Denoting this stretched pattern by 

G~)l)~l" 
.d l 

MJ r12 r22 
M 23 

one finds, for the general pattern, 

swer is provided by the following formula for the multiplic
ity..ff (see Ref. 5): 

{

(M23 - M33 + 1) - (A.I + ,1.2 + ,1.3)' 

..ff = for .d l +.d2 +.d3 = ~;M;3' M13>.d;>M33' 

0, otherwise, 

where ,1. i is the step function defined by 
(1.lla) 

A.; = max(0,M23 -.d;). (1.1tb) 

(This step function will prove very useful in the formulas 
developed in later sections.) 

It is useful to define a notation enumerating the set of 
operator patterns having the same shift pattern.d, and hav
ing, of course, the same irrep labels [M]. We denote elements 
of this ordered set of operator patterns by (rt ), where 
t = 1,2, ... ,..ff (see Ref. 5). The pattern (FI)--called the 
"stretched pattern" (by analogy to a similar concept in nu
clear spectroscopy)-has the form 

MJ (1.12a) 

(1.l2b) 

Cr,) )~( .d l 

MJ r12 - t + t r22 + t - 1 for t = t,2, ... ,..ff. (1.12c) 
[M] M M 23 13 

The final pattern (r -4' ) has the form 

.d l 

(r:D~l., .d l +.d2 +,1.1 +,1.2 -M23 M 23 - ,1.1 - ,1.2 MJ (1.l2d) 

M 23 

Let us consider now the intertwining number function 
l[M] . .4' which is defined on the set P of all U(3) irrep labels 
[m] = [m 13,m23,m33]' (Thus P denotes the set of all partitions 
with three parts, including 0.) By definition, the intertwining 
number l[M ] . .4 ([ m]) is the dimensionality of the vector space 
intertwining the product representation [M] X [m] with the 
irrep [m +.d ]. The intertwining number is, accordingly, ex
actly the same as the so-called Littlewood-Richardson num
ber g[M].[m].[m+.4 ]. 

The intertwining number function plays a basic role in 
implementing the definition of a canonical tensor operator. 
One can see this, in part, from the fact that the number of 
operator patterns,..ff, for the operator ([M]) with shift.d, is 
equal to or greater than the interwining number l[M ] . .4 ([ m ]), 

..ff>lIM] . .4([m]), for all [m]EP. (1.13) 

We show below that equality is achieved for any 
[M] = [M13,M23,0] and .d = (.d 1..d2..d3) whenever 
m13 - m 23>.d2 and m 23 - m 33>.d3. 
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Let us regard [M] and.d as fixed, and seek the level sets 
Pk of the function l[M] . .4: 

Pk = {[m]EP IIIM] . .4 ([m]) =..ff - k I, k = 0,1, ... ,..ff. 

(1.14) 

The coordinate system most appropriate for graphing these 
level sets6 is the barycentric system (x 1,x2,x3) with 
XI + X2 + X3 = 0 (also called the Mobius plane). Here the 
coordinates for the irrep [m] are given by 

XI = m 23 - m33 + 1, 

X2 = m33 - m 13 - 2, 

X3 = m13 - m 23 + 1. 

(1.15) 

That this coordinate system is the natural one is a conse
quence of the invariance of the intertwining number 
l[M] . .4([m]) to "translations"; that is, 
l[M]..4 ([m + a]) = IIM] . .4 ([m]) for each [m]EPand each 

[m + a]=[m 13 + a,m23 + a,m33 + a]EP. 
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It is useful to develop this use of barycentric coordinates 
in more detail. 

Let us denote the Mobius plane by M and the subset of 
lattice points (points having integral coordinates) ofM by IL. 
Then the transformation [m]t---+x given by Eq; (1.15) is a map 
ifJ from P_IL; that is, x = ifJ ([ m ]). We denote by IL + the image 
of P under ifJ; that is, IL + = ifJ (P). Similarly, we define ILk by 
ILk = ifJ (Pk )· Equivalently, if we define the intertwining 
number function f[M1 . ..:I with domain IL + by 

then 

f[M1 . ..:I(x)=I[M1 . ..:I([m]), for x=ifJ([m]), (1.16a) 

Lk = {xeL +If[M1 . ..:I(x) = 1 - k}, k = 0,1, ... ,1. 
(1.16b) 

The level sets Lk have a principal role in the tensor 
operator problem, as discussed below. Since it is the level sets 
Lk that we give in subsequent figures, let us note also that the 
sets Pk may be recovered from the sets ILk by 

Pk = {[m]ePlifJ([m])elLk }. (1.17) 

It is important to n~te that the level sets ILk (equivalent
ly, Pk ) are determined completely by group-theoretic infor
mation, namely, by the set of values of the Littlewood-Ri
chardson numbers. 

The role of the level sets ILk' hence, of the intertwining 
number function in the tensor operator problem, can be best 
understood from an example. Consider tensor operators 
(630) transforming as the irrep [M] = [630] and having the 
shift pattern.1 = (333). There are four canonical unit tensor 
operators, which are denoted in the notation (1.12) by the 
operator patterns 

3 

3 

0)' r 2 = (5 

2)' r 4 = (3 

3 

3 
(1.18) 

As remarked earlier [Eq. (1.6)], the meaning of these opera
tor patterns is, in part, one of specifying the action of each of 
the unit tensor operators 

I 2 3 4 

o 

'3 

(630) or, 
123 
I I I 

L3 Lz L, Lo 

FIG. 1. Graph of the intertwining number function .F(030 ).1333)' The level 
sets Lo. L" ... ,L.. consist, respectively, of all lattice points La in the cross
hatched region, all lattice points L, (t = 1,2,3) on the broken line. and the six 
lattice points L4 shown as open circles. The boundary line between the char
acteristic null space set N, = L,u .. o\JL4 (t = 1,2,3,4) and the non-null region 
for each operator is labeled by the corresponding operator pattern F,. 
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(6 
r, 

0). 3 t = 1,2,3,4, (1.19a) 

on each subspace K([m])CK, 

(6 
r, 

0!.K([m1)--J'([m1 + (3.3.3)). 3 (1.19b) 

or possibly, 

(6 
r, 

+W([m1I-+O, 3 (1.19c) 

The possibility that some subspaces K([m])CK may be
long to the null space of a given tensor operator must be 
admitted; indeed, this structural property of a unit tensor 
operator is essential as we next show by considering the level 
sets La, ILl> L2, 1L3' L4 described in Fig. 1 and defined by [see 
Eq. (1.16b)] 

ILk = {xelL + If[6301.(3 3 3) (x) = 4 - k }. (1.20) 

A relation between the level sets {IL,} and properties of the 
unit tensor operators 

(
(r,)) 
[M] 

results from the facti that the matrix elements of these unit 
tensor operators taken between the initial state 1/:,1) and the 
final state 1([::''+ ..:11) are WCG coefficients for U(3). For the 
example at hand, these WCG coefficients are the matrix ele
ments denoted by 

(mn + 3 m".+ 3 m" + 31(6 ~. o)lmn ~" m,,). 
(1.21) 

which, by definition, are zero should K([m]) belong to the 
null space of 

(6 ~' 0) 
In expression (1.21), the symbol. denotes the various Gel
'fand-Weyl patterns that enumerate U(2)CU(I) subgroup 
labels. For each specified [m]eP, there is a set ofWCG coeffi
cients (1.21) corresponding to each value t = 1,2,3,4, and 
each set, when not all zeros, is a row of a finite, real, proper 
orthogonal matrix (rows in the real orthogonal matrix that 
reduces fully the direct product representation [630] X [m]). 

The group-theoretic information provided by Fig. 1 is 
that for all partitions [m]ePsuch that ifJ ([m])eLk. there exist 
exactly 4 - k sets of orthogonal and normalizable (nonzero 
sets) of WCG coefficients. Thus, for all [m] such that 
ifJ ([m])eLa, all four sets, t = 1,2,3,4 of WCG coefficients 
(1.21) exist and are orthogonal and normalized; however, for 
all [m]ePsuch thatifJ ([m])eILI' only three such sets oforthog
onal and normalized WCG coefficients exist. The fourth set, 
which existed and was orthogonal and normalizable for 
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¢; ([m])ELo, must consist of all zeros for ¢; ([m])ELI. Thus, all 
subspaces JY([m])CJY with [m]EP such that ¢; ([m])ELI 
must belong to the null space of one of the unit tensor opera
tors (1.19a). Continuing in this way, we obtain the following 
group-theoretic information from Fig. 1: All subspaces 
JY([m])CJYsuch that [m]EPand¢; ([m])ELk must belong to 
the null space of exactly k of the unit tensor operators 
(1.19a), each k = 1,2,3,4. 

We can now state what we mean by a canonical set of 
unit tensor operators (l.19a). Let./Yk denote the vector 
space./Y k C JY defined by 

./Yk = L EIlJY([m]), (1.22a) 
[ml 

where the summation is over all [m]EP such that 

¢; ([m])ENk=Lku···uL4, (1.22b) 

each k = 1,2,3,4. We call the set of all unit tensor operators 

(6 r3t 0) (t = 1,2,3,4) 

canonical if and only if 

The set inclusion property 

N I::) N2 ::) N3 ::) N4 

and, correspondingly [since ¢; (./Yd = Nd, 

./YI ::)./Y2 ::)./Y3 ::)./Y4' 

(1.23) 

(1.24a) 

(1.24b) 

then imply that the conditions (discussed above) imposed on 
the WCG coefficients by the structure of the level sets Lk in 
Fig. 1 are satisfied. The association rt-+./Yt between opera
tor labels and vector spaces is discussed further below. 

Let us note especially that the vector spaces ff t are 
direct sums of whole irrep spaces contained in JY and other 
individual vectors in JY, not in ff" may possibly be in the 
null space of a canonical unit tensor operator. For this rea
son, we refer to ff, as the characteristic null space of the 
unit tensor operator 

The results described above for the special case 
[M] = [630],..1 = (333) generalize: The unittensor operators 

(1.25a) 

with the same shift pattern 

..1 WI) =..1 (r2 ) = ... =..1 (r.4) =..1 = (..1 1,..12'..1 3), 

are distinguished by the nested property 

./YI ::)ff2 ::) ···::)ff .4 (1.25b) 

of their corresponding characteristic null spaces. In this gen
eral case, the vector space ff, is defined by 
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FIG. 2. Graph of the intertwining number function JIM! .... The level sets 
1.0, LIO···,L--# consist, respectively, of all lattice points La in the cross
hatched region, all lattice points Lt (t = 1,2, ... ,1 - lIon the broken line, 
and all lattice points L", in the shaded region, the value of J being 
1,1 - t (t = 1, ... ,1 - II, O. In general 41, - AI + I - 1>0 and 412 
- A, + I - 1>0; in case that 41, - AI + I - 1 = 0 (resp. 412 - A, 
+ I - 1 = 01, the XI-boundary line (resp. x,-boundary linel is XI = I 
(resp. x, = I). 

ff, = L EIlJY([m]), (1.25c) 
[ml 

where the summation is over all partitions [m]EPsuch that 

¢; ([m])EN,=L,u .. -uL.4' (1.25d) 

where Lk is the level set defined by Eq. (1.16b). These level 
sets L, are given explicitly for the general case in Fig. 2 and 
the set N, is shown in Fig. 3. 

We can now give the definition ofa canonical unit ten
sor operator for the general case: The set of unit tensor oper
ators 

([ ~ l) with .; (11:' n ~ I';, ,4,,4 ,), t ~ t, ... ,.L 

(1.26a) 

is canonical if and only if 

.. -I 

FIG. 3. The general null space set Nt. The set Nt consists of all lattice points 
in the lexical region L + (XI> I, x2< - 2, x,> 1) with boundary consisting of 
the broken line l.t. The points in this set, which includes the boundary, 
correspond to all irrep label [ro] such that 1,6 ([ro]1 E Nt> hence, 
K([ro]ICJV"t· 
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The characteristic null space JY't is defined fully by Eqs. 
(1.25) and Fig. 2; equivalently, it is defined by 

t,b(JY't) = Nt· (1.26c) 

[An explicit definition of JY't without the use of figures is 
given in Eqs. (1.33) below.] 

The preceding definition of a canonical unit tensor op
erator is quite abstract and contains no hint as to how the 
matrix elements of such an operator are to be calculated. We 
have given earlier (see Refs. 5-S, particularly, Ref. 5) such a 
calculational tool, which we now review briefly so as to pre
sent (in Theorems 1.1 and 1.2 below) the relationship of that 
method to the definition of a canonical unit tensor operator 
given here and based directly on the characteristic null space 
concept. 

In our earlier work,5 we have given an explicit proce
dure for calculating all SU(3) WCG coefficients based on 
conditions called the "canonical splitting conditions." These 
conditions are that certain SU(3):U(2) projective operators 
must be zero operators. [The matrix elements of the general 
projective operator are often called isoscalar factors or 
SU(3):U(2) reduced matrix elements.] The requirement of 
these zero operators in a canonical definition of the WCG 
coefficients was based on rather subtle properties of the pat
tern calculus.5.6.8 Here we derive these conditions directly 
from the definition of a canonical unit tensor operator given 
above. 

A unit U(3):U(2) projective operator is labeled by the 
U(3) operator pattern ofthe U(3) unit tensor operator 

(Ft) 

(1.27a) 

Mil 
with which it is associated, and anyone of the U(2) operator 
patterns associated with the U(2) unit tensor operators 

M,,). r;, ~ M",M" + I •... ,M". 

(1.27b) 

The explicit notation is 

[ 
(rt)] (M 
[M] ,(r') = 12 

(r') 

(1.27c) 

It follows then that each ofthe patterns 

( 
(rt )) and ([M]) 
[M] (r') 
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satisfies the betweenness constraints of a Gel'fand-Weyl 
pattern. Moreover, the significance of these patterns is exact
ly that inherited from its associated unit tensor operator. In 
particular, there are two shift patterns associated with the 
unit U(3):U(2) projective operator (1.27c): the U(3) shift pat
tern, 

(
[M]) 

Li = Li (r
t

) = (Li1.L12.L13) 

as defined in Eqs. (1.7); and the U(2) shift pattern, 

Li ' = Li (r') = (Li ;, Li ~) with 

Li i =ri1.L1 ~ =M12 +M22 -ri1' 

(1.2Sa) 

(1.2Sb) 

The action of the unit U(3):U(2) projective operator in 
$" is also inherited from its parent U(3) unit tensor operator 
and its daughter U(2) unit tensor operator. However, such an 
operator is a U(l) invariant and has no action on the U(l) 
label mil of the U(3):>U(2):>U(1) basis vectors of $". It is 
convenient therefore to introduce the basis vector 

(1.29a) 

which denotes the set of basis vectors in $" given by 

Accordingly, the symbol (1.29a) denotes an equivalence class 
of vectors in $". 

Let us next give the action of the projective operator 
(1.27c) on the generic basis vector (1.29a): If 

[ 
(rt)] 
[M] #0, 

(r') 

(1.30a) 

then this unit projective operator effects the following shift 
action in $": 

[ 
(rt)] 
[M] : 

(r') 
1

m 13 m23 m33) 
m 12 m22 

where # is defined by 

(1.30b) 

m13 m23 m33) 
m 12 m22 

mil 

(1.3Oc) 
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where the summation is over all mil ,m11> Ml1 correspond
ing to lexical Gel'fand-Weyl patterns [see Ref. 1, Vol. 8, Eq. 
(3.227)]. 

Our reason for giving relations (1.30) in this detail is 
that we can immediately conclude the following. 

Lemma 1.1: If 

[ 

(Ft)] 
[M] #0, 

(r') 

then the characteristic null space of this U(3):U(2) projective 
and the canonical unit tensor operator 

(

(Ft)) 
[M] 

coincide; that is, the null space of the projective operator is 
alsofft • 

We can now prove two principal results-Theorems 1.1 
and 1.2. 

Theorem 1.1: Suppose there exists a subset K t of the 
lexical region L + of the Mobius plane with the following 
property: For each lexical U(3):U(2) Gel'fand-Weyl pattern 

( m\3 m23 m33) such that tP ([m])eK
t

, 

m l2 m22 
the pattern 

(
m\3 +..::11 m23 +..::12 m33 + ..::13) 

m 12 +..::1 i m22 +..::12 

(1.31a) 

(1.31b) 

is nonlexical (violates betweenness), where this pattern is the 
one associated with the shift action in K of the U(3):U(2) 
unit projective operator 

[ 

(Ft)] 
[M] . 

(F') 
(1.31c) 

Then, necessarily, 

Kt ~Nt· (1.31d) 

Proof: Since, by assumption, the pattern (1.31b) is non
lexical and the pattern (1.31a) is lexical, it is necessary that 
K([m])efft for all [m] such that tP ([m])eKt • But 
K([m])efft implies that tP ([m])eNt • • 

Using Theorem 1.1, we can now prove a second princi
pal result, which relates the definition of a canonical unit 
tensor operator given here in terms of characteristic null 
space to the canonical "splitting conditions" discovered 
much earlier.S

-8 [It is convenient now to put M\3 = p, 
M 23 = q, M33 = 0, and (r') = (ay 11) for comparison with 
our earlier results.] 

Theorem 1.2: Let te {2,3, ... ,1}. If the entries in the 
lexical pattern 

satisfy either 

a>r>P + (P - t + 2) (1.32a) 

or 

1464 J. Math. Phys., Vol. 26, No.7, July 1985 

a - (P - t + 2»r>P, (1.32b) 

then the following U(3):U(2) projective operator is the zero 
operator: 

r~:>]~o (1.32c) 

Proof: Let us note first that t = 1 is not included in the 
above theorem because relations (1.32a) and (1.32b) are not 
satisfied for any lexical pattern. 

Before giving the proof itself, let us give explicitly the 
irrep labels [m]eP such that tP ([m])eNt ; that is, such that 
K( [m ] )e fft • These irrep labels are those satisfying any of 
the following sets of conditions (obtained from Fig. 3): 

(i) m\3 = m23 + k, k = 0,1, ... ,..::12 - A3 - t; (1.33a) 

(ii) m23 = m33 + k, k = 0,1, ... ,..::13 - AI - t; (1.33b) 

(iii) m \3 = m33 + k, 

k =..::12 +..::13 - AI - A3 - 2t + 2, 

... ,..::12 +..::13 - AI - A3 - t, 

m23 ,m33 +..::13 - AI - 1, 

m\3,m23 +..::12 - A3 - 1, 
where conditions (iii) are empty for t = I. 

Let us next define the set % t by 

(1.33c) 

%t = {[m]eP Im\3 = m23 +..::12 -A3 - t + lor} 
m23 = m33 +..::13 -AI - t + 1 

(1.34a) 
and Kt by 

K t = tP (%t)· (1.34b) 

Note that Kt is a subset of Nt_ I' but not of Nt. 
We prove the theorem by showing that the pattern 

(
m\3 +..::11 m23 +..::12 m33 + ..::13) 

m 12 + r m22 + a + P - r 
is nonlexical for all lexical patterns 

(
p a q pO) and (m\3 m23 m33) 

m 12 m22 r 

(1.35a) 

(1.35b) 

such that conditions (1.32a) or (1.32b) are fulfilled and 
[m] e% t. The desired proof then follows from Theorem 1.1, 
since Kt is not contained in Nt. 

Consider first that m\3 = m23 +..::12 - A3 - t + 1 so 
thatm\3 +..::11 = m23 + P + q -..::13 -A3 - t + 1, where we 
have used..::11 +..::12 +..::13 = P + q. Since the minimum value 
of m l2 + r is (m12 + r)min = m23 + P + P - t + 2, we find 
that m \3 + ..::11 < (m 12 + r)min for all P such that 
P>q -..::13 - A3• Since P>O and q -..::13 - A3 ,0 [see Eq. 
(LIla) with M 23 = q], this last inequality is always satisfied. 
Thus, the entry m \3 +..::11 in the final pattern is always less 
than the smallest entry that can occur for m 12 + r. The pat
tern is therefore nonlexical for all [m\3,m 23,m33] having 
m\3 = m23 +..::12 - A3 - t + 1. The proof for m23 = m33 
+..::13 - AI - t + 1 is given similarly. • 

Remarks: (a) The essential structural ingredient under
lying the occurrence of zero projective operators may be 
summarized by the following statement: Certain U(3):U(2) 
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unit projective operators must be the zero operator in order 
that the null space of all nonzero unit projective operators 
agrees exactly with the null space of the parent unit tensor 
operator. 

(b) We have given in our previous works an algorithm 
for calculating all WCG coefficients based on the occurrence 
of the zero projective operators given in Theorem 1.2. This 
construction is unique, up to ± phase choices. Thus, the 
definition of a canonical unit tensor operator given here, and 
based on the characteristic null space, gives a unique struc
tural resolution of the multiplicity problem implied by 
group-theoretic information alone except possibly for the 
assignment of the operator patterns (r,) themselves. We dis
cuss this further below. 

In our review of the properties of tensor operators, we 
I 

[Because the matrix elements in this result depend only on 
the differences m 13 - m23' m 23 - m 33, m 13 - m 22, 

m 12 - m22> mj3 - m,2 (i = 1,2,3;j = 1,2), the limits are well 
defined.] We have discussed earlier6 how this limiting prop
erty [which implies that a U(3) WCG coefficient limits simi
larly to zero or a U(2) WCG coefficient] is used to assign the 
operator patterns (r,). Since this result is not used directly 
here, we assume it for the purpose of assigning definite oper
ator patterns. The important result we wish to note in this 
review is that this association of a given operator pattern (r,) 
to a specific operator (defined by its null space) is fully as 
intrinsic, and unique, as the assignment of the shift labels.J. 

We can now assert the sense in which the word "canoni
cal" is applied to this construction of tensor operators. 

A canonical set of unit tensor operators (hence, 
Wigner-Clebsch-Gordan coefficients) is a set of unit tensor 
operators that is labeled by operator patterns and associated 
with the characteristic null spaces as described above. Thus, 
not only do the operator patterns enumerate all irreducible 
tensor operators, but they do so in a way that gives precisely 
and uniquely a basis for all linear transformations between 
any two irrep spaces; equivalently, this solves the "Wigner
Clebsch-Gordan coefficient problem" for SU(3) in a struc
turally meaningful way with no free choices (aside from ± 
phase conventions). 

A global, coordinate-free algebraic, presentation of 
these concepts has recently been obtained.9

,l0 It has been 
shown that the set of all tensor operators for SU(3) can be 
identified as a simple algebra-with no (nontrivial) two-sidj 

(NPCF)1/2(numerator polynomial) 

have discussed the concept of a operator pattern, and we 
have mentioned how a specific operator pattern (r,) in a 
given multiplicity set is to be associated with a specific opera
tor according to the characteristic null space ff, of that 
operator. Whereas the.J pattern associated to a given opera
tor (and operator pattern) is clearly related to an intrinsic 
property of the operator (the shift induced by the operator), 
this association of a specific operator pattern (r, )-even 
though well defined and unique-nonetheless seems to in
volve some arbitrariness. To put the matter in different 
words: Why could we not have associated the patterns (r,) in 
some other ordering? It is a remarkable fact that this order
ing itself is uniquely induced from the limiting properties of 
the matrix elements of a canonical unit U(3):U(2) projective 
operator: 

~d ideal-which is a quotient algebra of the enveloping alge
bra of SOS' The Hilbert space on which these operators act 
(precisely the same JY discussed above) has been shown to be 
a carrier space of a simple irreducible unitary representation 
of the Lie algebra so(6,2)-a noncompact real form of sos 
having Cartan index - 4. 

We are now in a position to be more precise about the 
denominator function. To every operator component of the 
tensor operator ([M]), there is associated a denominator 
function; since the association is to be invariant under SU(3), 
the function is denoted by Dr; that is, only the operator 
pattern enters. 

As shown below, the function Dr is, in fact, a norm for 
the set of operator components having a specified.J pattern; 
the values of Dr are accordingly non-negative real numbers. 
The domain of the function Dr is the set of irrep labels [m]eP 
[the labels of the U(3) invariant vector spaces JY([m])CJn. 
Again, because of the translational invariance of the inter
twining function, only the barycentric coordinates (1.15) en
ter. 

The most important property of the denominator func
tion is that it vanishes on the characteristic null space asso
ciated with the operator pattern r. Since the characteristic 
null spaces are uniquely associated with operator patterns 
that define unique elements of a given tensor operator (split
ting all mUltiplicities), the denominator function is an invar
iant structural definition of the operator itself. 

The matrix elements of a canonical unit U(3):U(2) pro
jective operator have the following symbolic form: 

[U(3)-invariant polynomial] 1/2 [U(2)-invariant polynomial] 1/2' 

(1.37) 

where NPCF denotes a (known) numerator pattern calculus 
factor, which is obtained from some general (and very useful) 
rules known as the pattern calculus. S,II NPCF is the same for 
all operators in a mUltiplicity set (independent of t). The nu-
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U(2) variables m 12,m22 with coefficients that are polynomials 
in the mj3 (i = 1,2,3), that is, U(3)-invariant coefficients. It is 
convenient to define the denominator function Dr such that 
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the U(3)-invariant coefficient of the highest power, m~2m;2> 
in the numerator polynomial is unity. This gives a denomi
nator function that is a ratio ofU(3)-invariant polynomials. 
After factoring out certain linear factors, which themselves 
are identified from the characteristic null space, we are led to 
a denominator function of the (symbolic) form: 

D~ = (ratio of Dim factors) (linear factors)G~-'/G~, 
, (1.38) 

where each G~ is a polynomial (G~ = 1) [see Eq. (3.3)]. 
The G ~ functions have remarkable symmetry proper

ties, which are developed in detail in Sec. V. Probably the 
most striking of these symmetries is that the zeros of the G ~ 
functions occur in SU(3) weight space patterns with the mul
tiply occupied weight space points corresponding precisely 
to multiple zeros! This reemergence of unitary symmetry 
was, to us, both unexpected and surprising. 

Let us now outline the plan of the paper. 
In Sec. II, we give the derivation of the denominator 

function by an explicit construction of all projective opera
tors of maximal U(2) shift in a canonical set (r,) [Eq. (2.5a)]. 
The method exploits the canonical splitting conditions to 
implement, uniquely, an ordered Gram-Schmidt process. 

The denominator functions determined in this way are, 
inherently, very complicated objects indeed. It is therefore 
essential to develop further properties that help one under
stand the nature of this object. One such property is the 
expression of the denominator function as a ratio of polyno
mials. This leads to the G ~ function (a polynomial), which is 
defined in Sec. III. The basic structural form of the denomi
nator function is given in Eq. (3.3). 

We study the G ~ function in Sec. IV and develop a 
general reduction formula, Eq. (4.15). In Sec. V, we prove 
that the G ~ function has remarkable symmetry properties 
(Theorem 5.1). The fact that G~ is a polynomial is demon
strated in Sec. VI. Further properties of G ~ are discussed in 
Sec. VII. The zeros of the G ~ function are determined in Sec. 
VIII and our most striking result-that the zeros belong to 
weight space patterns-is demonstrated (Theorems 8.1-8.3). 
Section IX contains our conclusions. 

The proofs of the various properties of the denominator 
function, and of the G ~ function, are necessarily rather long, 
detailed, and, inevitably, arduous to work out. Because of 
this length, we have chosen to put in a second paper a com
plete reformulation of the G ~ function as an explicit multi
ple series, defining a new type of special function (this aspect 
of the problem has been developed and examined by Milne 
and collaborators).'2 We obtained this reformulation as a 
conjecture when the results proved in this present paper 
were first announced at the 1975 Nijmegen Conference. '3 A 
detailed elaboration of the symmetry properties of the G ~ 
functions (contained in the present paper) proved essential to 
the proof that the conjectured function actually is identical 
to G ~, a task that eluded our efforts at completion for almost 
a decade. 

II. DETERMINANTAL FORM FOR THE DENOMINATOR 
FUNCTION 

The purpose of the present section is to sketch the deri-
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vation of the denominator D ~ characterizing the SU(3) , 
Wigner operator 

~ :' OJ t~ 1,2, ... ,.4. (2.1) 

We give the function D~, explicitly in Eqs. (2.22), (2.26), and 
(2.27) below. Since our primary objective here is to develop 
the properties of these functions, one may for the purpose of 
the present investigation take these equations to be the defin
ition of the function D ~ . It is important, however, to point 
out how these results rel~te to and extend our earlier work on 
the canonical SUi 3) tensor operators (see, in particular, Refs. 
5,6,8, and 14). 

The denominator function D ~ occurs in the character-, 
ization ofthe SU(3):U(2) projective function denoted by 

~ : oJ. (2.2) 

and may be obtained by considering the following product of 
multiplicity-free projective operators: 

[
p-:'o o][q ~H 0] 
p-q 0 q q 
p-q q 

~ ,~,{~ ;, O)~_~ 0X'i. O)} 

+ p:. oJ (2.3) 

In this expression the bracket symbol { ... J denotes an invar
iant operator, which will also be obtained in the present 
work, but whose detailed properties will not be required 
here. The symbols r', r " ,andr, denote operator patterns of 
the respective projective operators. Rerer' andr H are mul
tiplicity-free, since there is a one-to-one correspondence 
between the operator patterns r " r " and the corresponding 
shift patterns 

[~ '] = [~ ;,.::1 i,.::1 n and [~"] = [~ ;',.::1 2,.::1 3]. 
In general the shift pattern for the projective operator [p q 0] 
is not multiplicity-free; that is, for prescribed r' and r ", the 
shift pattern 

[~] = (~,,.::12,.::13] = [~; +~ ;',.::1 i +~;,.::1 i +~ 3] 

does not uniquely determine the operator pattern for [p q 0] 
but rather a set of distinct patterns r"r2, ... ,r ok" The sum
mation on the right-hand side ofEq. (2.3) extends over this 
set. The explicit assignment of the operator patterns in the 
order given corresponds to maximal, ... , minimal character
istic null space as has been discussed in detail in Refs. 5, 6, 
and 8 and reviewed briefly in the Introduction. 

The operator identity (2.3) becomes an explicit relation 
between matrix elements of projective operators when it acts 
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on the SU(3):>U(2) basis vector characterized by the irrep 
labels [m] = [m13,m23,m33], [m'] = [m 12,m22]' (The final 
SU(3):>U(2) irrep labels are then [m 13 + ..::1 1, 
m23 + ..::12,m33 + ..::1 3] and [m12 + q,m22 + q].) The results for 
the individual projective operators on the left-hand side of 
Eq. (2.3) are given by [see Eqs. (3.S0) and (3.SS) of Ref. 8] 

[ 

r" ] 
q q 0 ([m]) = (_ I)Q-.<1i'(NPCF)I/2 

q q [m'] 

q 

X D I 2 3 ([m]) , [ ( 
[ ..::1 "..::1 "..::1 "]) ] - I 

[qq 0] 
(2.4a) 

[p-;"o o]([m]) 
p - q 0 [m'] 

p-q 

= (- 1f-Q-.<1'(NPCF)I/2 

X [D ([p - q 0])( [m'])D ([..::1 ;..::1 ;..::1 ; ] )([m])]-1 
2 [p-qO] [p-qOO] 

(2.4b) 
In these expressions NPCF denotes the numerator pattern 
calculus factor for the operator in question. (The rules for 
evaluating these factors for a prescribed operator have been 
described in Refs. 8 and 11.) The denominator factors occur
ring in these expressions are also given in Ref. 8 (in terms of 
the same notation) and are used in deriving Eq. (2.9a) below. 

The form of the projective operator appearing on the 
right-hand side of relation (2.3) may be shown to be 

[

p :t 0]( [m
,
]) 

p q [m] 

p 
= (NPCF) 1/2.9' t(m22,[m]) 

X[D2(~:D([ml])D~ :t o)([m])]-I, (2.Sa) 

Before extracting the denominator function from Eq. 
(2.7), it is convenient to define the following notations. 

(i) q is an integer that may assume values 0,1,2, .... 
(ii)p is an integer that may assume for each q the values 

q,q+ 1, .... 
(iii) ..::1 is any 3-tuple of nonnegative integers (..::1 1,..::1 2,..13) 

such that for specified q and p 
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where .9' t(m22' [m]) is a polynomial of (total) degree JI - t 
in m13 - m22,m23 - m22,m33 - m22 with coefficients that 
are rational polynomials in the differences 
m13 - m23,m23 - m33,m33 - m 13, and where 

D}([m]) =Dl r t )([m]) , \p q 0 
(2.Sb) 

is the unknown denominator function that we seek to deter
mine. For this purpose the only property of .9' t we need 
initially is the fact that the coefficient of the leading term, 
mff - t is unity-this is actually a convention we make in 
order that expression (2.Sa) fully defines the denominator 
function (2.Sb) of interest here. 

In order to identify the denominator functionD} using , 
Eq. (2.3H2.S), we point out the following features involved 
in the calculation. 

(i) The U(2) denominator function in Eq. (2. Sa) is related 
to the SU(2) denominator function in Eq. (2.4b) by 

D2(~ :D([ml]) = D2(~ =: ~D([ml] + [q q]). 

(2.6a) 

(ii) The numerator pattern calculus factors appearing in 
Eqs. (2.4) combine to yield the numerator pattern calculus 
factor in Eq. (2.Sa) times linear factors arising from opposing 
arrows in the following two arrow patterns: 

\~,," . • 'X'/ 
p-q 0 q q 

3 

-( - 1Y'3 IT (Pi3 +..::1 ;' - P22 - q)Pi' 
i=1 

where 

(2.6b) 

Pr3 = m i3 + 3 - i, Pp. = mj2 + 2 - j, (2.6c) 

/-li = max(..::1 ;,q -..::1;') with ..::1 i =..::1 ; +..::1 ;', (2.6d) 

and (x)a denotes a rising factorial [see the list of symbols 
given in Eqs. (2.8)]. 

Using the results given by Eqs. (2.4)-(2.6) in Eq. (2.3) in 
its matrix element version, we obtain the following relation: 

(2.7) 

(iv) A is the 3-tuple of integers (A I,A.2,A.3) such that for 
specified q and..::1 i each Ai is defined by 

A; = max(O, q -..::1;). (2.8b) 

(v) JI is defined by 

JI = q + 1 - (AI + A2 + A3 ) (2.8c) 

and is the multiplicity of the shift pattern..::1 in irrep [p q 0]. 
(vi) n is the 3-tuple of integers (n l ,n2,n3) with domain D 

defined for specified p,q,..1 by 
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(2.8d) 

where U i is defined by 

U i = min(q,p - Ai)' 

(vii) n - A is the 3-tuple of integers 
(nl - Al>n2 - A2,n3 - ..13) = (PI,lt2,lt3) with domain [)' de
fined for specified p,q,A by 

, { Ilti E ( 0, 1"",ui - Ai 1 } 
[) (p,q,A ) = (PI#2,Jl3) + + _ // l' 

Itl 1t2 1t3 - vU -

(2.8e) 

(viii) M:::::>lI .. :)][, + denote, respectively, the Mobius 
plane, the set oflattice points ofM (subset ofM with integral 
coordinates), and the subset of lattice points such that 
XI> 1,x2' - 2,x3> 1 [the points corresponding to irreps em] 
ofU(3)]. Here X = (X I,x2,x3) denotes a pointxEM, or xEI., or 
XEI. +, as appropriate. 

(ix) (z)a = z(z + l) ... (z + a-I) for each a = 0,1,2, ... 
and indeterminate z is Pochhammer's notation for a rising 
factorial; [zla = z(z - 1 ) ... (z - a + 1) is a falling factorial. 

(x)ni = q - A;' = q - Ai + A; is an alternative way of 
expressing the components of n (see the remark below). 

(xi) the dimension of irreps em] and emf], where 
m:; = m i3 + Ai' are denoted by 

Dim(x) = - xlx~3/2, 

Dim(xf) = - x{ x{ ~ 12, 

where 

(2.8t) 

x{ = Xi + Aj - Ak, (ijk) cyclic. (2.8g) 

(xii) for each 3-tuple of nonnegative integers 
a = (a l,a2,a3) and each point xEM, the function L (a;x) is 
defined by 

L (a;x) = ITai!(xi + l)a) - Xi + l)ak' 
ijk 

where the symbol IIijkAijk denotes the cyclic product 

(2.8h) 

(2.8i) 

it is also useful to note that 

Dim(x)L(a;x)=~IT(-lt;+iai!(xi -ak)a+a +1' 
2 ijk J k 

(2.8j) 

Remarks: (a) One finds that for specified (A 1'..12,..13) sa
tisfying Eq. (2.8a) and all (..1;,..1:2,..1 ~) satisfying 
A ; + A :2 + A ~ = p - q and 0,..1 ; ,p - q, that the domain 
of definition of the 3-tuple n = (n i,n2,n3) is that given by Eq. 
(2.8d). These considerations are important in enumerating 
the components of certain vectors (m-tuples) that appear be
low. 

(b) The productL (a;x) oflinear factors occurs repeated
ly in the subsequent developments; its introduction here 
serves to simplify that presentation. 

Let us now express the left-hand side of Eq. (2.7) in 
terms of the notations introduced above. Here the first rel
evant result is the denominator function, which may be writ-
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ten concisely in terms of the function L (a;x) defined in Eqs. 
(2.8h) and (2.8i) above: 

D i 2 3 ®D I 2 3 ([m]) 
( [ ( 

[A' A' A']) ([A" A" A"])] )2 
[p - q 0 0] [q q 0] 

=D~(A;x) = (- l).<I,-q ~im(x) L (n';x')L (n; -x), 
(p - q)!q! Dlm(xf) 

where n' and x' are given in terms of n and X by 

n; = ni + Ai - q, i = 1,2,3 

(2.9a) 

(2.9b) 

X; = Xi - nj + nk, (ijk )cyclic. (2.9c) 

In Eqs. (2.9), we regard A = (A 1,..12,..13) as a specified shift 
pattern for an operator with irrep labels fp q 0]. According
ly, (n l,n2,n3) has the domain [)(P,q,A ) as discussed above. The 
phase factor ( - 1).<1, - q in Eq. (2.9a) is required in order to 
ensure thatD~(A;x»O for XEI. +. 

Remark: The factor Dim (xf) in D~(A;x) divides the 
numerator; that is, D ~(A;x) is a polynomial in (X I,x2,x3)' Its 
expression is somewhat simpler if we do not effect this can
cellation. 

It is also useful for the subsequent discussion to write 
the denominator D ~(A;x) in the following form: 

___ = (-1)q+ 1-.<1, Dim(xf) (q!)4(p - q)!Nn(A;x) , 

D~(A;x) [Dim(xW L (A;x)L (qqq;x) 

(2.1Oa) 

where N n is defined by 

N (A'x) = (XI - n2 + n3)(x2 - n3 + nd(x3 - nl + n2) 
n , 2nl!n2!n3! 

x IT( -A;)q_n;(xi -Ak)q_nj 
ijk 

x( -Xi -Aj)q-nk(Xi -q)q-n) -Xi -q)q-nk' 

(2.1Ob) 

This result is obtained by straightforward cancellations of 
common factors in L (A;x) L (qqq;X)/ L (n';x') L (n; - x) [see 
Eqs. (2.8h), (2.8j), and (2.9)]. The term L (A;x) L (qqq;x) 
thus contains all common factors in the set of terms 
L (n';x')L (n; - x),n E [)(p,q,A ); it is not, however, necessar
ily the least product of common factors. 

The second step we take in simplifying the left-hand 
side ofEq. (2.7) is to introduce the variabley defined by 

y = P22 - j (P13 + P23 + P33)' (2.11) 

Observing that the Iti defined in Eq. (2.6d) are related to the 
ni and Ai defined in Eqs. (2.8d) and (2.8b), respectively, by 

Iti = ni - Ai> (2.12) 

we find that the rising factorial terms in the left-hand side of 
Eq. (2.7) assume the following form: 

3 

( - lY"' +1', +1', IT (Pi3 + A; - PZ2 - q)Jl; 
i= I 

= IT(y + 1 + j (Xj -xd + Ai)n;_-<; 
ijk 
J/ 

= I ~-tF~(A;x), 
t= I 
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where the expansion of the rising factorial into a polynomial 
in y defines fully the polynomials denoted by F~(A;X) for 
each t = 1,2, ... ,vK. In obtaining the right-hand side of reI a
tion (2.13), we have used [see Eqs. (2.8b), (2.8c), and (2.12)] 

PI + P2 + P3 + 1 = vK. (2.14) 

We next use the expansion (2.13) and the denominator 
in the form of Eq. (2.10) to rewrite the left-hand side of Eq. 
(2.7) as 

.A 
(- tyI':L r-'V~(.1,A.;X), (2.15a) 

,=1 

where we have defined 

D(r,;X) =Dr([m]) =D( 
r, 

o)([m]), 
t p q 

P,(x,y) = 9,(m22,[m]), 

R: (.<\.-<;%) ~ ( - 1)° { (p o*_q max o)(q q 

r t 

Using these notations, Eq. (2.7) becomes 

IT (y + 1 + ! (Xi - xk ) + A;)nt-.ol, 

tt D,,(.1;X) 

0 
F' 

.A .A P (x y) 
= L r-tv~(.1,A.;X) = LR ~(.1,A.;x) , , 

,=1 t=1 D(F,;x) 
(2.17) 

As we shall see, this set of relations (2.17) (one for each triple 
n in its domain) plays a primary role in the subsequent devel
opments. 

In order to solve Eqs. (2.17) for the various quantities on 
the right-hand side, it is convenient to introduce the vectors 
(m-tuples for some finite integer m) 

V'(.1,A.;X) and Rt(.1,A.;x), (2.18) 

with components enumerated by neD( p,qA ) [see Eq. (2.8d)]. 
Equation (2.17) then assumes the vector form 

.A .A P (x y) 
:Lr-tv'(.1,A.;x) = LRt(.1,A.;x) " . (2.19) 
,=1 t=1 D(r,;x) 

Let us next define the scalar product of arbitrary (real) 
vectors X and Y with components {X" J and {Y" J in the 
usual way: 

In terms of this notation, the vectors R' (.1 ,A.;x) [with compo
nents that are Racah coefficients-see Eq. (2.16c)] are ortho
normal: 

(RS(.1,A.;X),Rt(.1,A.;X)) = 8st . (2.20) 

Using this fact, one can see that the equating of equal powers 
of the variable y in each side of relation (2.19) is exactly the 
process of expressing the set oflinearly independent vectors 
(for x in region 1..0, see Fig. 2) 

VI(.1,A.;X), V2(.1,A.;X), ... ,V.A (.1,A.;x) (2.21a) 

in terms of the orthonormal vectors 
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v ~ (.1 ,A.;X)==F ~ (A;X)/ D II (.1 ;X). (2.15b) 

The phase factor if> in Eq. (2.15a) is obtained from Eqs. 
(2.7), (2.9a), and (2.12)-(2.14) to be 

(2.15c) 

We next introduce the following notations for the quan
tities occurring in the right-hand side ofEq. (2.7), where we 
anticipate in the new notation that the various quantities 
depend, in fact, on only the variables.1, A, n, x, y, and t; this 
result is justified by inspection of the explicit equations for 
each of the quantities in terms off actors arising from the left
hand side ofEq. (2.7) [see Eqs. (2.23)-(2.25) below]: 

(2. 16a) 

(2.16b) 

0) }lIm] + ]A ]). 
q 

(2. 16c) 
r" 

(2.21b) 

by applying the Gram-Schmidt orthonormalization process 
to the set of vectors (2.21a) in the order displayed (first VI, 
then V2, ... ). 

Before implementing the preceding observation to ob
tain the explicit results given below, we emphasize that the 
use of the Gram-Schmidt procedure is merely a device for 
solving Eqs. (2.19) in explicit form-the solution itself is 
unique, including all phases [fixed by relation (2.19) itself]; 
the equations themselves originate uniquely (up to phase 
conventions) from the canonical split of the multiplicity, as 
reviewed briefly in the Introduction. The Gram-Schmidt 
procedure as used here is not ad hoc. 

The fact that Eqs. (2.19) are uniquely solved by applica
tion on the Gram-Schmidt procedure to the ordered set of 
vectors (2.21a) allows us to obtain an explicit expression for 
each ofthe quantities on the right-hand side ofEq. (2.19). In 
order to express these results in a more concise form, we will 
sometimes suppress in certain symbols their dependence on 
.1, A, and x. Thus, we write 

V~ = V~(.1,A.;X), 

(V',vt) = (VS(.1,A.;x),Vt(.1,A.;x)) 

= L F~(A;x)F~(A;X) . 
n D~(.1;x) 

(2.22a) 

(2.22b) 

The Gram determinant of the first t vectors in the set (2.21a) 
is similarly denoted A,: 

[

(VI,V I
) 

A, = A,(.1,A.;x) = det : 
(Vt,VI) 

(VI,V
t
)] 

: , (2.22c) 
(vt,V') 

withAo = l. 
Using these abbreviated notations, we may express the 

results obtained from the Gram-Schmidt process described 
above by the following equations: 
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~!](A A )-1/2 . '-I' , 
V~ 

(2.23) 

(2.24) 

QI(~'Y)], 
Q,(x,y) 

(2.25a) 

where 
J( 

Qt(x,y) = 2:r -S(VS,vt), each t = l, ... ,vh'. (2.25b) 
$=1 

Remark: If X is a vector written as a sum 
X = l:~ 1 atXt ofm linearly independent vectors XI' ... , Xm , 

then the Gram-Schmidt procedure applied to this ordered 
set of vectors yields the expression for X in terms of the 
ordered orthonormal vectors Y I' ... , Y m as 

m 

X = 2:btY" with bt = 2:as(Xs,Yt)' 
t s=t 

Observe that if X is a prescribed vector, then the freedom of 
reversing the sign of any Y, is reflected by a reversal of the 
sign of b,. In the application above, we have the correspon
dences (m = vh') 

at-+r- t, Xt-+vt(.J,A.;x), 

bt-+Pt(x, y)/D (Ft;X), Y,-+R'(.J,A.;x). 

Invoking also the fact that the highest-degree term in Pt (x, y) 
is r - t yields D (Ft;x) = (At _ 1/ At )1/2; hence, this implies 
Eqs. (2.24) and (2.25) above. Since, by convention, we have 
specified the sign of Pt (x, y)/ D (Ft ;X), there is no further free
dom in choosing the signs in Eqs. (2.23) and (2.25). 

Equations (2.23H2.25) are quite important for they 
give the explicit expressions for the invariant (Racah) coeffi
cients of the type 

max 

o 
r' 

o)(q q 
r" 

and for all projective functions having maximal lower pat
tern [see Eq. (2.5a)). 

Our purpose in the present paper is to focus on the de
nominator function, which is uniquely defined by the above 
procedure to have thetform 

D 2(Ft;X)=A t_ I /A,. (2.26) 

The determinantal form of this result is, to be sure, quite 
complicated; it is the goal of the present paper to show that 
remarkable simplifications can be effected. 

For explicitness, let us give the elements of the determi
nant A t in terms of the quantities introduced in Eqs. (2.10): 

(Vr, VS) = Dim(x I) (- l)q+ 1 - ..:1'(q!)4( P - q)! 
[Dim(x)f L (.J;x)L (qqq;x) 

n 

each r, s = 1, 2, ... , t. The factors L (.J;x), L (qqq;x), and 
Nn (.J;X) are defined in Eqs. (2.8h) and (2. lOb); the factors F~ 
by the expansion (2.13); and the summation in (2.27) is over 
all n = (n l ,n2,n3 ) E D(p,qA ) [see Eq. (2.8d)]. 

For future reference, it is convenient also to define the 
function Hn (.J,A.;x, y) by 

IIijdy+ 1 +!(xj -xk ) + Aj)n,-..t, 
Hn (.J,A.;x, y) = Dn(.J;X) ; 

(2.28a) 

the components of the vectors VI are then defined by the 
expansion 

J( 

Hn (.J,A.;X, y) = 2:r-tv~(.J,A.;x). (2.28b) 
t=1 

The preceding results complete the definition of the de
nominator function D(rt;x) in its determinantal form, Eq. 
(2.26). Before considering the simplification of this result, let 
us note that an important property of this function is its 
symmetries. These are summarized and proved in Sec. V. A 
preliminary identity required in that analysis stems from the 
following key idea: The construction given in Eq. (2.17) can 
be effected in two distinct ways, which must give identical 
answers for the projective operator r t • The two distinct 
ways to calculate are (i) couple in the "normal order" 
[p - q 0 0] ® [q q 0] as in Eq. (2.3); or (ii) couple in the "op
posite order," that is, according to [q q 0] ® [p - q 00]. 
For this second coupling, we have a relation, which is similar 
to Eq. (2.3): 

0)( max )(p _ q 0 
q q 0 r' 
r" 

(2.29) 

It is to be noted that although the invariant factor [ ... J in this 
relation differs from that in Eq. (2.3), the projective operator 
is, and must be, identical. 

Clearly, starting from Eq. (2.29), we can repeat the en
tire calculation, which starts with Eq. (2.3) and leads to the 
results in Eqs. (2.22H2.25); this will lead us then to relation-
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I 
ships between the sets of results calculated in the two ways. 
Indeed, the entire calculation already given can be taken 
over immediately upon identifying the form that replaces Hn 
given by Eq. (2.28a). This we now do (in outline). 

Let us use script letters f» n' 7t"'n' r~, ... to denote 
quantities analogous toDn , H n , V~, ... , but originating now 
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from the opposite coupling order, Eq. (2.29). Thus, we evalu
ate the operator relation (2.29) on the initial U(3):>U(2) 
states [m] = [m 13,m23,m33], [m'] = [m12,m22]' so that the fi
nal states are [m] + [..::1 ], [m'] + [q,q], exactly as in the nor
mal coupling order. We find that the factor analogous to 
H,,(..::1,A.;X) defined by Eq. (2.28a) is 

K,,(..::1,A.;x) = II (v' + 1 + j (Xj - xk) 
.jk 

-2..::1; +..::1j +..::1k +A;)nj_Aj 

X [~n (..::1;x)] -I . (2.30) 
where y' is defined in terms of the variable y in Eq. (2.11) by 

y'=-y+l-!(p-2q). (2.31) 

Thus, the numerator term in this result is (up to sign) just the 
opposing arrow factor, analogous to (2.6b) and (2.13), but 
calculated from the coupling order in Eq. (2.29). Similarly, 
~~ (..::1;X) is the denominator term analogous to that given by 
Eqs. (2.9), but with the denominators in the left-hand side of 
that result composed in the opposite order. From this direct 
calculation, one finds the following relation between the two 
functions ~~(..::1;X) andD~(..::1;x): 

~2(..::1·X) = Dim(x) D2(..::1' -xl) (2.32a) 
", Dim(x I) n, , 

where the variables x I (f for final) are defined in terms of x 
by 

x{ = x; +..::1j - ..::1 k, (ijk) cyclic. (2.32b) 

Thus, the barycentric variables (x { , x {, x {) are defined in 
terms of the final state vector labels P{3 = P., +..::1; 
(i = 1,2,3) in exactly the same way that the (X I,x2'X3) are de
fined in terms of the initiallabelsp;3 (i = 1,2,3). But now one 
sees from this result and the numerator in Eq. (2.30) that the 
functions Kn and Hn are related by 

K,,(..::1,A.;x,y) = . Hn(..::1,A.;-x-';y). [ 
Dim(x I) ] 112 , 

Dlm(x) 
(2.33) 

This is the key relation for obtaining the consequences im
plied by the normal and opposite coupling orders in Eqs. 
(2.3) and (2.29), respectively. 

In order to obtain the results implied by Eq. (2.33), let us 
next write out the analog ofEq. (2.17) for the coupling (2.29): 

1 

Kn (..::1,A.;X, y) = L~-'r~(..::1,A.;x) 
1=1 

= f ~~(..::1,A.;X) P,(x,y) , 
1= I D(F,;x) 

where we have defined 

~~(..::1,A.;x) = ( - 1)<1> 

x{t i, °Xq 
max 

q 

r" 

(2.34a) 

O+m fJ1 

(2. 34b) 

in which the phase 4> turns out to be exactly that given by Eq. 
(2.15c). 

The first result implied by relation (2.33) is that the 
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components ofthe vectors r'(..::1,A.;X) are related to those of 
V'(..::1,A.;X) by 

r' (..::1,A.;X) = ~ a VI (..::1,A.' - xl) [ 
Dim(x I) ] 112 , 

n Dim(x) S~I s, n , , 

(2.35) 

where the coefficients a" may be determined from the bi
nomial expansion of (y')1 - I into a sum of powers of y; in 
particular, att = ( - 1)1- I. 

Let us now recall that the Gram-Schmidt process is 
invariant under triangular transformations of the initial set 
of (ordered) linearly independent vectors in the sense that 
one obtains the same final set (up to normalization conven
tions for signs); in particular, the Gram determinant is invar
iant (no sign changes) to transformations having ± Ion the 
diagonal. Thus, we find 

d (..::1,A.·x) = A (..::1 1. -xl) [ 
Dim(X/)]' 

I' Dim(x) 1,Ao, , 
(2.36) 

where d, denotes the tXt Gram determinant of the vectors 
r' [Eq. (2.22c) with script letters replacing the Latin ones]. 

Since Eqs. (2.23H2.25) are valid under the substitutions 
v~-+r~, At-+d" R ~-+~~, y-+y', Eqs. (2.35) and (2.36) 
imply relations between the invariant functions for the two 
coupling orders, between the sets of numerator factors 
{ Pt (x, y) J and { Pt ( - X -'; y) J and between the denominator 
functions D(F,;X) and D (rt; - xl). Of all these, the one of 
interest here is that for the denominator function, which 
must be the same in either of the forms, so that 

D(r,;X) = [At_I (..::1,A.;x)lAt(..::1,A.;x)] 1/2 

= [d,_ d..::1,A.;x)/ d,(..::1,A.;X)] 1/2; 

that is, the following symmetry is true: 

D(r;X) = [ Dim(x) ]112 D(r. _xl). 
, Dim(x/) " 

III. DEFINITION OF THE FUNCTION G~ 

(2.37) 

In the present section we rewrite the denominator func
tion in a new form that will prove useful for determining its 
properties. While we could introduce this form [Eq. (3.3) 
below] in an ad hoc fashion, we attempt now to motivate this 
step. This requires bringing in some general aspects of the 
characteristic null space of a canonical unit tensor operator, 
which, as shown in the Introduction, has a definitive role in 
determining the SU(3) invariants D (rt ;x). 

In our ealier work (Refs. 5,6, and 8), we were able to 
show that for t = 1, that is, for the function D 2(rl;X), one has 

1 = AI = (V\VI) 
D 2(rl ;X) 

= (- l).d, Dim(x/) G !(..::1;x) 

C~,q Dim(x) L(..::1;x) 
(3.1) 

The quantities appearing in this expression have the follow
ing definitions. 

(i) The constant C !,q is given by 

C !,q = 1/(p - q)!. (3.2a) 

(ii) The factor Dim(x) is the dimension of irrep [m] 
(Weyl dimension formula) given by 
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(3.2b) 

and Dim(xf) is the same function defined in terms of the final 
irrep labels [m] + [.J ], so that 

(3.2c) 

(iii) The factor L (.J;x) is the product of linear factors 
defined by 

L (.J;X) = II .Ji!(Xi + 1).d) - Xi + 1).d
k

' (3.2d) 
ijk 

(iv) The factor G !(.J;x) [denoted Gq(.J;X) in Refs. 6 and 
8] is a polynomial in the variables .J IA2A3A2 + XI' 
.J3 + X2, .J I + X3, .J 3 - XI' .J I - X2, .J 2 - X3. This polyno
mial is given explicitly in Ref.6, where its symmetries and 
zeros are discussed in detail. (These properties of Gq moti
vated much of the present generalization). 

Remark: It is nontrivial to prove directly that the 1 X 1 
determinant (Vi, VI) in Eq. (3.1), as given by Eq. (2.27), de
fines precisely the same polynomial G ! (.J ;x)=G (.J;X) given 
in Ref. 6. The validity of this identification is based on the 
occurrence of one and the same denominator function 
D 2(r,;X) in the present development and in the previous one 
(Ref. 6). [Equation (3.1) is expression (1.2) of Ref. 6, rewritten 
in a slightly modified form to suit the present discussion]. 

One of the striking features of the right-hand side ofEq. 
(3.1) is that each of the factors L(.J;x) and G!(.J;x) has a 
direct interpretation in terms of the characteristic null space 
of the Wigner operator with which it is associated (the di
mension factors are related to the normalization convention 
for Wigner operators): for the case being discussed (t = 1) the 
operator is the "stretched operator" denoted by r l , which 
transforms as irrep IP q 0], effects the shift (.J IA2A3) with 
A = (A 1,A2,A3) = (0,0,0), and has maximal null space as com
pared to the other operators r 2,r3, ... ,r 1 in the same multi
plicity set. For this operator, L (.J ;x) is a product [the product 
(3.2d)] of linear factors corresponding to known lines oflat
tice points of zeros (and their symmetries) in the null space 
diagram; the polynomial factor G !(.J;x) has the property 
that it is the polynomial of lowest degree (q in this case) that 
can possess known symmetries and vanish on the lattice 
points of an equilateral triangle with side q [q(q + 1 )/2 lattice 
points in all], where the necessity of occurrence of this parti
cular triangle of zeros can be uniquely associated with the 
maximal null space operator in question (see Ref. 6). 

Guided by these results for the r l denominator func
tion, the known results for all (420) operators,15 and the 
fact that the generalization ofEq. (3.1) should be at most to 
rational polynomials (ratio of two polynomials), and the 
formA,_ I lA, ofEq. (2.26), we now write the denominator 
function as 

_ (- W2 -'+ I Dim(xf) G~(.J;X) 
-~--

D 2(F,;x) C;.q Dim(x) L,(.J;x) G~-I(.J;X)' 

(3.3) 

where t = 1,2, ... ,1 with G~(.J;X) = 1. Since we know for 
t = 1 that Eq. (3.3) is correct even when A #(0,0,0) in conse
quence of a reduction formula (to be discussed in the next 
section), we follow this guideline (known to work for the 
(420) operators) and define the factor L, (.J;x) from the 
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known lines of lattice points of zeros in the null space dia
gram for the operator r, having A = (0,0,0) (Ref. 5). In ana
logy with the G !(.J;x) result, we expect the form (3.3) to be 
valid even for operators r, for which A # (0,0,0). This is vali
dated in the next section, where it is demonstrated that for 
generalA Eq. (3.3) reduces in exactly the correct way to sup
ply a "final" set oflinear factors in exact agreement with the 
known lines oflattice points of zeros for the general operator 
r, with A = (A I,A2,A3) general. Taking these results into ac
count, we define the factor L,(.J;x) by 

L,(.J;X) = L (.J I - t + IA2 - t + IA3 - t + l;x) 

= II (.J; - t + 1)!(xi + l).dr ,+ I 
ijk 

(3.4a) 

where we have put the factors in the product in symmetrical
ly to have agreement for t = 1 with Eq. (3.2d). We make no 
assumptions regarding the functions G ~(.J;x), except that 
G !(.J;x) be the known result. 

The constant factor (independent of x) in Eq. (3.3) is 
defined by 

C
' __ (t - 1)!(P - t + 2)!(q - t + I)! . 
p.q (p - q)!(P + 1)!q! 

(3.4b) 

This definition serves to define fully the function G ~ [see Eq. 
(3.5a) below]; in making this definition we anticipate certain 
conventions for the function G ~ [including agreement with 
Eq. (3.2a) for t = 1] to be discussed in Sec. VII. 

We now obtain the fully explicit definition of G ~ by 
iterating Eq. (3.3) in t = 1,2, ... and comparing the resulting 
iterate at each step with those of lID 2(r,;x) =A,IA'_I' 
The result is , 

G~(.J;x) =A,(.J,A;x) II L;(.J;x), 
s= 1 

where we have defined, for convenience of expression, 

L ;(.J;x) = Cps q Dim(x) Ls(.J;x). 
. Dim(xf) 

(3.5a) 

(3.5b) 

In Eq. (3.5a), A, = A, (.J,A;x) is the Gram determinant de
fined earlier in Eqs. (2.22) and (2.27). 

Finally, it is convenient to express G ~ as given by Eqs. 
(3.5) in terms of the "rationalized" elements of the determi
nant A, as given by Eq. (2.27). Thus, defining N'S by 

N rs = Nrs(.J,A;X) = L F~(A;x)F~(A;x)Nn(.J;x) (3.6a) 
n 

and the tXt determinant A, by 

A, = A,(.J,A;x) = det(Nrs), 

we find 

G~(.J;x) 

= ( -1)'(q+ 11 IT (s - 1)!(P - s + 2)!(q - s + I)! 
s= 1 (P + I)! 
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FIG. 4. Zeros of the polynomial G3(3 5 2;x, X 2 x 3 ). This polynomial vanish
es at each of the six points (three large open circles and three large solid 
circles) of each of the six equilateral triangles symmetrically placed about 
the center of symmetry at the point ( - M, I). The linear factors of the poly
nomial are (X3 + 3)(X3 - 5). Hence, the polynomial also vanishes on the 
lines X3 = - 3 and X3 = 5 (the dash-dot lines). Removing these linear fac
tors from the polynomial leaves the new polynomial 
G2(2 4 3;x, + l,x2 - 1,x3)' which still vanishes at each of three points (the 
large solid circles) of each of six equilateral triangles still symmetrically 
placed about the center of symmetry. 

We emphasize again that no assumptions concerning 
the properties of G ~ have entered into the derivation ofEq. 
(3.6c): We could have introduced Eq. (3.3) at the outset as a 
purely mathematical step and arrived at Eq. (3.6c). We have 
attempted to motivate this step by pointing out its relation
ship to other results, thereby providing at least the sugges
tion that each G ~ may be polynomial, despite the formidable 
determinantal formulation given it at this point. Working 
directly from Eqs. (3.5) and (3.6a) and the properties of the 
Gram determinant At, we seek to determine the significant 
properties of these functions G ~ . 

IV. REDUCTION FORMULA FOR G~ 

One of the more remarkable properties of the polyno
mial G !(.J;X) = Gq(.J;X) developed and discussed in Ref. 5 is 
the unexpected manner in which the implicit dependence of 
this function on the step-function parameters A = (A I ,A2,A3) 
account for the further factoring of linear terms from 
G q (.J;x) in just the right way to accommodate lines of lattice 
points of zeros that must develop because the sides of the six 
triangle of zeros (one in the lexical region of the Mobius 
plane) and five other triangles of zeros (occurring because of 
symmetry) become aligned. Because of the importance of 
this geometrical phenomenon in understanding this func
tion, a null space diagram illustrating it (see Fig. 4) in a spe
cial case is reproduced from Ref. 5. It is significant that the 
polynomial remaining after all linear terms are factored out 
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is again a polynomial of the G ~ type. In the example, it is 
G2(243;x l + 1,x2 - 1,x3)' 

The property reviewed briefly above is a key one for 
understanding and developing the properties of the general 
G ~ functions defined by Eq. (3.6c) of the last section. Despite 
the fact that we have not yet shown G ~ to be polynomial, we 
can still show that it reduces in just the desired way, as will 
now be demonstrated. 

The mathematical transformation that underlies this 
behavior was already given in Ref. 5 [see Eqs. (2.13) and 
(2.15) there]. It is a transformation ofthe form 

AA 

(p,q,.:i ,A ,X )-(P,q,.:i ,A ,X ), 

where 

Xi =Xi -Aj +Ak , 

ai =.Ji + Ai - Aj - Ak, (ijk) cyclic; 

p = p,q = q - (AI + 11,2 + 11,3) = JI - 1. 

(4.1a) 

(4.1b) 

(4.1c) 

(4.1d) 

The following results are then obtained from the above: 
A A A 

.J I + .J 2 + .J3 = P + q, 

In this last result 11 is defined by 
A A 

(4.2a) 

(4.2b) 

Ai = max(O,q - .J;), (4.2c) 

in accord with Eq. (2.8b). 
The key relationship for obtaining the reduction for

mula for the general G ~ [Eq. (4.15) below] is Eq. (2.17) as 
formulated in terms of Hn given by Eq. (2.28a). As we now 
show, it is the transformation properties of the function Hn 
that underlies the reduction formula (as well as some of the 
symmetries discussed in the next section). 

Consider then the properties of the function Hn under 
the transformation (4.1) above. For this purpose, it is con
venient to define the function hm (A;x,y) by 

hm (A;x,y) = n(y + 1 + ..!..(Xj - x k) + Ai)' (4.3a) 
~ 3 ~ 

where m = (m l ,m3,m3 ) is an arbitrary 3-tuple with non-neg
ative integer components mi' The numerator factor in H n in 
Eq. (2.28a) is then given by [see Eq. (2.8e)] 

hn _" (A;x,y) = :g:~ + 1 + +(Xj - x k) + Ai) n, _ ",' (4.3b) 

In terms of the notation (4.3a), we can also unambiguously 
define 

hn _" (O;x,y) = hm (O,O,O;X,y)im = n _" 

=:g: ~ + 1 + +(Xj - Xk)t_",. (4.3c) 

The first identity that can now be proved by direct substitu
tion ofthe new variables (4.1) is 

hn_,,(A;x,y) = hn_,,(O;x,y), (4.4a) 

wherey is defined by 

y = y + !(q + 1 - JI). (4.4b) 

The second identity we require is somewhat more difficult to 
prove, but also follows by direct substitution: 
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[ap.q Dim(xI)] I/ZDn(..::1;x) = [ap.q Dim(X')r/ZDn _,,(.J;x), 

(4.5a) 

where we have defined the constant ap.q by 

ap.q = (p - q)!q!. (4.5b) 

The only subtlety in the derivation of Eq. (4.5a) is that one 
must recognize identities such as 

[x; +nk +..::1j -q+Aj]"JX; -nj +q-..::1d"k = 1, 

[x; +nd"j[x; -nj +Ad"k 

which is an unconventional falling factorial relation that re
sults from the fact that the A i assume only two values, 0 or 
q-..::1;. 

In terms of the notation above, we write the function 
Hn defined by Eq. (2.28a) as 

H n(..::1,A;x,y) = hn _" (A;x,y)lDn (..::1;x), (4.6a) 

and similarly, 
A A 

H n _,,(..::1,O;X,Y) = hn _,,(O;x,Y)lDn _,,(..::1;.x). (4.6b) 

Using Eqs. (4.4a) and (4.5a) proved above, we thus obtain 
A 

Hn(..::1,A;x,y) H n _,,(..::1,O;x,Y) 

[ap.q Dim(xI) r /z = [ap,q Dim(X')] lIZ' 
(4.6c) 

where this relation is an identity under the transformation 
(4.1). 

Let us next use relation (4.6c) to determine the desired 
reduction formula. For this, we consider the expansion of 
Hn into the vectors V~ as given by Eq. (2.28b), and the simi
lar expansion for Hn _" in the right-hand side of Eq. (4.6c), 
which is 

A ..-R A 

H n_,,(..::1,O;X,Y) = II Y-'V~_,,(..::1,O;x). (4.7) 
,=1 

Using next the identity (4.6c), we find the following relation 
between the components of the vector V' (..::1,A;X) and those of 

A 

r'(..::1,o;.x): 

[

a Dim(xf) ] I/Z , A 

V~(..::1,A;x) = P.q • Af L A,s V~_,,(..::1,O;.x), (4.8) 
ap•q Dlm(x) s= I 

where the coefficients A,s are determined completely from 
the binomial expansion of(Y)..-R -, as a sum of powers iny; in 
particular, A" = 1. 

Recalling again that the Gram-Schmidt process is in
variant under triangular transformation of the type (4.8) so 
that the Gram determinant is also invariant (no sign 
changes), we find that the Gram determinantsA,(..::1,A;X) and 

A 

A,(..::1,O;.x) are related by 

[ 
ap.q Dim(Xf )]' A A 

A ,(..::1, A; x) = . Af A,(..::1,O;X), 
ap•q Dlm(x ) 

(4.9) 

each t = 1,2, ... ,...#. 
We can now use Eq. (4.9) to obtain a relation between 

two different denominator functions and two different G ~ 
functions. First, let us rewrite Eq. (2.26) in the fully explicit 
form 

DZ(r,;x) =A,_ d..::1,A;x)lA, (..::1,A;x). (4. lOa) 

In particular, this relation applies also to the family of opera-
A A A 

tors having irrep labels fP q 0], shift pattern (..::1 I,.::1z,..::13)' and 
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A A A • 

operator patterns rl,rz, ... ,r..-R' The denominator function 
for each of these operators is 

DZ(F,;.x) = A,_ d.J,O;.x)lA,(.a;O;.x), (4. lOb) 

each t = 1,2, ... ,...#. Equation (4.9) yields the following rela
tion between the denominator functions (4.10): 

[ap,q Dim(xI)] I/zD (F,;x) = [ap,q Dim(X')] I/zD (F,;x). 

(4.11) 

This result expresses the invariance of the form 
[ap,q Dim(xfJj1/Z D(F,;X) to the transformation (4.1). 

Using either Eq. (3.3) and the above result (4.11) or Eq. 
(3.5a) and Eq. (4.9), we now find a relation between G ~-type 
functions. First, let us rewrite Eq. (3.5a) in terms of the pres
ent notation: 

, 
G ~(..::1,A;X) = A,(..::1,A;x) II L ; (..::1;x), (4.I2a) 

s=1 

where we introduce the implicit dependence of G ~ on A. 
Specializing this result tOA = (0,0,0) and renaming variables 
then gives 

A A t A 

G~(..::1,o;.x) = A,(..::1,O;x) II L ; (..::1;.x). (4.I2b) 
s= I 

Combining Eqs. (4.12) and (4.9) yields the desired reduction 
formula in the form 

A 'a Dim(xI)L '(..::1·x) 
G'(..::1,A;x)=G!(..::1,O;.x)II p,q SA' • (4.13a) 

q q s= I ap•q DimW)L ; (..::1;x) 

The product in this result may be simplified using Eqs. (3.4), 
(3.5), and (4.5b): 

ap,q Dim(xI)L ; (..::1;x) 
A 

ap,q Dim(xf)L ;(..::1;.x) 

( + 1)' 3 (..::1. - s + 1)' =(_I)q+l-..-Rq-s . II A' • 

(...# - s)! ; = I (..::1. - s + I)! 
XII (x; -..::1k +s-I),,) -x; -..::1j +s-IJA.,. 

ijk 

(4.13b) 

Finally, writing (by suppressing the implicit A again) 
G~(..::1;x) = G~(..::1,A;x), (4.I4a) 

G~(.J;x) = G~(.J,O,x), (4.I4b) 

we obtain the following theorem. 
Theorem 4.1: The function G ~ satisfies the reduction 

formula 
G~(..::1;X) = (- 1),(9+ l-..-R) IT (q - s + ~)! 

s= I (...# - s). 

3 (..::1; -s + I)! 
X II -"...-< ---

; = 1 (..::1; - s + I)! 
, 

X II II (x; -..::1 k+s-IJA.,(-x;-..::1j +s-IlA, 
s= 1 ijk 

each t = I,2, ... ,q + 1 =...#. 
For future reference, let us also note the identity 

[..::1; +A; - s + l]"j+"k 

[q -s+ I]", 
IT (~; -s+ I)! = II 
; = 1 (..::1; - s + I)! ijk 
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This relation together with Eq. (4.15) shows that the terms 
that factor from G ~(.::1;x) for A = (AI,A2,A3);6(O,O,O) are lin
ear factors in .::1 1..::1 2..::13,.::12 + XI..::13 + x2..::1 I + X3..::13 - XI' 
.::11 -X2..::12 -X3' 

v. SYMMETRIES OF THE DENOMINATOR FUNCTION 
D(r,;x) AND THE FUNCTION G~(.::1;x) 

For the function G !(.::1;x), which occurs in the denomi
nator function for the stretched operator [see Eq. (3.1)], we 
established in Ref. 6 the existence of some remarkable sym
metries. In the present section, we extend these symmetries 
to the general function G ~(.::1;x), t = 1, ... ,1 - 1. 

In order to describe these symmetries, it is convenient 
to replace the variables (.::1,x) by a 3 X 3 array: 

[

.::1 I -t+1.::12-t+1+XI 

A = .::12 - t + 1 .::13 - t + 1 + X 2 

.::13-t+1 .::1 1-t+1+x3 

.::13 - t + I-XI] 

.::11 - t+ 1-x2 . 

.::12 - t+ 1-x3 
(5.1) 

Note that not all of the nine variables in the array A are 
independent since.::1 1 +.::12 +.::13 = P + q and XI + X2 + X3 
= O. These constraints suffice to make the sum of entries in 

each row and the sum of entries in each column equal to 
p + q - 3t + 3. The matrix array A is therefore a 3 X 3 magic 
square. [The array introduced in Ref. 6 was the special case 
of(5.1) having t = 1.] 

In terms of thiS' array, we write the denominator func
tion and G function as 

(5.2) 

We shall demonstrate in this section that the function 
G ~ (A ), for fixed q and t, is invariant under the 72 = 6 X 6 X 2 
transformations corresponding to row permutations, col
umn permutations, and transposition of the array A. We call 
such a transformation of the variables (.::1 1..::1 2..::13,x1,x2,x3) a 
determinantal transformation and refer to the invariance of 
a function/fA ) under these transformations as determinantal 
symmetry. 

For example, the transformation T of the variables (.::1,x) 
corresponding to transposition of the array A is 

T: .::11-.::11' 

and conversely. 

.::13-.::13 -XI' 
X 3--X2, 

(5.3) 

The existence of determinantal symmetry for the func
tions G !(.::1;X) symmetry was found earlier. In generalizing 
this special case, two methods are available: The first uses 
properties of the generating relation, Eq. (2.17); the second 
uses the definition (3.6) directly. 

The idea behind the first method of proof (using the 
properties of the generating function H n) is the following: 
Since Eq. (2.28b) is an identity, we may regard the variables 
y,xI,x2,x3 in the function Hn as indeterminates: the proce
dure ofidentifying first the vectors Vt (.::1,A;X) and then effect
ing the Gram-Schmidt procedure on the ordered set of vec
tors VI,V2, ... ,V..-K uniquely solves those equations and yields 
unambiguously relations (2.23)-(2.25) for the respective 
quantities appearing in the original set of relations-any 
symmetries obeyed by the quantity Hn (.::1,A;x,y) [see Eq. 
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(4.6a)], hence, by the vectors Vt are necessarily reflected also 
in the Gram determinant and then also in the denominator 
function and G ~ itself. [The fact that the procedure is invar
iant to the transformation y- ± y + const allows one to in
terpret the significance of the transformations given here in 
terms of the fundamental operations (permutations of in
dices 1,2,3 conjugation, coupling order, etc.) that exist in the 
algebra of Wigner operators. This will be done in a future 
paper.] 

The first symmetry we consider is called index symme
try. It refers specifically to the subscript, 1,2,3 indexing in the 
Hilbert space irrep label (m13,mZ3,m33) and the shift label 
(.::11..::12..::13)' More precisely, with each PES3 (symmetric 
group of order 3) we associate an index permutation 

P:(1,2,3)-(i1,i2,i3), (5.4a) 

where (il';2,i3) is a rearrangement of(1,2,3). The action of Pis 
defined here in a very specific way: Namely, it is defined to be 
the simultaneous reindexing of the partial hooks 
p = (P13,P23,P33) and of the shift pattem.::1 = (.::1 1,.::1 2..::1 3) given 
by 

P: p-Pp = (Pi,3 ,Pi23 ,Pi,3)' 

.::1_P.::1 = (.::1 i,..::1i
2

..::1 i,), 
(5.4b) 

for P given by (5.4a). As used here, all other actions of Pare to 
be derived from (5.4b). For example, the action of P on the 3-
tuple X = (X 1,x2,x3) = (P23 - P33,P33 - P13,P13 - P23) is 

P:X-PX = 8p x, (5.4c) 

where 8p is the signature of P. 
The first result for G ~ refers to index permutations. 
Lemma 5.1: The function G ~ (.::1 ;x) has index symmetry: 

G~(P.::1;Px) = G~(.::1;X), (5.5) 

eachPES3 • 

Proof: One easily verifies from the definition of 
Hn (.::1,A;X,y) given by Eq. (4.6a) and the definition of Dn (.::1;X) 
given by Eq. (2.10) that 

H Pn (P.::1,PA;Px,y) = Hn(.::1,A;X,y). (5.6a) 

Observe that .::1_P.::1 implies n-Pn and A-PA. The invar
iance relation (5.6a) for Hn implies this same relation for the 
vector components V~ (.::1,A;X), hence, for the Gram determi
nant (2.22c) as well: 

A t (P.::1,PA;Px) = At (.::1,A;X). (5.6b) 

We verify directly from the definitions (3.4a) and (3.5b) that 
also 

L ; (P.::1;Px) = L ;(.::1;x), 

which together with the definition of G ~(.::1;x) = G ~(.::1,A;X) 
given by Eq. (3.5a) and property (5.6b) imply the property of 
G ~ stated in the lemma. • 

The index symmetry proved in Lemma 5.1 corresponds 
to cyclic row interchange in the array (5.1) for P an even 
permutation and to interchange of two rows followed by 
column 2 and column 3 interchange for P an odd permuta
tion. 

The next symmetry G~(.::1;X) we consider corresponds 
to column 2 and column 3 interchange in array A, which we 
denote by c: 
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C:A~C.d =.d, 
X~CX = (-XI -.d2 +.d 3, 

-X3 -.d l +.d 2)· 

-X2 -.d3 +.d l , 

(5.7a) 

We then have the following lemma. 
Lemma 5.2: The function G ~ (.d ;x) has the symmetry 

G~(C.d;Cx) = G~(.d;x). (5.7b) 

Proof The principal result required for the proof of this 
lemma has already been given in Sec. II-this symmetry ori
ginates from the possibility of coupling in two different or
ders to obtain the same projective function. The result 
proved in Sec. II [see Eq. (2.37)] is 

1 _ Dim(x) 1 

D 2(r,; -xf) - Dim(xf) D 2(F,;x) . 

The additional relation we require is 

L (.d' - xf) = Dim(x) L (.d 'x), 
" Dim(xf) , , 

(5.8) 

(5.9) 

which is verified directly from the definition of L, (.d ;x) given 
by Eq. (3.4). Combining Eq. (5.8) and (5.9) with Eq. (3.3), we 
find 

G~(.d; -xf) G~(.d;X) 

G~-I(.d;-xf) G~-I(.d;X) 

Iteration of this result (in t) now yields the relation 

G~(.d; -xf) = G~(.d;x), 

(5.10) 

(5.11) 

which proves the lemma. • 
The symmetries of G ~ (.d;X) proved in Lemmas (5.1) and 

(5.2) correspond to the transformation of variables (.d,x) in
duced by row permutations and column 2-column 3 inter
change in the array A. We still require the transpositional 
symmetry T [Eq. (5.3b)] ofG~(.d;x) in order to prove the full 
determinantal symmetry. (The index transformations PeS3 

together with C and T generate the full 72 determinantal 
transformations of A.) 

Before turning to the proof of the invariance of G ~ (.d ;x) 
under the transformation T, let us discuss several features of 
the proof. 

Determinantal transformations of the nine "variables" 

(.d I' .d 2 , .d 3,.d 2 + XI,.d 3 + x 2,.d I + X 3 , 

(5.12) 

places these variables on equal/ooting. The "operator varia
bles" (.d I' .dz, .d3) are, however, clearly not treated on the 
same footing as the "Hilbert space variables" (x I' X 2 , x 3 ) in 
the formulation ofWigner coefficients as matrix elements of 
unit tensor operators. This is evident in the denominator 
function D ~ (.d;X) [see Eqs. (2. lOa) and (2.8h)], where the.d i 

occur as/actorials and not as polynomial forms [in contrast 
to the (.d ± xl-type variables]. Thus, any discussion of the 
transpositional symmetry, which uses the function 
Hn (.d,A.;X,y), in which (X I ,x2,x3) are regarded as indetermin
ates, necessarily involves extending the domain of all the 
variables (5.12) to nonintegral values. It is natural here to use 
the gamma function and the extension 

z!~F(z + 1). (5.13) 

But a difficulty is encountered immediately with this proce-
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dure-it is highly non unique! For example, if we use 
(z)a ~F (z + 0)1 F (z) to extend the function L (.d;x) as defined 
first by Eq. (2.8h) and second by Eq. (2.8j), we find two re
sults: 

T:L (.d;x)~L (.d;x), 

T:Dim(x)L (.d;x) 

~Dim(x)L (.d;X) 

(5.14a) 

sin7r{.d 3 + l)sin7r{x3+.d 1 + 1) (5. 14b) 
X sin 7r{XI - .d 3)sin 7r{X2 -.d I) , 

wherewehaveusedF(z)r(1 - z) = 1T/sin 1Tzinobtainingthe 
second result. 

In consequence of the foregoing results, it might appear 
that the transpositional symmetry of the function G ~(.d;X) is 
at best ambiguous. This, however, is not the case as the final 
form of G ~ (.d ;x) given by Eqs. (3.6) an<!J2.lOb) shows: Each 
term in that result-the determinant A,(.d,A.;X), the factor 
Dim(x)L (qqq;x), and the factor llijk( - .d;)s_ I 

XI-Xi -.dj)s_dXi -.dk)S_I-is a polynomial in the 
variables (5.12). [For factors depending only on (Xl> x 2 , x 3 ), 

we write Xi = (Xi +.dj ) -.dj to place this property in evi
dence.] Since G ~(.d;x) has this "polynomial structure" in the 
variables (5.12), it follows that each possible extension of the 
results of Sec. II, using the gamma function map (5.13), 
must, in fact, lead to the same final answer for G ~ (.d ;x). 

The preceding results serve to show that the extension, 
using the gamma function, of the results of Sec. II to noninte
gral values of the nine variables in the matrix array A exists 
and leads to an unambiguous expression for G~(.d;x). The 
final form ofthe result must, however, be that given by Eqs. 
(3.6) and (2.lOb)-which is the result obtained naturally 
without the necessity of extension. 

The main point of the preceding discussion is this: We 
should examine the final form of G ~ (.d;x) as given by Eqs. 
(3.6) and (2.lOb) in ascertaining the symmetry under the 
transformation T. But clearly both the polynomial N n (.d;X), 
hence, A, (.d,A.;x), and thedenominatortermsinG~(.d;x) [Eq. 
(3.6c)] are invariant under T. We have thus proved the fol
lowing lemma. 

Lemma 5.3: The function G~(.d;x) has the transposi
tional symmetry T: 

G~(T.d,Tx) = G~(.d;x). (5.15) 

The result implied by Lemmas (5.1)-(5.3) (as discussed 
earlier in this section) is summarized by Theorem 5.1. 

Theorem 5.1: The function G ~(.d;x) written in the form 
G ~(A ) is invariant under all determinantal transformations 
of the array A. 

VI. POLYNOMIAL PROPERTIES OF G~ 

The main result of this section is Theorem 6.1, which 
asserts that G ~(.d;x) for each t = 1,2, ... ,..ff isa polynomial in 
the nine variables 

(.d I' .d 2, .d3,.d2 + XI,.d3 + x2 , 

.d I + X3 ,.d 3 - xl,.d I - X2,.d 2 - x 3 ) (6.1) 

up to an overall factor invariant under determinantal sym
metry. The reduction formula given by Eqs. (4.15) and (4.16) 
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plays a key role here: It shows that for A =1= (0,0,0) the function 
G ~(..:1;x) is a product of linear factors in the variables (6.1) 

A A 

times a function G~(..:1,x) in which A = (0,0,0). Accordingly, 
it is no restriction to prove the asserted polynomial property 
for G ~ (..:1;X) under the assumption that A = (0,0,0). 

While making the above specialization to A = (0,0,0) in 
G ~ (..:1;X) it is at the same time convenient to extend the do
main of the parameters ..:1 = (..:11' ..:1 2, ..:1 3) and to take x 
= (x I' X2' X 3) to be an arbitrary point XEM: Thus, one notices 
in Eqs. (3.6) and (2. lOb), which fully define G~(..:1;x), that all 
quantities are well defined if we replace ..:1; by 5;. p by 
51 + 52 + 53 - q, and take 5 = ($1,52,53) to be an arbitrary 
point 5EJR3. 

For clarity, we repeat the resulting definition of 
G ~ (5;X), each 5EJR3, each XEM: 

G~(5;X) = (- IV(q+ I) 

X IT (s - 1 )!(q - s + 1 )! 

.=1 (51+52+53-q-s+3)._1 

XIT 1 .= 1 nijk( - 5;).-1 (- x; - 5j).- .(x; - 5k).-1 

A,(5;X) 
X------------~~---------

[Dim(x)m=l(x; + l)q( -x; + l)qr' 
(6.2a) 

where (i) q is an arbitrary integer 0,1, ... , and for each q the 
values oft are 1,2, ... ,q; (ii)A,(5;X)is thet Xt determinant with 
element in row r and column s given by 

A I'S(5;X) = LF:-,.(x)F~(x)Nm($;x), 
m 

52- t + 1+ x I 

53-t+ I +x2 
51-t+ 1 +x3 

(6.2b) 
I 

then it follows from the results of Sec. V that G ~ ($;x) has 
determinantal symmetry in the matrix array. 

Let us turn next to the proof of the polynomial proper
ties of G ~($;X). The principal result we wish to prove is the 
next theorem. 

Theorem 6.1: The function G ~($;x) has the form 

G~(5;X)=[IT (s-l!(q-s+l)! ]g~(5;XJ, 
s=1 (51+52+53-q-s+3)s-1 

(6.4a) 

where g~(5;X) is a polynomial in (Xl> X2, x3) of total degree 

2t(q-t+l), (6.4b) 

and in ($1,52,53) oftotal degree 

2t (q - t + 1) + !t (t - 1). (6.4c) 

Remarks: (a) The total degree of a monomial xQ yb r is 
defined to be a + b + c. Note that the total degree of a single 
monomial term is preserved even when the variables are lin
early dependent (over JR); for example, the total degree in 
(x,y) of xQ yb (x + yr is still a + b + c. This result need, of 
course, not be true for a sum of monomials. Accordingly, in 
asserting that the total degree in (Xl> X2' x3) of g~(5;x) is 
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Nm($;xJ = (Xl - m2 + m3J(x2 - m3 + mI)(x3 - mI + m2 ) 

2mI!m2!m3! 

xII (- 5;)q-m,( -x; - 5jJq-mk(Xj - 5k)q-mj 
ijk 

X( - Xj - q)q-mk(X; - q)g-mj' (6.2c) 

where m = (mI' m2, m3) is any 3-tuple of non-negative inte
gers that sum to q, and the summation in Eq. (6.2bJ is over all 
such 3-tuples [see Remark (a) below]; and (iii) F~ is defined 
by the expansion 

II(y+ I +~x; -Xj)) = i yg+l-SF~(x). (6.2d) 
~ 3 m. s=1 

Remarks: (a) The summation over min Eq. (6.2b) re
places the earlier summation over all nE[)(p,q...:1) (with 
A = 0). This replacement ofn by m is quite natural and more
over assures that in the specialization of ($1,52,53) back to 
(..:1 1...:12...:1 3) we recover from Eqs. (6.2) exactly the earlier de
finition ofG ~(..:1;x). This is true becauseNm (..:1;X) = a [in con
sequence of ( -..:1;)q _ m, = a for m; <q -..:1; - 1] unless 
m; >q - ..:1;, each i = 1,2,3, which implies also that 
mj + mk >2q -..:1j -..:1k Ij=l=k), and therefore m; <p - ..:1;, 
each i = 1,2,3. Since also O<m; <q, the only nonzero terms 
in (6.2bJ occur for mE[)(p,q,..:1 J (with A = 0) when 5 = ..:1. 

(b) We emphasize again that the functions G~(5;XJ de
fined by Eqs. (6.2) determine fully the general G ~(..:1;x) func
tion with A =1= (0,0,0), since we recover the general result by 
setting q = q, 5 =.a, x = x in G ~($;x) and then multiplying 
by the factors in the reduction formula (4.15). 

(c) If we change the notation and write 

(6.3) 

~t (q - t + 1), we mean that this is the total degree in any two 
of the independent variables in (XI' X 2 , x 3 ) after eliminating 
the third dependent one. 

(b) We have not attempted to write G~($;X) in a form 
that exhibits explicitly the (proved) determinantal symmetry 
(this is nontrivial), since our main point here is to establish 
the polynomial properties themselves. 

(c) The factor u = 51 + 52 + 53 (and, hence, any func
tion of u) is invariant under all determinantal transforma
tions; accordingly, it is more difficult to give a general argu
ment that the factor n! = I (u - q - s + 3Js _ I , which is of 
total degree t(t-l)12 in ($1' 52' 53)' should also divide 
~ (5;X), leaving then a function G ~ ($;X) that is polynomial of 
total degree 2t (q - t + 1) in both ($1' 52' 53) and (XI' X2, x 3 ). 

We have been unable to prove this result, but believe it to be 
true. 

We demonstrate the above theorem in three steps, using 
directly the definition ofG ~($;x) given by Eqs. (6.2): The first 
step of the proof shows that certain zeros of the (polynomial) 
determinantA,(5;X) originate from each element of the de
terminant (Lemma 6.1); the second step establishes the exis
tence of further zeros of At ($;X) by appealing to the finiteness 
of the functions G ~ (5;X) implied by null space properties 
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(Lemma 6.2); finally, in the third step we deduce the asserted 
degree properties (Lemma 6.3). Together these three lemmas 
imply Theorem 6.1. 

Referring to the definition of G ~(S;x) given by Eqs. 
(6.2), we now prove Lemma 6.1. 

Lemma 6.1: The factor 

(6.5) 

divides the determinantA,(S;x). 
Proof' We give the proof of this lemma by showing that 

the factor 

Dim(x) II (x; + l)q( - x; + l)q (6.6) 
; 

divides each element A rs (S;x) (r,s = 1,2, ... ,t) of the determi
nant A,(s;x). Since the roots of the factor (6.6) are those 
x = (x)' x 2, X3)ElL such that also 

X;EZq:={ - q, - q + 1, ... ,q}, (6.7) 

the desired result is true if it can be proven that [see Eq. 
(6.2b)] 

(6.8) 
m 

each xElL, xiEZq. 
To prove Eq. (6.8), we first observe from the definition 

(6.2c) of Nm (s;x) that 

Nm(s;x) = 0, (6.9a) 

for each Xi in the set 

{ - q, - q + I, ... , - m k - I;mj + I,mj + 2, ... ,qj, 

(ijk) cyclic. (6.9b) 

[These zeros come from the factors ( - x; - q)q _ mj and 
(x; - q)q _ mj in N m (S;x).] It follows from this result that a 
given term (m), m2' m3) in the sum (6.8) is zero unless 

X;E{ - m k , - m k + I, ... ,mj j, (ijk) cyclic. (6.9c) 

We next show that the sum (6.8) is also zero for each x; in the 
set (6.9c) because of pairwise cancellation of terms. 

Thus, for X3 = a3 and 

(6.10) 

we now demonstrate that the (m ),m2,m3) and (m2 + a3, 
m) - a3,m3) terms in the sum (6.8) cancel exactly. The gen
eral result for x; then follows because of index symmetry: 

A rs(PS;Px) = A rs(s;x). 

The two results required for this proof are 

F(m,.m2,m,l (x),x2,a3) = F(m2 + a"m, - a"m,l (x),x2,a3), (6.lla) 

N(m"m2,m,J (x ),x2,a3) = - N(m
2 

+ a"m, _ a"m,l (x ),x2,a3), (6.11 b) 

eacha3E{ - m2, - m2 + I, ... ,md. The first property (6. 11 a) 
is easily proved from Eq. (6.2d) (use of the relation 
x) + X 2 + 0 3 = 0 is required). The second relation (6.11b) is 
somewhat more tedious to prove. The factorial relations 
needed are 

(x) - S3)q-m
2

( -X2 - S3)q-m, 

= (x) - S3)q- m, +a, ( - X2 - S3)q-m,-a" (6.12a) 
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( - St!q- m, ( - a3 - SI)q- m,( - S2)q- m, (a3 - S2)q- m, 

= ( - SI)q- m, -a, ( - a3 - St!q- m, +a, 

X( - S2)q-m, +a,(a3 - S2)q-m,-a, 

( - a3 - q)q _ m, (a3 - q)q _ m/ml!m2! 

= ( - a3 - q)q- m, +a, (a3 - q)q- m, -a, 

X 1I(m2 + a3)!(m I - 03)!. 

(6.12b) 

(6.12c) 

[Relation (6.12a) is an application of the general identity 
(z)a(z + alp = (z)p+ ,,(z + a)a_ a fora,p,p + a, a - a non
negative integers (using also - X 2 = X I + 0 3); relation 
(6.12b) uses the preceding general identity twice; and rela
tion (6.12c) is the special cases) = S2 = qof(6.12b).] Finally, 
the dimension factor in N m (S;X) reverses sign under the 
transformation m l~m2 + x 3, m2~m I - x 3, m3~m3' 
These results prove Eq. (6.llb) and complete the proof of 
Lemma 6.1. • 

The result of Lemma 6.1 is that P ~, defined by 

P~(s;x) = [. 3 A,(s;x) , ' (6.13) 
Dlm(x)n;~dx; + l)q( -x; + l)q] 

is a polynomial in the variables SElR3, XEM. (It clearly also 
has determinantal symmetry.) 

The second result we require for the proof of Theorem 
6.1 is Lemma 6.2. 

Lemma 6.2: The factor 
, 

IT II (- S;)s- If - x; - Sj)s- dx; - sds-I (6.14) 
s~ I ijk 

divides the polynomial P~(S;x). 
Proof: We have been unable to give a direct proof of this 

result, based on Eqs. (6.2). Its validity may, however, be es
tablished as follows: Referring to the null space diagram 
(Fig. 3) for the operator r" we see that the denominator 
function D 2(F, ;x) (A = 0) can have no lines of zeros of the 
form XI = .::1 3, Xl =.::13 - 1, ... ,x I =.::13 - t + 2, since 
liD 2(F,;x) must be finite in this region of the Mobius plane, 
indeed, positive if we also take X 3>.::1 2 - t + 2, and 
x2< -.::12 -.::13 - 2t + 2.ltfollowsbyinductionont [start
ing with t = 1 and the fact that G !(.::1;x) is polynomial, 
hence, finite for all finite.::1 andx], using the form of D 2(F, ;x) 
given by Eq. (3.3), that G~(.::1;x) must be finite for each 
Xl = .::1 3, .::13 - 1, .. ·,.::13 - t + 2. This result implies that 
G ~(S;X) given by Eqs. (6.2) must be finite for each 

XI E{S3 - t + 2,S3 - t + 3,,,,,s31. (6.15) 

But the factor (6.14) is zero for each x) in the set (6.15) in 
consequence of the factors (XI - S3)s-l, S = 2,3, ... ,t. Thus, 
G~(S;x) is undefined (infinite) at each point in the set (6.15) 
unless n!~ dXl - S3)S _ ) dividesP~(s;x). This result and the 
determinantal symmetry of the factor (6.14) and of P~(s;x) 
imply the statement in the lemma. • 

Together Lemmas (6.1) and (6.2) imply that the factor 
~(S;x) in Eq. (6.4a) is a polynomial in (x)' x2, x 3) and in 
(S), S 2' S 3)' The final result required for the proof of Theorem 
6.1 is Lemma 6.3. 

Lemma 6.3: The total degree of ~ (S;x) in (x)' x2, x 3) and 
in (S), S2' S3) is 2t(q - t + 1) and 2t(q - t + 1) + ~t(t - 1), 
respectively. 
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Proof: In determining the total degree in x, we may put 

(6.16) 

The total degree of ~ (S;x) is then 21 (q - 1 + 1) if we can 
deomonstrate that 

g~(S;u, - 2u,u) = H~(S)U2,/q-l+ I) 
+ (lowest-order terms in u), (6.17) 

whereH~(S) is nonzero. We prove Eq. (6.17) by direct ex
amination ofthe various factors appearing in Eqs. (6.2). We 
list below the term of highest degree in u originating from 
these various factors (indicated by the arrow): 

N m (s;x}---+ - u8q + 322q + 2m, n (- S;)q - m; , 

;=1 mil 

F:;'(x)-a:;'u r
-

l
, 

with 

ar = m L 
a.tJ 

a+p=r-I 
3 

Dim(x) II (X; + l)q( - X; + l)q---+( - I)Q22qu6q + 3, 
;=1 

A rs(S;x) 

[Dim(x)ll;(x; + l)q( - X; + l)q] 

---+( - l)q+ IU2q+ r+ ,- 2h "(S), 

with 

(6. 18a) 

(6. 18b) 

(6.1Sc) 

(6.1Sd) 

(6.1Se) 

h rs(S)=L a:;.a:"22m,IT (-S;)~-m;, (6. 1 Sf) 
m i=1 m i -

P~(S;X)---+( - 1)'(q+ I)U2q'+I(/- 11h,(S), (6. 18g) 

where h, (S) is the tXt determinant with elements hI'S (5) [see 
Eq. (6.13) for the definition of P~]; 

I 

III U. ( - x; - Sj)S-1 (x; - Sk)s- I 
---+( - 1)(112)(t-I)2,/t-l)u3t(I-I). (6. 18h) 

Combining these relations with Eqs. (6.2) yields the result 
(6.17) with 

( _ 1)(1I2)t('- 1)2 - t(t- I) 

H~(S) = t 3 ht(S)· (6.19) 
".= I ll;= II - S;).-I 

The only point requiring further discussion in the deri
vation of Eq. (6.19) is the determination of the coefficient a:;' 
in Eq. (6.18c). This may be obtained from Eq. (6.2d) by the 
following procedure: Set 

J:;'(u) = F:;'(u, - 2u,u) 

= a:;,ur
-

I + (lower-order terms). (6.20a) 

Then 
q+1 

(v+ l-u)m,lY+ l)m2(v+ 1 +u)m, = Ly9+ l -y:;.(u). 
r= 1 

(6.20b) 

We next set u = yw in this relation and find that the coeffi
cients ofyq (recall that m l + m 2 + m3 = q) on the left- and 
right-hand sides of Eq. (6.20b) are (1 - w)m, (1 + w)m, and 
l:ra:;'wr - I , respectively; that is, 
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q+1 
(1 - wt'(1 + wt, = L a:;'wr - I, (6.2Oc) 

r= I 
which yields 

a:;' = ~ ( _ W(:I) (;3). 
a+p=r-I 

It remains still to show that the function (of S ) H ~ (S ) 
defined by Eq. (6.19) is not identically zero. For this it is 
sufficient to take 

(6.21) 

and show that the highest degree term in v in ht (v,v,v) is 
nonzero. Using 

h rs(v,v,v) = v2qprs + (lower-order terms in v), (6.22a) 

we obtain 

h, (v,v,v) = v21qBt + (lower-order terms in v), 

where B, is the 1 Xt determinant with elements 

ar a' 22m, pTS = L m m 

m mllm2!m3! 

Thus, we must show that 

BI¥O. 

Since we can write prs as the inner product 

p rs = (b r,b ') 

with 

(6. 22b) 

(6.23a) 

(6.23b) 

(6.23c) 

(6.23d) 

it follows that BI is a Gram determinant. It is necessarily 
nonzero if the vectors 

b\b2
, ••• b' (6.24a) 

are linearly independent; that is, if 
I 

L crbr=O (6.24b) 
r= I 

implies CI = C2 = ... = C, = 0, then B, #0. Equation 
(6.24b) may be rewritten in terms of components as 

I 

L era:;' =0. (6.24c) 
r= I 

Choosing the t + 1 components m = (O,q,O), (O,q - 1,1), ... , 
(O,q - t + 1,t - 1) of the vector ar

, this last equation reduces 
to 

t (s- 1) L Cr -1 =0, 
r=1 r 

(6.24d) 

each s = 1,2, ... ,t, which, in tum, implies the desired result, 
CI = C2 = ... = Ct = 0; that is, the t vectors (6.24a) are lin
early independent; hence, B t #0. 

These results prove that H~(S)#O, and complete the 
proof that the total degree of ~(S;X) in (X I,x2,x3) is exactly 
2t(q - t + 1). 

We can go one step further with Eq. (6.19), since we 
have proved that H ~ (S ) is a polynomial in S. Using the high
est degree term, 

, 3 IT IT ( - S;)s-I---+( - 1)(1I2)1(1-I)V(3I2)I(/-I), 
s= I i= I 
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from the denominator of (6.19) for the special variables (6.21) 
and combining this result with Eq. (6.22b) yields 

( 1)(112)'(' - I) 
H'(vvv)= - Bv2tlq -'+I)+11I2)'I'-I) 

q " 2'1'-1) , 

+ (lower-order terms in v). 

This result proves that the total degree in 5 of H ~ (5 ), hence, 
ofg~(5;x)isatleast 2t(q-t + 1)+!t(t-l). 

Starting again with Eqs. (6.2), but this time leaving x 
general and choosing the special values (6.21) for 5 every
where in the numerator and denominator factors, we can by 
selecting the various highest-degree terms in v and adding 
algebraically (plus for numerator factors, minus for denomi
nator factors) easily establish that the total degree of g~ (5;X) 
in 5 is at most 2t (q - t + 1) + !t (t - 1). From this result and 
the one above, we conclude that the total degree of g~ (5;X) in 
5isexactly2t(q - t + 1) + !t(t - 1);thisresultcompletesthe 
proof of the lemma. • 

Remark: If the factor ll!= I (51 + 52 + 53 
- q - s + 3)s_ I divides g~(5;X) [see Eq. (6.4a)], then the 

preceding degree considerations (Lemma 6.3) show that the 
total degree of G ~ (5;x) in each of 5 and x is 2t (q - t + 1). 

VII. CONVENTIONS IN DEFINING G~ 

The denominator functions D 2(F, ;x) determine the 
functions G ~ (A ;x) only up to an arbitrary multiplicative con
stant [see the paragraph containing Eq. (3.4b)]. Thus, if we 
were to change the definitions of G ~ (A ;x) and L, (A ;x) in Eq. 
(3.3) to 

G~(A;x)-G~(A;x) = a,(p,q,A )G~(A;x), (7.1a) 

-, a,(p,q,A ) 
L,(A;x)_L q(A;x) = L,(A;x), (7.1b) 

a, _ I (p,q,A ) 

then we would obtain the same denominator function 
D 2(r, ;X). Moreover, this is the most general transformation 
we can make that preserves the linear factors in the Xi occur
ring in Lt(A,x)-a condition we require from null space. 

The freedom to choose the constant at (p,q,A ) in Eq. 
(7.1) is quite important: First of all, this freedom allows us to 
actually realize the transpositional symmetry for the func
tions G ~(A;x). We have proved that G ~(A;x), as already de
fined, does have transpositional symmetry, but it will now be 
recognized that this fact depended on the choice of the multi
plicative constants a l la21a31 appearing in the definition of 
L (a;x) [see Eqs. (2.Sh), (3.2d), and (3.4a)]. A different choice 
would lead to "determinantal symmetry of G ~ (A;x) up to a 
mUltiplicative factor" except for row permutations and col
umn 2--column 3 interchange. In order not to destroy the full 
transpositional symmetry, we accordingly require that 
at (p,q,A ) should be independent of the Ai for each specified 
p. The remaining properties of at (p,q)( dropping now A ) are a 
matter of convention. The particular conventions we choose 
to fix uniquely at (p,q) are the following: (i) ao(p,q) = 1; (ii) the 
reduction formula as given by Eqs. (4.15) and (4.16) should 
hold for all p,q,A; and (iii) 6: + I(A;x) = I for all q and A 
(note that by Theorem 6.1 this function is independent of the 
Xi)' It is the purpose of the present section to prove that the 
two conditions (ii) and (iii) uniquely determine 
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a,(p,q) = 1, (7.2) 

for all r~ 1, p,q. 
First, we observe that the reduction formula (4.15) ap

plied both to 6~(A;x) =a,(p,q)G~(A;x) and G~(..1;X) itself 
yields 

at(p,q) = a,(p,q - Al - A2 - A3)' (7.3) 
Since this relation is to hold for all t ( = 1,2, ... ,~), allp, all q, 
and all..1 ; [satisfying the conditions given in Eqs. (2. Sa)], we 
conclude that at (p,q) must be independent of q (otherwise it 
will depend in denumerably many instances on the..1;). Ac
cordingly, we may choose q to be any convenient value that 
does not restrict t and p, say, q = t - I and consider that 
..1; <>;t - I (since the constant does not depend on the ..1;). 
Thus, we arrive at 

a,(p,q) = at(p,t - I), (7.4) 
for all t = 1,2, .... 

Second, by proving that G: _ I (..1 ;x) = 1 [and therefore 
that at (p,t - 1) = 1 is implied by the convention 
6:_ 1 (..1;x) = 1], we obtain the desired result, Eq. (7.2), from 
relation (7.4) above. Equivalently (since t = 1,2, ... ), we estab
lish relation (7.2) by proving the next lemma. 

Lemma 7.1: The function G: + 1(5;X) is unity; that is, 

G:+ 1(5;X) = 1, (7.5) 

each q = 0,1, .... 
Proof: The total degree of G: + 1(5;X) in x is zero; hence, 

from Eqs. (6.4a), (6.17), and (6.19), we find that the property 
(7.5) is implied by the identity 

[ 

h 1,1 

det(h )=det : 
h q + 1,1 

h I,q+ I 1 
hq+:l,q+1 

= (1)(1I2)qlq+ 1)2q(q+ I) 

qrr+ 1(51 + 52 + 53 - s - q + 3)s_1 m= d - 5;)s-1 
X , 

s= I (s - 1)I(s - 1)1 

(7.6a) 

where [see Eqs. (6.1Sc) and (6. 1 Sf)] 

2 
3 (- 5; )q - mi 

h r,s = h rs(5) = I a;:" a!'., 2 m, IT (7.6b) 
m ;=1 mil 

ar = m I 
a,p 

a+f3=r-1 

(7.6c) 

A direct proof of Eq. (7.6a) is quite difficult; we will 
prove it indirectly by making use of the fact that 
m! : n: = I ( - 5; )s _ I must divide the determinant (in con
sequence of the transpositional symmetry proved in Sec. V). 
Accordingly, we need only verify the numerical factors and 
the term lls(51 + 52 + 53 - s - q + 3)s_1 in the right-hand 
side of (7.6a); for this, it is sufficient to consider a special 
choice of the variables (51,52,53) such as 51 = 5 I' 52 = - 1, 
53 =q. 

Before implementing this procedure let us first trans
form the determinant in Eqs. (7.6) by 

q+ I (s - 1) 
a;:"-a;:,, = I a!'., _ 1 . 

s=r r 
(7.7a) 
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This transformation leaves the determinant invariant, since 
it corresponds to allowed row and column operations. The 
coefficients a:;, and the elements of the transformed determi
nant may now be obtained in explicit form not involving 
summation. Thus, noticing that the transformation 
w---+w + 1 in Eq. (6.20c) yields 

q+1 
(- w)m'(2 + w)m, = L a:;'w'-I, 

r= I 

we find the coefficients a:;, defined by Eq. (7.7a) may also be 
written as 

a:;, =(_1)m'2m,+m,-r+l( m3). (7.7b) 
r-m l -1 

[Thus, the rather complicated summation in the right-hand 
side of relation (7.7a) can actually be summed.] 

In the next step we make the substitution ar --+ar of 
coefficients in Eq. (7.6b), set 53 = q, m3 = q - ~I _mm2, 
( - q)m, + m

2 
= ( - l)m, + m2q!/(ml + m2)!, and rearrange 

factors thus obtaining the elements of the transformed deter
minant as 

hrs~(_1)q22q+2-r-s( q )(_f:) (_f:) r-1 ~lq-s+1 ~2s-1 

XL (r - 1) (51 - q + S - 1) 
m, m l s- m l - 1 

XL (q - r + 1) ( 52 - S + 1 ). 
m2 m2 q - m2 - s + 1 

(7.8a) 

The two summations in this result may be summed using the 
binomial (function) sum rule. Carrying this out, we thus find 
that the determinant ht (51)52,q) is reduced to one with ele
ments 

h "'~h rs 22
q
+2-r-S( q ) C q ) 

q! r-1 -1 

X (51 - q + r)s_1 (51 - q + s)q-s+ I 

X (52 -S + 2)s-I(52 - r+ 2)q_s+ I' 

We next remove the factor 

2
q

- s+ IC ~ 1}!51 - q +s)q_s+ I (52 - S + 2)s_1 

from column S (each S = 1,2, ... ,q + 1) and the factor 

2q - r+ 2( q )(ql) 
r-1 

(7.8b) 

from row r(each r = 1,2, ... ,q + 1) thus bringing det(h) to the 
form 

det(h) = 2
q
(q+ I) det(c) :fr: C ~ J( -51)s-1 ( - 52)s-1 

X [(s - 1)I(s - 1)1]-1, (7.9a) 

where det(c) is the (q + 1) X (q + 1) determinant with ele
ments 

c'" = (51 - q + r)s_1 (52 - r+ 2)q_s+ I' (7.9b) 

For the proof ofEq. (7.6a), we must demonstrate equa
lity between the right-hand sides of Eqs. (7.9a) and (7.6a), 
where we put 53 = q in the latter; that is, we must still prove 
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q+1 
det(c)= II (S-1)!(51+52- S + 3)s_I' (7.10) 

s= I 

To prove Eq. (7.10) we again appeal to the fact that 
det(c) can only be a function of 51 + 52 [we are considering 
the special case 53 = q of Eq. (7.6a)]. Thus, we may set 
52 = - 1 in Eqs. (7.9b) and (7.10). In this case crs = 0 for 
each r = 1,2, ... ,q + 1 - s so that up to sign the determinant 
is the product of the elements along the minor diagonal: 

q+1 
det(c) = ( - 1 )(1/2)q(q + 5) II cr,q + 2 - r, 

r= I 

which yields Eq. (7.10) for 52 = - 1, thus completing the 
proof of the lemma. • 

The identity (7.6a) is an example ofthe type of relations 
that arise in the present investigation. It is itself a special case 
of a more general relation given below that we conjecture to 
be true. We present this conjecture not only because of its 
intrinsic interest, but also because of its importance in our 
program of investigating the properties of the polynomials 
G~. 

Conjecture: The identity, 

[

h 1.1(5) 

h l (5) = det : (7.11) 
hl,I(5) 

I 

= (- 4Y(/-1)/2 II {[( - 5;)s-l/(s - l)l(s - I)!] 
s= I 

X (51 + 52 + 53 - q - s + 3)s - d 
XL { 41" + ... + I'th (AJlV) 

..1.1''' M(A )M(Jl)M(v) 
I 

X II ( - 51 + s - t )q - I + I - ..1.s 
s= I 

X ( - 52 + s - t )q - I + I -I's 

X ( - 53 + s - t )q - I + I - "s} . 
is true, where the quantities in this relation have the follow
ing definitions. 

(i) The elements hrs (5 ) of the determinant are those de
fined in Eqs. (6. 18c) and (6. 18t). 

(ii)A = [A I.A2''''.At ] denotes an irreplabel of the unitary 
group U(t) with AI >A2>" '>A I >0, each Ai a nonnegative 
integer; A may also be regarded as the shape of a Young 
frame, Y(A). The symbolsJl, v, ... denote irrep labels of the 
same type as A. 

(iii) h (AJlV) denotes the number of times irrep 
[q - t + 1, ... ,q - t + 1] (q - t + 1 repeated t times) is con
tained in the direct product A XJl X v, and is defined to be 
zero if [q - t + 1, ... ,q - t + I]M X'Jl X v. 

(iv)M(A )isthemeasureoftheYoungframeY(A ) and has 
the definition 

M (A) = n~ = I (As - s + t )! , 

nUAr - As + s - r) 

and MfJt), M(v), ... have corresponding definitions. [For 
t= 1, wedefineM(A I )=AI!.J 
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The importance of the relation (7.11) for the present 
work is that its validity establishes the following result for 
the functions G ~ [combine the above result with Eqs. (6.4a), 
(6.17), and (6.19)]: 

G '(!:· -2 )= II' (q-s+ I)! u2qlq -'+I) 
q ~,u, U,u ( _ 1)' 

$= IS. 

41" + ... +/L'h (Ap,v) 
X ~ -M-(A.-)M-I,p-)M-'-'--(v-"-) 

, 
X IT ( - $1 + s - t )q - ,+ I - A, 

$= I 

X ( - $2 + S - t )q - ,+ I - 1', 

X ( - $3 + s - t)q _, + • _ ", 

+ (lower-order terms in u). (7.12) 

Remarks: (a) We have proved relation (7.11) in two 
cases: t = 1 and t = q + 1. For t = 1, it reduces to Eq. (7.6b) 
(since a~ = 1); for t = q + 1, to Eq. (7.6a). 

(b) The proof of relation (7.11), hence, ofEq. (7.12) giv
ing the leading term in G~($;U, - 2u,u) would support our 
belief that the $1 + $2 + $3 factors in Eq. (6.4a) divide 
~(S;x). 

VIII. ZEROS OF G~ 

We have proved in Sec. VI that the function G~($;x) 
defined by Eqs. (6.2) is a polynomial of degree 2t (q - t + 1) 
in (X.,X2,x3) for t = 1, ... ,q + 1. The existence of the charac
teristic null space ff, of the canonical Wigner operator 

implies that the polynomial G~P;x) possesses zeros. In the 
present section we investigate the occurrence of these zeros 
from two viewpoints: In Subsection A we establish the exis
tence and location of zeros of G ~ using properties of null 
space and a recurrence relation that must be satisfied by the 
multiplicity function m,(x) (defined below) for a zero; that is, 
the results obtained in Subsection A make no explicit use of 
the properties of the polynomials themselves. In Subsection 
B we use the symmetries of G ~, the reduction formula (4.15), 
and the property G: + • = 1 to verify explicitly and refine 
various results obtained in Subsection A, which together 
yield our principal results for zeros as stated in Theorems 
8.1-8.3. 

A. Implication of null space for zeros of G~ 

As discussed in the Introduction, the characteristic null 
space ff, is determined fully by the properties of the inter
twining function I[M 1,.<1 • The subset oflattice points N, C 1. + 

corresponding to the characteristic null space ff, is de
scribed in Fig. 3. 

We seek now the consequences for the polynomial 
G ~(~;x) implied by the fact that the denominator function 
must obey 

D 2(r,;x) = 0, each x E N" (8.1a) 
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D 2(r,;x)¥=0, each x E 1. + - N" (8.1b) 

each t = 1,2, ... ,q + 1. 
The key relation for this discussion is Eq. (3.3). Since the 

ratio of dimension factors in that result is a consequence of 
normalization conventions (see Ref. 1, p. 76), it is the zeros of 
the function R,(~;x) defined by 

R,(~;x) L,(~;x)G~-·(~;x)/G~(~;x) (8.2) 

that are relevant; that is, it is 

R,(~;X) = 0, each x E N" (8.3) 

which is implied by Eq. (8.1). We emphasize again that rela
tion (8.1), hence, (8.3), is a consequence of the intrinsic struc
ture of the intertwining function and its level subspaces. This 
is invariant information provided by the group structure it
self; accordingly, the requirement (8.3) is necessary in the 
definition of a canonical Wigner operator. 

Because of the reduction formula, Eq. (4.15), we can, 
without loss of generality, restrict the present discussion to 
the case A. = (0,0,0); that is, we may impose the conditions 

~i>q, i = 1,2,3. (8.4) 

Let us next define what we mean by the multiplicity of a 
zero of a polynomial pIx, y) of two (independent) variables 
(x, y) E ]R2. This uses the concept of directional derivative. 
Suppose that (a, b) E]R2 is a zero ofp(x, y); thatis,p(a, b) = 0. 
If 

( a aa +f3aa)~(X'Y)1 = 0, 
x ~ la,bl 

(8.5) 

for each r = O,I, ... ,m - 1 for arbitrary (a, f3) E H2, then the 
zero (a, b) of pIx, y) is said to have multiplicity mIa, b) = m. 
For example, the multiplicity of the zero (1,1) of 
(x - l)(y - l)(x + y - 2) is m(I,I) = m = 3. 

If a point (a, b ) E ]R2 is not a zero of pIx, y), we assign the 
value m = ° to the point. In this way, we associate with each 
polynomialp defined in]R2 a new function mp ' also defined in 
]R2, which is non-negative-integer-valued: 

{

mIa, b), for (x, y) = (a, b) 

mp(x,y) = and pta, b) = 0, 

0, for p(x,y)¥=O. 

(8.6) 

If a = (a l ,a2,a3) is a zero ofa polynomialP(x.,x2,x3) de
fined in MI, that is, x E MI, then the multiplicity m(a) of the 
zero a is defined by m(a l ,a2,a3) = m(a.,a3), where m(a l ,a3) is 
the multiplicity of the zero (a.,a3) of p(x., x3) 
=P(x j, - XI - X3' x3). For example, the multiplicity of the 
zero (1, - 2,1) of(xj - l)(x2 + 2)(X3 - 1) is 3. In analogy to 
definition (8.6), we also define the function mp in MI by 

{
m(a), for x = a and Pta) = 0, 

m (x)-
p - 0, for P(x)¥=O. 

(8.7) 

ChoosingP(x) = G ~(~;x) [resp. PIx) = Lt(~;x)] in de
finition (8.7) and denoting the generic function mp(x) by 
m,(x) [resp. l,(x)] , we have explicitly 

{
m(a), for x = a and G~(.J;a) = 0, 

m,(x) = t (8.8a) 
0, for G q(.J;x)¥=O, 

{
m(a), for x = a and L,(.J;a) = 0, 

l(x)-
, - 0, for L,(~;X)¥=O. 
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Here the index t assumes values 1,2, ... ,q + I; in addition, we 
allow t = 0 in (S.Sa) so that 

mo(x) = mq+ I (x) = 0, 

since GO(..::1·x) - Gq+ 1(..::1·X) - I q , - q , - • 

(S.Sc) 

Definition (S.6) of the multiplicity of a zero of a polyno
mial p may be extended to rational polynomials pip' by m p/ p' 

= mp - mp" Applying this definition (as amended above) to 
the function R,(..::1;x) [Eq. (S.2)], we obtain the function r,: 

(S.9) 

for each t = 1,2, ... ,q + I, and for each x E M. Thus, r, is a 
function in M with values r, (x) E Z (set of integers). We refer 
to r,(x) as the rank of the denominator D 2(F,;x) at point x 
and call r, a rank function. 

Relation (S.9) is the principal result for investigating the 
properties of the functions m,. By regarding the I,(x) and 
r,(x) as known for t = I, ... ,q + I, relation (S.9) becomes a 
recurrence relation for the functions m,. This is the view
point we generally adopt. The functions I, are, of course, 
known explicitly from the zeros of the linear factors in 
L, (..::1 ;.x). The rank functions r, are not known a priori, so that 
the principal task in implementing this viewpoint is one of 
determining the conditions imposed on the rank functions 
by null space, and possibly other considerations. Clearly, 
relation (S.9) determines the m,(x) explicitly only when the 
r,(x) are known. For this investigation, we restrict our con
siderations to points x E 1L + (the set of lattice points in M 
corresponding to irrep spaces [mI3,m23,m33])' 

Implementing the viewpoint discussed above, we write 
Eq. (S.9) in the form 

I 
• I "' ' • I 

"" P3 t, 
. " 

" 
FIG. 5. Values of [,(x). The value of [,(x) at each (X 1,X2,x3) E L + is obtained 
by adding the following contributions from the XI - , X2 - , X3 - lines, re
spectively: 1 if l<x l <Ll3-t+l, 0 otherwise; 1 if 
- 2;;.x2> - (Ll3 - t + 1),0 otherwise; 1 if l<x3<Ll2 - t + 1,0 otherwise. 

The subdomains ofL + denoted by SI' S2' S3 are useful for describing contri
butions to the multiplicity function m,(x) from various lines as described in 
Eq. (8.14). The rhombic-shaped domain Rq+ 1 with vertices P IO P2, P3, P4 is 
described in Eq. (8.15); it plays an important role in this section. 
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(S.lO) 

and iterate in t starting first with mo(x) = 0 and then with 
mq + I (x) = 0 and derive 

, 
m,(x) = L [/s(x)-rs(x)], 

s= 1 

q+1 
m,(x)= L [rs(x)-ls(X)], t=I, ... ,q. 

s=,+1 

(S.lla) 

(S.llb) 

The equality of these two expressions gives the following 
condition that the rank functions must satisfy: 

q+1 q+1 
L rslx) = L I,(x). (S.12) 
,= I s= I 

We also impose the following conditions on the rank 
functions in consequence of their role in determining where 
the denominator function D (F, ;x) vanishes: (i) for each 
x E N" the value of r, is a positive integer, that is, 

r,(x) E Z+; (S.13a) 

(ii) for each x E 1. + and not in N" the value of r, is zero, that 
is, 

r,(x) =0, for xElL+ -N,. (S.13b) 

The strategy now is to evaluate the right-hand side of 
Eq. (8.12) from explicit values of the Is(x) and then to use 
conditions (S.13) to determine the r,(x), when possible. The 
value Is(x) at x = (a l ,a2,a3) E 1L + is either 0,1,2, or 3; it is 
obtained by counting the number of linear factors in 
( - XI + 1).:1, -s+ dX2 + 2).:1,_,( - X3 + 1).:1, _,+ I that have 
value zero at x = a. To carry out this counting, it is conven
ient to use Fig. 5. The number 1 at the lower end of the 
vertical lines denotes that there is one linear factor in 
( - x I + 1 ).:1, _ ,+ I that vanishes on that line; the l's at the 
right-hand margin of the figure have this same interpretation 
for the factors ( - X3 + 1).:1, _ ,+ I , while those arranged ver
tically near the XI = 1 line refer to the factors (X2 + 2).:1, _ ,. 
All other x I - , x 2 - , X3 - lines in L + have 0 assigned to 
them, respectively. The number I,(x) is then obtained by 
summing the three integers corresponding to the XI' x 2, and 
x3 lines. 

It is convenient at this point to define some subdomains 
(sets of lattice points) of 1. + and identify them in Fig. 5. 

(i) The "strips" Si (i = 1,2,3) are defined by 

SI= {xE1.+11<xI<..::1 3-q, x3>1}, 

S2= {xE1.+lx l >l, x3>1, -..::13<X2< -2}, 
S3= {xE1.+11<x3<..::1 2-q, x l >l}. (S.14) 

Since we take x E 1. +, the set S2 actually has a triangular 
boundary. By definition, each of these sets is empty if the 
defining conditions are violated (for example,..::1 3 = q in SI)' 

(ii) The set lRq + I with the rhombic boundary and ver
tices PI' P2 , P3, P4 is defined by 

lIJ) _ { 1.+ 1..::13 - q + I<X1<..::1 3} Uq+1 - XE . 
..::12 - q + 1 <X3<..::12 

(8.15) 

The set lRq + I is of particular significance for the present 
discussion and appears several times later in various con
texts. 

(iii) The line segments 1~1 (i = 1,2,3) are defined by 
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I~) = Ix E lL + IXI = L13 - k + 1, xz< - (L13 + 1), 

x3;>L1 Z + lj, k = I, ... ,L13; (S.I6a) 

I~) = Ix E lL +Ixz = - (L1 z +L13 - k + 2), 

XI<L13 + 1, X3<L1Z + 1 J, k = I, ... ,2q (I\Z) = 0); 
(S.I6b) 

I~) = Ix E lL + IX3 = L1 z - k + 1, XI;>L1 3 + 1 J, 
k = I,2, ... ,L1 z. (S.I6c) 

The condition Xz < - (L13 + 1) in the definition of the line 
segment I~) is made to keep the endpoint exterior to the re
gion Sz. The line segments I~) cover Rq + I' that is, Rq + I 

= L4 = II~). Each of these lines oflattice points is parallel to 
the minor diagonal of Rq + I . 

(iv) The broken line lLs is defined by 

(S.I7) 

This broken line is the boundary between the null space Ns 
and lL + - Ns (cf. Figs. 2 and 5). Because of the inclusion 
property Nq + Ie··· C N I' we can also write 

lLs = Ns - Ns + I' S = I, ... ,q. (S.IS) 

Using the above notations and definitions, we can now 
prove the following lemma. 

Lemma 8.1: The sum ~{~ Jls(x) has the following val
ues in the indicated (disjoint) subdomains of lL +: 

q+1 
(i) I Is (x) = k, 

s= 1 

for x E lLk , k = I, ... ,q + 1; 

q+1 
(ii) I ls(x) = q + 1, 

s= 1 

for either x E I~)CSI 

with k = q + I, ... A 3 

or XE 1~)CS3 

with k = q + I, ... ,L1 z; 
q+1 

(iii) I ls(x) = q + k, 
s= I 

q+1 

for x E 1(2) 
q+k 

with k = 2, ... ,min(qA 2 - q + 1); 

(iv) Ils(x»q+ 1 
s= I 

(S.I9a) 

(S.I9b) 

(S.I9c) 

for all points x not included in (i)-(iii). 

(S.I9d) 

Proof: There is considerable detailed information in this 
lemma-it can all be obtained from Fig. 5. Let us consider 
each case briefly. For the proof of (i), we have that for each 
specified k and for either x E l~) or x E l~) the multiplicity 
l.(x) = 0 for s = k + I, ... ,q + 1 and ls(x) = 1 for s = I, ... ,k. 
Thus, l::: f/.(x) = k for either x E I~) or x E l~). Since lLk 
= 1~lul~iuI~), we still need to consider the line segment 
1~)CRq+ I' For point x E l~), we argue as follows: We have 
l:::n(x)=k for X=(L13-k+ 1, -L12 -L1 3 +k-2, 
L12 + 1), which is the endpoint of the line l~). As we move 
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from this endpoint to the left endpoint ofl~) (boundary point 
of Rq + I)' we lose a zero from the Xl factors 
II:: II ( - X I + 1 ).1, _ s + I' but gain one from the X3 factors 
II; ~ : ( - X3 + 1 )..:1, _ s + I' thus keeping the sum at value k. 
This property repeats at each lattice point of I~) as we move 
across this line from the left endpoint to the right endpoint 
(again a boundary point of Rq + I)' These results prove (i). 

Property (ii) refers to those lines l~) (resp. l~)) to the left 
of XI = L13 - q + 1 (resp. above X3 = L1 z - q + 1) for which 
each Is (x) = 1, s = I, ... ,q + 1. 

The proof of property (iii) is a repetition of the argument 
proving property (i). 

Points not included in (iHiii) have Is (x);> 1 for 
s = I, ... ,q + 1 with at least one point having Is{x};>2. This 
proves property (iv). • 

Using the results given in Lemma S.I, we can now de
termine the rank functions rt in certain subdomains of lL + . 

Lemma 8.2: The rank functions rl, ... ,rq + I have the fol
lowing values in the indicated subdomains of lL +: 

(i) rl(x} = ... = rdx} = 0, rk+ I (x) = ... = rq+ I (x) = 1, 

for x E lLk , k = I, ... ,q + 1; 

(ii) rdx) = ldx} = 1, 

for either x E 1~)CSI 

with k = q + I, ... A 3 

(S.20a) 

or x E 1~)CS3 with k = q + I, ... ,L1 z; (S.20b) 

(iii) rl(x), ... ,rq + I (x) are not determined by Lemma S.I for 

all x not included in (iHii). 

Proof: Properties (i) and (ii) are immediate consequences 
of Eq. (S.I2) conditions (S.I3), and properties (i) and (ii) in 
Lemma S.I. For all other points x E lL + not included in (i) 
and (ii), we have that 

q+1 
I rs(x}>q + 1. (S.2I) 
s= 1 

In this case, conditions (S.13) are insufficient for the deter
mination of the individual rank functions. • 

Remarks: (a) It is worth remarking that the set oflattice 
points for which the rank functions are not given by Lemma 
S.2 is a subset of the null space Nq+ I' which itself is a subset 
of all other N" t = I, ... ,q; that is, the irrep spaces corre
sponding to points x E Nq + I are in the characteristic null 
space ff, of each of the Wigner operators 

/p Fq' 0), \ t = I, ... ,q + 1. 

It is useful to show in Fig. 6 the relation of Nq+ I to the set 
Rq + I identified earlier in Fig. 5. The explicit set of points 
N;+ I CNq+ I for which relation (S.21) is valid [the points 
not included in parts (i) and (ii) of Lemma S.2] is obtained by 
removing from Nq + I the boundary lLq + I and the line seg
ments l~) (k = q + I, ... A 3 ) and l~) (k = q + I, ... ,L1 z): 

L13 ..::12 

N'q+ I =Nq+ I -lLq+ I - U l~) U l~). (S.22) 
k=q+1 k=q+1 

(b) The explicit solution for m,(x) for points 
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I. 
I 

.Lq+1 

FIG. 6. The null space set N. + I • This is the set of lattice points interior to 
and on the bold solid boundary lines. All irrep labels [m] such that 
t/J ([m]) E Nq+ I correspond toirrep spacesK([m])Cfq+ I' which is a sub
space of K contained in the null space of all unit tensor operators in the 
family [(r,) l. 

X E L + - N;+ I and each t = I, ... ,q + 1 may be obtained 
from Lemmas S.I and S.2: 

, 
mt(x) = 2: Islx) - t. (S.23) .= I 

We do not, however, use this expression directly for evaluat
ing mt(x) in the subsequent discussion. 

In order to make further progress in the determination 
of the rank functions rl, ... ,rq + I for all points x E L +, it is 
convenient to summarize the results obtained thus far in a 
form that suggests generalization. For this purpose, we need 
to define additional classes of subsets of L + . 

P4 
I 
I 
I 
I 
I 
I 
I 
f 
I 

III =~3-q+1 

FIG. 7. The weight space W,. The set oflattice points (within the rhombic 
regionRq+ I) interior to and on the bold solid boundary lines of the hexala
teral defines the set of weight space points for irrep [q - t,O, - t + I] of 
U(3). It is positioned in the Mobius plane by the vertices PI ,P2,P l'P, (see Fig. 
5). 

For each specified q and (..::11~2~3)' the subset 
W, CRq + I is defined by 

W, = {x E Ru I I - (..::12 +..d 3 - q - t + 2) 

>x2> - (..::12 +..::13 - t + I)l, (S.24) 
each t = I, ... ,q. The set W, consists of those lattice points on 
the boundary and interior to the symmetric hexalateral 
(equilateral triangle for t = I,q) shown in Fig. 7. We refer to 
the sets WI and W q as the lower and upper equilateral trian
gular subsets of Rq + I' respectively. 

For each specified q and (..d 1~2A3)' we also define sub
sets T, CRq + I and T; CRq + I, respectively, by 

(S.25a) T, ~{XER,+, 

T; ~ {XERo+. XI <..::13 - t+ 1 } 
x3<..d2-t+I , 
- (..::12 +..::13 - 2t + 2)<X2< - (..d 2 +..d3 - q - t + 2) 

(S.25b) 

each t = I, ... ,q + 1, where T I = T; + I = 0. These sets are 
the ones shown in Fig. S with the triangular boundaries (solid 
lines). 

Finally, in Fig. 9, we give the explicit values I,(x) of the 
function I, for each x = Rq + I . 

Using the sets introduced above, we can now summa
rize the principal results obtained thus far in this section in 
the following way. 

Lemma 8.3: The following relations are valid for each 
xeL+ -N;+I andforeacht= I, ... ,q+ 1: 

(i) mt(x) = 0, for x Et W,; 

(ii) if m,(x)#O, then r,(x) = 1; 
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(S.26a) 

(S.26b) 

I 
(iii) m,(x) - m'_1 (x) = I,(x) - r,(x) 

{

-I, if xET" 

= +1, ifxET;, 

0, if x E L + - T, - T;. 

(S.26c) 

Proof: For each point x E L + - N; + I' the value of 
m,(x) is given by Eq. (S.23). At each point x E L + - N;+ I 
- W" the value of ~! = I I. (x) is t [see parts (i) and (iii) of 

Lemma S.l and Figs. 5, 7, and 9]. This proves part (i). 
The only points x e L + - N; + 1 for which the relation 

m,(x)#O is possibly true are those x E W,. But for such 

Biedenharn, Lohe, and Louck 1485 



                                                                                                                                    

-1- A 3-'+I 

FIG. 8. Definition of domains T; and T,. ThesubdomainsT; and T, are the 
sets of lattice points interior to and on the solid boundary lines. These do
mains are significant for the study of the recurrence relation for m,(x) 
-m,_,(x). 

points, we have r,(x) = 1 [part(ii) of Lemma S.2]. This proves 
part (ii). [Observe, however, that r,(x) = 1 does not imply 
m,(x)#O.] 

Property (iii) is a restatement of recurrence relation 
(S.lO) with the difference I, (x) - r, (x) now identified explicit
ly from Lemmas S.1 and S.2 and the results given in Figs. 5-
9. • 

We emphasize that Lemma S.3 has nol been established 
for points x E N~ + 1 • Additional restrictions are required in 
order to determine the r,(x), hence, the m,(x), for x E N~ + I' 
The next lemma gives such a result. 

Lemma 8.4: Ifm,(x) = o for x E N~+ 1 and x E!:W" then 
Lemma S.3 is valid for all x E L +; hence, m,(x) is uniquely 
determined for all x E L + by the recurrence relation (S.26c). 

.... .... 
.... .... 

.... .... 

" " 

........ ".. X2' - (A3 -I + I) 
.... 

.... ;' &2--(A2 +A3 -1+11 
.... 

" " " 
" A2-'+1 

FIG. 9. Values of I,(x) in Rq +,. For (X"X2,x3) in the rhombic-shaped do
main Rq + , , or one unit outside the left x ,- or the upper x3-boundary edges, 
linear factors contribute the value I, (x) as shown to the rank function r,(x). 
The I, (x) = 2 domain has as upper boundary edge the X2 line 

X 2 = - (..::13 - t + 1) on which I,(x) = 3, which either belongs to R.+, or 
not according to ..::12 + t<2q - 1 or ..::12 + t> 2q - 1. At any point on a 
boundary line between subdomains in R.+, (dashed lines), I,(x) always 
takes the higher value. The fact that these values extend (at least) one unit off 
the boundary of R. +' as shown is significant. 
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Proof' The hypothesis in Lemma S.4 extends property 
(i) in Lemma S.3 to all x E L +, so that 

m,(x) =0, for XEL + - W,. (S.27) 

Accordingly, the recurrence relation (S.lO) yields 

r,(x) = l,(x), for x E L + - W,uW,_ I' (S.2S) 

We have also determined earlier (Lemma S.2) the value of 
r,(x) for all x E L + - N;+ I; this includes all points in 
W,UW'_I having x2< - (..12 + ..13 - q + 1) (below and on 
the minor diagonal in Rq + 1 ): 

r,(x) = I, for x E W, and X2< - (..12 + ..13 - q + 1), 
(S.29a) 

r,(x) =0, for XEW,_I' XE!:W,. (S.29b) 

Equations (S.2S) and (S.29) give the value of r,(x), 
t = l, ... ,q + 1 for all x E L + except those in W,(t>2) above 
the minor diagonal of Rq + 1 • 

We next complete the determination of r,(x) for all 
xEL + by using relation (S.19c): 

q+1 
I r.(x) = q + k, (S.30a) 

s= 1 

for 

x 2 = - (Li2 + Li3 - q - k + 2), k = 2, ... ,1, (S.30b) 

each t = 2, ... ,q. From Eq. (S.29a) and Fig. 9, we find 

rl(x) = II(x) = 2, for x E Rq+ I' 

- (Li2 + ..13 - q)<x2< - (..12 + Li3 - q - t + 2). (S.31a) 

Using this result and condition (S.l3a) in Eq. (S.30a) with 
k = 2 yields 

r2(x) = ... = rq + 1 (x) = I, for X2 = - (..12 + ..13 - q) . 
(S.31b) 

Using next Eq. (S.29a) and Fig. 9, we find 
rz(x) = l2(X) = 2, for x E Rq+ I' 

- (Liz + ..13 - q - 1)<x2< - (Li2 + Li3 - q - t + 2). 
(S.32a) 

Using this result, Eq. (S.3Ia), and condition (S.13a) in Eq . 
(S.30a) with k = 3 yields 

r3(x) = ... = rq+ dx) = 1, for X2 = - (..12 +..13 - q - 1). 
(S.32b) 

Continuing in this way yields the following general result at 
steps - 1: 

rs_ l (x)=ls_l(x)=2, for xERq+ l , 

- (Li2 + ..13 - q - s + 2)<X2< - (Liz + Li3 - q - t + 2); 

(S.33a) 

rs(x) = ... = rq+ 1 (x), for x E Rq+ 1 

and x2= -(A2+Li3-q-s+2), (S.33b) 

for s = 2, ... ,1. The sth relation in this set yields r, (x) = 1 for 
X 2 = - (Li2 + Li3 - q - s + 2). Thus, we find 

r,(x) = 1, for x E W, andx2> - (Li2 + Li3 - q - 1). (S.34) 
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We have now determined each r,(x) for all x E l. +: 
Equations (S.2S), (S.29b), and (S.34) yield 

r,(x) = I,(x), for x E l. + - WI' (S.35a) 

r,(x) = 1, for x E WI' (S.35b) 

each t = 1, ... ,q + 1. These two results and the values of I,(x) 
given in Fig. 9 yield the recurrence relation (S.26c), which is 
now valid for all x E L +. 

Finally, relation (S.26b) is also now valid for all x E l. + 
inconsequence of relation (S.34) and the fact that ifm, (x) #0, 
then necessarily x E W,. • 

Remark: Lemma 8.3 summarizes proved results for the 
functions m,(x), It(x), and rr!x) for all x E l. + - N;+ \. The 
hypothesis of Lemma 8.4, which is that mt(x) = ° for 
x E N;+ \ and x EEWt , allows us to extend the validity of 
Lemma S.3 to all x E l. +. We have, however, not proved this 

I 

hypothesis. Partial results in this direction are given in Theo
rems 8.2 and S.3. 

In order to proceed let us next give the solution to the 
recurrence relation (8.26c) assuming its validity for all 
x E l. +. We will do this, not by direct iteration, but by intro
ducing a known set of functions M" t = 1, ... ,q, and showing 
that these functions satisfy the same recurrence relation. The 
key structural elements for this analysis are the weight 
spaces of the U(3) irreps [q - t,O, - t + 1], t = 1, ... ,q. (Al
ternatively, one may use the weight spaces of the equivalent 
SU(3) irreps [q - l,t - 1,0].) For this, we require an explicit 
realization of these weight spaces as sets of lattice points in 
the Mobius plane, as we next describe. 

Let W = (w\,W2,W3) denote a weight of irrep 
[q - t,O, - t + 1] ofU(3), wheretE {1, ... ,qj. Themultiplic
ity of this weight, which we denote by Mt(w), is given by 

Mt(w) = {t-(Awl +~W2 +Aw,), 
for W\ + W2 + W3 = q - 2t + 1 and q - t';;;.w;;;;' - t + 1, 

(8.36a) 
0, otherwise, 

where 

AWl = max(O, - w;). (8.36b) 

[This result is just the adaptation ofEq. (2.8c) to U(3) irreps.] 
Letq,t, and (.::1\,412,413) be specified (with.::1; ;;;.q). We now 

assign the weight (w\,w2,w3) E [q - t,O, - t + 1] and its 
multiplicity number Mt(w) to the point (X I ,x2,x3) E L + given 
by the map 

XI =.::13 - t + 1 - WI' 

x 2 = -.::12 -.::13 + q - 1 - w2 , (S.37a) 

X3 = .::12 - t + 1 - w3. 

The set of points defined by 

W t = ((X I ,x2,x3) I (W HW2,W3) E [ q - t,O, - t + 1] j 
(8.37b) 

is then exactly the set W t defined by Eq. (S.24) for each 
t = 1, ... ,q. Thus, the set of points W t with the assigned multi
plicity numbers Mt(w) constitutes an explicit realization in 
the Mobius plane of the weight space of the U(3) irrep 
[q-t,O, -t+ 1]. 

It is convenient now to introduce the function ...,I( t on 
L + defined by 

{
Mt(W), for x E WI' 

...,I((x)-
t - 0, for x E l. + - W t. 

(8.3S) 

Thus, ...,I( t (x) is an extension of the multiplicity of a weight to 
all points in l. + . 

In order to derive a recurrence relation for ...,I( t (x), it is 
convenient to use the geometrical realization of this function 
given by: 

...,I(t(x) = min(t, q - t + 1,1 + dt(x)), x E Wt, (8.39) 

where dt (x) is the "distance" from lattice point x E W t to the 
nearest boundary of W t as measured along the direction of 
the appropriate coordinate axis (1 lattice spacing = 1 unit of 
distance with dt = ° corresponding to boundary points). 

Using Eq. (8.39), it is now straightforward to verify 
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{

-I 

...,I(t(x) - ...,I(t_\ (x) = + 1: 
0, 

if x E T" 

if x E T;, 

if xEl.+ -Tt -T;, 
(8.40) 

for each x E l. + and t = 1,2, ... ,q + 1 with 
...,I( o(x) = ...,I( q + \ (x) = 0. Here T t and T; are the sets defined 
by Eqs. (8.25) (see Fig. 8). We have thus proved that the 
function ...,I(t(x) is the unique function satisfying for all 
x E l. + the recurrence relation (8.26c) with boundary condi
tions ...,I( o(x) = ...,I( q + \ (x) = 0. It is also clear that the rank 
functions {rs(x)ls = 1, ... ,q + Ij that lead to this solution are 

rs(x) = Is(x), for x E L + - Ws, 

rs(x) = 1, for x E Ws' 

(8.41) 

The restriction of ...,I(t(x) to the domain l. + - N;+ \ 
gives (uniquely) the function mt(x) satisfying the properties 
of Lemma 8.3; that is, this proves Lemma 8.5. 

Lemma 8.5: For each x E l. + - N; + \ , the multiplicity 
function mt(x) is given by mt(x) = ...,I(t(x). 

The following result is also true from Lemma 8.4. 
Lemma 8.6: If mt(x)=O for xEN;+\ and XEEWt, 

then, for each x E l. +, the multiplicity function mt(x) is given 
by mt(x) = ...,I(t(x). 

Using only the basic properties (8.13) of the rank func
tions, r\, ... ,rq+ \ and thefunctions...,l(I, ... ,...,I(q defined above, 
we can also prove the following theorem. 

Theorem 8.1: The basic properties of the rank functions 
given by 

r t (x);;;.l, for x E N" (8.42a) 

rt(x) = 0, for x E l. + - Nt (8.42b) 

imply the following relations for the multiplicity functions 
m t : 

mt(x) = ...,I(t(x), for x E l. + - N;+ 1> 

mt(x);;;....,I(t(x), for x E N;+ \. 
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Proof' The identity (S.43a) is a restatement of Lemma 
S.5. The new result here is relation (S.43b), which we now 
prove. For this, we use Eq. (S.llb): 

q+1 

m,(x) = L [rs(x) -ls(x)]. (S.44) 
s=,+1 

For x E W" the value 1,(x) obtains from Eq. (S.44) by set
ting rs(x) = 1 for s = t + 1, ... ,q + 1 [see Eq. (S.41)]. This cor
responds to the solution given by Eq. (S.40) for all x E lL +. 
FromEq. (S.42a) we now only havers(x);;;. 1 for xEWsuN~+ p 

s = t + 1, ... ,q + 1, so that relation (S.43b) follows from Eq. 
(S'44) for these x; for xEN~ + I - W" relation (S.43) is trivial
ly true, since 1,(x) = 0. • 

Theorem S.1 gives the most complete result we have 
been able to derive for the multiplicity function m,(x) using 
only the recurrence relation and the properties (S.42) of the 
rank functions. The hypothesis of Lemma S.6 gives addi
tional (as yet unproved) properties of m,(x), hence, of the 
rank functions [see Eqs. (S.41)], under which the solution 
1,(x) for x E lL + - N~+ I extends to all of lL +. The next 
lemma is also of this type. For its statement, we require an 
additional property of the function M,(w). 

It is well known that the multiplicity of the weight 
W = (wl ,WZ,W3) = ( - WI' - Wz, - w3) in the conjugate irrep 
[t - 1,0,t - q] equals that of the weight (w I ,WZ'W3) in irrep 
[q - t,O, - t + 1]; that is, 

Mq_ ,+ I ( - WI' - Wz, - w3) = M,(wl ,wz,W3). (S.45a) 

Moreover, using the well-known symmetry of weights under 
permutations (Weyl group S3)' we can write 

Mq _, + I ( - W3, - Wz, - wd = M,(w l,wZ'W3). (S.45b) 

The property (S.45b) of conjugate weights corresponds, 
in the realization of weight spaces in the Mobius plane given 
by Eqs. (S.36)-(S.3S), to the following: Reflect all points 
x E W, through the line X z = - (..:1 z +..:13 - q + 1) (the line 
containing the minor diagonal of Rq + I) and equate 
1 q _ ,+ I and 1, at corresponding points. This yields 

1 q _ ,+ I (x I'XZ'X3) = 1, (x I'XZ'X3 ), 

for x E lL + and x E lL +, 

where 

Xlt---*X I = -X3 +..:1 z +..:13 - q + 1, 

xzt---*xz = - Xz - 2(..:1 z +..:13 - q + 1), 

X3t---*X3 = -XI +..:1 z +..:13 - q + 1. 

(S.46a) 

(S.46b) 

[Reflection through X z = - (..:1 z + ..:13 - q + 1) yields the 
same transformation (XI,xZ,X3~(XI,xZ,X3') as the substitu
tion ~ - t + 1, (WI,WZ,W3~( - w3, - wz, - wIl in Eqs. 
(S.37a).] 

The existence of the symmetry (S.46) of the functions 
{1, It = 1 , ... ,q J suggests we consider this symmetry for the 
functions {m, It = 1, ... ,q J. The result we obtain is the fol
lowing lemma. 

Lemma 8. 7: The symmetry property 

mq_ ,+ I (x I,XZ'X3) = m,(xl ,xZ,x3)' 

for x E lL + and x E lL + 

is true for t = 1, ... ,q if and only if 
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(S.47a) 

m,(x) = 0, for all x E lL + - W" (S.47b) 

for t = 1, ... ,q. 
Proof' If m,(x) = ° for all x E lL + - W" the symmetry 

property is clearly true, since the assumption implies m,(x) 
= 1,(x) all x E lL + and each 1,(x) has the symmetry 
(S.47a). 

To show that the symmetry relation (S.47a) implies rela
tion (S.47b), we use Lemma 8.3, which yields 

m,(x) = 0, for x E lL + - W" xz"; - (..:1 z +..:13 - q + 1), 
(S.4Sa) 

eacht = 1, ... ,q. We next apply relation (S.47a) to this relation 
and obtain 

mq _ ,+ I (x) = 0, for x E lL + - W, 

with x z"; - (..:12 + .13 - q + 1), each t = 1, ... ,q. Equivalent
ly, this result may be written as 

m,(x) = 0, for x E lL + - W" x 2 ;;;. - (..:12 +..:13 - q + 1), 
(S.4Sb) 

each t = 1, ... ,q. Together, Eqs. (S.4S) yield the "only ir' part 
of the lemma. • 

A somewhat more restrictive result is the following [we 
show in Subsection B that the hypothesis of this lemma is 
valid (hence, the conclusion still holds) for all x E W,]. 

Lemma 8.8: For each t = 1, ... ,q + 1, assume that at 
each x E lL + such that m,(x)#O the relation r,(x) = 1 is true. 
Then 

m,(x) = 1,(x), for x E W" 

each t = 1, ... ,q + 1. 
Proof: We use the recurrence relation (S.lO) and 

Theorem S.1 repeatedly. Thus, for points x such that 
ml(x):;60, we have ml(x) = ll(x) - 1 = 11(x) for x E WI; 
then, for points x such that m2(x) #0, we have m2(x) = ml(x) 
+ 12(x) - 1 = 1 2(x) for all x E W 2' etc. We thus establish 
that m,(x) is nonzero and equal to 1,(x) for all x E W,. • 

B. Zeros of G~ implied by symmetries and the reduction 
formula 

The determinantal symmetry of G ~ has been proved in 
the earlier sections and the reduction formula (4.15) estab
lished. Although we choose .1;;;;'q (i = 1,2,3) in G~(..:1;x), it 
may happen that a determinantal symmetry, which yields, 
say, the transformation 

and correspondingly, 

G~(..:1;X) = G~(.1 ';X'), 

yields also a set of A. ' = (A. ; ,A. ~,A. i ) that are not all zero. In 
this case, the reduction formula (4.15) may be applied to 
G~(.::i ';x') with zeros of the original G~(.::i;x) function ap
pearing as zeros of the linear factors (now in the x;) in Eq. 
(4.15). 

Application of the preceding technique separately to (i) 
transposition followed by the permutation 

G 2 ~) 
of rows, and (ii) column 1-column 3 interchange of the array 
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A [Eq. (S.I)] yields the following results, where the condi
tions .d i >q are imposed. 

(i) Transposition followed by the permutation 

G 2 ~) 
of rows: 

.d; =.d 3 -XI' .d i =.d l , .d ~ =.d 2 +xI ; 

A; = q -.d3 + XI' Ai = A ~ = 0; 
where XI is restricted to integer values such that 

X I >.d 3 - q. 

In final form, we have 

G ~(.d l,.d 2,.d 3;..13 - k, - X3 -.d3 - k,x3) 
, 

=( -Iy,q-k)II(.d I -q+k-s+2)q_k 
s= I 

, 
X II (X3 -:.:12 +s -I)q_k 

s= 1 

X ( - X3 - .d 3 - .d I + k + s - I)q _ k 

XG~(.d1 - q + k,.d2,.d3; 

.d3 - q, -X3 -.d3 + k,x3 +q - k), 

(S.49a) 

(S.49b) 

(S.SOa) 
where we have put XI = .d3 - k, eliminated X 2, and used de
terminantal symmetry to replace G~(q,.dl - q + k,.d2 +.d 3 

- q;X3 +.d 3 - k,q - .d 3, - X3 - q + k), which appears in 
the direct application ofEq. (4.IS), by the G U .. ·) given. For 
specified t E { I,2, ... ,q + 1 j, the domain of k is 

k = t - I,t, ... ,q. (S.SOb) 

(ii) Column I-Column 3 interchange: 

.d; =.d 3 -XI' .d i =.d l -X2, .d ~ =.d2 -X3; 

X; = - Xk -.di + .dj , (ijk )cyclic; (S.Sla) 

A; =q-.d3+X I , Ai =0, A~ =q-.d2+X3; 

where XI and X3 are restricted to integer values such that 

X I >.d 3 - q, X3>.d2 - q. (S.5Ib) 

Then 

G~(.d1,.d2,.d3;.d3 - q + j, -.d2 -.d3 + k + q,.d2 - k - JJ 
= (_ Iylq-k) 

X IT (q - s + 1 )!(.d I +.d2 + .d 3 - 2q - s + 2)q - k 

s=1 (k-s+ I)! 
, 

X II ( -.d I + s - I)j ( -.d 3 + s - I)q _ j _ k 

s= I 

X ( -.d 2 - .d 3 + q - j + s - I)j ( -.d I -.d 2 

+ k + j + s - I)q _ j _ k 

XG~(.d1 - j,.d2,.d3 - q + j + k; 

.d3 - q, -.d 2 -.d3 + 2q - j,.d2 - q + j). 

(S.52a) 
Again, as in Eq. (S. SOa), we have used determinantal symme-
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try to obtain G ~( ... ) in this form. For specified t 
E {I, ... ,q + 1 j, the domain of k is 

k=t-I, ... ,q, 

and, for each such k, the integer j has domain 

j = O,I, ... ,q - k. 

(S.S2b) 

(S.S2c) 

Let us next consider the implications ofEqs. (S.50) and 
(S.S2). 

Consider first the linear factors 
, 
II (X3 - .d 2 + s - I)q - k 

s= I 

from Eq. (S.SOa). We find that 

G~(.d;x) = 0, 

for all points X given by 

X = (.d 3 - k, - X3 -.d3 + k,x3)' 

with 
X3 = .d2,.d2 - I, ... ,.d2 - (q + t - 2 - k), 

where k may be any of the values 

k = t - l,t, ... ,q - 1. 

(S.S3a) 

(S.S3b) 

(S.S3c) 

(S.53d) 

(S.S3e) 

Observe that the points given by Eqs. (S.53c) and (S.S3d) are 
just the points X E W, having XI =.d 3 - k. Moreover, the 
multiplicity of a zero at point X originating from the linear 
factors (S.53a) alone is exactly J(, (x). The second product of 
linear factors in X3 occurring in Eq. (S.SOa) has no zeros for 
any X in the domain given by Eqs. (S.S3c)-(S.S3e). Since 
.di>q, there are similarly no zeros arising from the linear 
factors in the .d i for any values of these parameters. How
ever, the G ~ term might possess zeros in the domain (S.S3c)
(S.S3e), so that we can only conclude 

(S.S4a) 

each k = t - I,t, ... ,q - 1. However, since G: _ I = 1, we 
have equality in Eq. (S.S4a) for k = t - 1: 

m,(x) = J(,(x), for X E W, and XI =.d 3 - t + 1. 
(S.S4b) 

Indeed, for k = t - 1, we obtain from Eqs. (S.SO) the follow
ing fully explicit expression: 

, 
G ~ (.d;X) = ( - 1)t(q - ,+ I) II (.d I - q + t - s + l)q _ ,+ I 

s= I 

, 
X II (x3 -.d2 +s - I)q_,+ I 

s= I 

X( -X3 -.d3 -.d l + t +s - 2)q_,+ I' 

for all points X of the form 

(S.SSa) 

(X I ,x2,x3) = (.d 3 - t + 1, - X3 -.d3 + t - 1,x3)' X3 E R. 
(S.SSb) 

We can, of course, apply index permutations l-+i, 2-+j, 
3-+k to Eqs. (S.SO) and (S.SS) and obtain still other expres
sions for G ~(.d;x). For example, applying the permutation 
1-+3,2-+1,3-+2 yields 

m,(x»J(,(x), for X E W, and X3 =.d 2 - k, (S.S6) 

each k = t - l,t, ... ,q, with equality in this result for 
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k = t - 1; that is, for X3 =.d2 - t + I.The importance of the 
preceding results based on Eqs. (8.50) (and the equivalent 
results obtained by index permutations) is in showing that 
the explicit polynomials G ~ (.d ;x) possess zeros which in po
sition and multiplicity are in complete accord with results 

I 

, 
X II ( - .d I + s - l)j ( - .d 3 + s - l)q _ ,+ 1 _ j 

s= 1 

implied by null space properties alone. 
Let us tum next to Eqs. (8.52). Here the result we obtain 

is quite different from that found above in that we obtain 
information as to where the polynomial is nonzero. Thus, 
choosing k = t - 1 in Eqs. (8.52) yields 

(8.57a) 

x ( -.d 2 - .d 3 + q - j + s - l)j ( - .d I -.d 2 + t + j + s - 2)q _ ,+ I _ j' 

for all points x given by 

(X I ,x2,x3) = (.d 3 - q + j, -.d2 -.d3 + q + t - 1, 

.d 2 - t + 1 - j), j = O,I, ... ,q - t + 1. (8.57b) 

Since G ~(.d;x)#O for all such points x, we find 

m,(x) = 0, (8.58) 

for all points x given by Eq. (8.57b). 
The points x given by Eq. (8.57b) for which we have 

proved m, (x) = 0 are the lattice points on thex2-line segment 
above and adjacent to the upper boundary of the region W, 
with one point on each end lying outside the rhombic region 
Rq + l' In order to account for these two points below, it is 
convenient to define the region W~ by 

{
set of lattice points one } 

W*=Wu 
, 'unit from boundary of W, . 

(8.59) 

Combining the important property (8.58) with results from 
Subsection A, we can now prove the following theorem. 

Theorem 8.2: The multiplicity m,(x) of a zero of 
G ~(.d;x) at each point x e W~ is given by 

m,(x) = ---'/,(x). 

Proo/" Define the line segment I~ by 

I~ = {x e lL + Ix l <.d 3 - t + 1, X3<.d 2 - t + I,}. 
x 2 = - (.d 2 +.d 3 - q - t + 1 

Equation (8.58) may then be written 

m,(x) = 0, for x e I~. 

(8.60) 

We also obtain the following relation from Eqs. (8.12) and 
(8.19c): 

q+l 

Irs(x)=q+t+ 1, for xel~. (8.61) 
s~ t 

Next, we use the recursion relation (8.10) and Fig. 9 succes
sively for t = 1,2, ... in the steps that follow. 

For t = 1 and x e IT, we obtain ml(x) = ll(x) 
- rl(x) = 0; that is, rl(x) = It(x) = 2 (Fig. 9 for t = 1), and 

from Eq. (8.61), r2(x) = ... = rq+ I (x) = 1. Next, for x e IT, 
we have m2(x) = 12(x) - r2(x) = 12(x) - 1 = ---'/2(X) (Fig. 9 for 
t = 1). Since we have already proved (Lemma 8.5) that m2(x) 
= ---'/2(X) for x2< - (.d 2 +.d3 - q + 1), we conclude that 

m 2(x) = ---'/2(X) for all x e W!-
For t = 2 and x e Ir, we obtain m2(x) = ml(x) + 12(x) 

- rl(x) = 0; that is, rl(x) + r2(x) = ll(x) + 12(x) = 4 (Fig. 9 
for t = 1,2), and from Eq. (8.61), r3(x) = ... = rq+ t (x) = 1. 
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I 
Next, for x e Ir, we have m3(x) = 13(x) - r3(x) = 13(x) - 1 
= ---'/3(X) (Fig. 9 for t = 3). Moreover, for x e IT, we have 

m3(x) = m2(x) + 13(x) - r3(x) = ---'/2(X) + 13(x) - 1 = ---'/3(X) . 
Thus, we have proved m3(x) = ---'/3(X) for either x e IT or 
x e Ir. Since we have already proved (Lemma 8.5) that 
m3(x) = ---'/3(X) for X2< - (.d 2 +.d 3 - q + 1), we conclude 
that m3(x) = ---'/3(X) for all x e Wr. 

Continuing in this manner (induction), we complete the 
proof. • 

Remarks: (a) The general step in the above proof estab
lishes the relations 

k 

I rs(x) = 2k, rk+ dx) = ... = rq+ dx) = 1, (8.62) 
s~ I 

for x e Ir, each k = 1,2, ... q. In particular, selecting r,(x) 
from this set yields 

r,(x) = 1, for all x e W~ and x2> - (.d 2 +.d 3 - q). 

(8.63) 

This result and Eq. (8.26b) validate the hypothesis of Lemma 
8.8 for points x e W,; hence, this lemma also proves 
Theorem 8.2 for points x e W,. 

(b) Theorem 8.2 establishes that m, (x) = ---'/ ,(x) only for 
points x e W~, but does not prove m,(x) = ---'/,(x) = 0 for all 
x elL + - W~. 

(c) The result given by Eqs. (8.55) is quite significant for 
it gives the polynomial explicitly at all points on the line 
XI =.d2 - t + 1 and shows that the degree is 2t(q - t + 1) 
separately in each of the variables x 3 , .d I' .d 2, .d 3' 

Equations (8.50), a similar relation given below [Eqs. 
(8.64)], and Theorems 8.1 and 8.2 themselves may now be 
used to extend further the domain for which the relation 
m,(x) = ---'/,(x) is valid. Before carrying this out, let us out
line the proof of the following relation: 

, 
= ( - 1),(q- k) II (.d 3 - q + k - s + 2)q_ k 

s= 1 

, 
X II (XI -.d3 + s - l)q_ k 

s= 1 

X( -XI -.d l -.d2 + k +s - l)q_k 

X G ~(.d 1,.4l2,.d3 - q + k;x t , - XI -.d2 + k,.4l2 - q), 

(8.64a) 
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for 

k = t - 1,t, ... ,q. (8.64b) 

This relation is proved by first applying the determinantal 
symmetry consisting of the row permutation 

G ~ ~) 
followed by transposition of the array A corresponding to 
the variables in G ~ ( ... ), and second by applying the reduction 
formula (4.15). This leads to Eqs. (8.64), except for the stated 
form of G ~ ( .•. ), which is obtained by a further application of 
determinantal symmetry. 

We can now extend the results given in Theorems 8.1 
and 8.2 as follows. 

Theorem 8.3: Define the (finite) subdomains AI" A3" 

and At = AltuA3t of L by 

Alt = {x e Lj max(OA 3 - .:i 2)<XI <.:i3 - q } 
x2> - (.:i 2 -.:i3 - q), X3>.:i2 - t + 1 ' 

(8.65a) 

Then 

mt(x)=~t(x), for xe(1.+ -N~+duWruAt. 
(8.65c) 

Proof The result given by Eq. (8.65c) adjoins the set of 
lattice points At to those points x for which the relation 
mt(x) = ~t(x)hasalreadybeenprovedinTheorems 8.1 and 
8.2. Thus, we need to show that mt(x) = ~t(x) for x eAt. 
(We define ~t(x) = ° should any points x having XI = ° or 
x) = ° belong to At.] 

Consider Eq. (8.50a). The linear factors multiplying G ~ 
account exactly in position and multiplicity for the zeros of 
G ~ (.:i;X) for all points x e W t given by 

x = (.:i3 - k, - X3 -.:i3 + k,x)), 

X3 = .:i2A2 - 1, ... A 2 - (q + t - k - 2). 

(8.66a) 

(8.66b) 

Since m,(x) = ~t(x) for all x e W" it follows for all points 
given by Eqs. (8.65) that 

G~(.:il - q + kA2A 3;.:i3 - q, 

(8.67a) 

We observe next that this relation is valid for all integers 
q,k,tA IA 2A 3 ,x3 that obey the conditions 

l<t<k + l<q, 

.:i;>q (i = 1,2,3), (8.67b) 

.:i2 - (q - t - k - 2)<X3<.:i 2• 

We next define.:i ; and xi by.:i ; =.:i I - q + k and xi 
= X3 + q - k. Using these definitions in Eq. (8.67a) and the 
validity of that relation for generic variables as described 
above, we now rename k tobeq,qtobek,.:i ; tobe.:i I' and xi 
to be X3' thus proving 

G~(.:iIA2A3;.:i3 - k, -X3 + k -.:i3, x 3);fO. (8.68a) 

The domains of the parameters in this relation are obtained 
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from Eqs. (8.66) and (8.67) and the definitions of.:i i and xi 
to be l<t<q + l<k, .:il>q, .:i2>k, .:i3>k, .:i2 - t + 2<X3 
<.:i 2 + k - q. We also verify relation (8.68a) for k>q, 
X3 = .:i2 - t + 1 directly from Eq. (8.64a), and for k = q, 
.:i 2 - t + 1 <X3 <.:i 2 from Theorem 8.2. Thus, for givenq>1 
and.:i; >q (i = 1,2,3), relation (8.68a) is true for all k and X3 
such that 

k = q,q + 1, ... ,min(.:i2A 3), (8.68b) 

.:i 2 - t + 1 <X3 <.:i 2 + k - q. (8.68c) 

These relations and Eq. (8.68a) yield G ~ (.:i;x);fO for x e All' 
Similarly, beginning with Eqs. (8.64) and following the 

steps of the preceding argument, we obtain 

G~(.:iIA2A3;XI' -XI -.:i2 + kA2 - k);fO, (8.69a) 

for 

k = q,q + 1, ... ,min(.:i IA z), 

.:i3 - t + 1<xI<.:i3 + k - q. (8.69b) 

Equivalently, we have G ~(.:i;x);f0 for x e A3t . • 
Remark: Relations such as Eqs. (8.50), (8.52), and (8.64) 

maybe used to show that G ~(.:i;x);fO implies G~(.:i ';x');fO 
(and conversely) for various (.:i;x) and (.:i ';x'), but so far a 
proof (if it is true) that mt(x) = ~t(x) for all x e 1.+ has not 
been possible. 

IX. SUMMARY AND CONCLUDING REMARKS 

In this concluding section, we summarize and discuss 
the main results obtained in this paper. 

Beginning with a proof (Introduction) that certain 
U(3):U(2) projective operators must be the zero operator in 
consequence of the definition of a canonical unit tensor oper
ator in terms of null space properties alone, we used these 
splitting conditions to construct explicitly (in Sec. II) the 
denominator function Dr, in a determinantal form [Eqs. 
(2.22)-(2.24)]. [We also obtained in Eqs. (2.5a), (2.16), and 
(2.22)-(2.25) explicit expressions for certain Racah coeffi
cients and the matrix elements of certain U(3):U(2) projective 
operators.] Since this denominator function is a U(3)-invar
iant characterization of the associated canonical unit tensor 
operator, we have focussed in the present paper on the delin
eation of its properties in order to bring it to a more compre
hensible form. Significant results obtained here are (i) the 
expression [Sec. III, Eq. (3.3)] of the denominator functions 
D~, t = 1,2, ... ,~, in terms of successive ratios ofafamilyof , 
new functions G ~, G !, ... , G1', which tum out to be polyno
mials, and (ii) a reduction formula [Sec. IV, Eq. (4.15)] for the 
G ~ functions, which is a key relation for establishing further 
properties of these functions . 

Using the results obtained in Sec. II-IV, we then pre
ceeded to demonstrate in Sec. V-VIII three significant prop
erties ofthe functions G ~ (.:i ;x )(taking .:i i >q, for simplicity). 

(i) Symmetry: each function G ~(.:i;x) has symmetries in 
the parameters (.:i IA2A3'X I,X2,X3) that correspond to the 72 
determinantal symmetries of a 3 X 3 array A associated with 
these parameters [see Eq. (5.1)]. 

(ii) Polynomial: each G ~ (.:i ;x) is a polynomial of total 
degree 2t (q - t + 1) in the variables (X I,x2'X3) [and almost 
certainly also in the variables (.:i 1,.:i2A 3)]. 
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(iii) Zeros: each G ~(..:1,x) has zeros in the variables 
(x l'X2,X3) which in position and multiplicity coincide exactly 
with that of the weight space of the U(3) irrep 
[q - t,O, - t + 1] (equivalently of the SU(3) irrep 
[q - l,t - 1,0]). 

As is evident from the lengthy developments given in 
the paper, the above properties of the denominator function 
have not obtained easily. Nonetheless, the simplicity and ele
gance of the final results justify, in our opinion, this effort. It 
is quite reasonable now to expect that the algebraic expres
sions for the general SU(3) Racah coefficients and the matrix 
elements of the general U(3):U(2) projective operators will 
show similar simplification. In addition to the many known 
applications of these coefficients to physical systems possess
ing SU(3) symmetry, we believe that these coefficients will 
possess, in analogy to SU(2) (see Ref. 1), a wealth of inform a
tion for special functions and their generalizations (see Refs. 
12 and 16). 

In concluding, let us note that we have not given here 
the fully explicit polynomial form for G ~(..:1;x). This step is 
itself of considerable interest (and difficulty) and will be giv
en in a second paper. 
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We give tables of algebraic formulas for some nontrivial6j symbols and 3jm symbols of the unitary 
groups. The tables demonstrate that the building-up method can be used successfully to obtain the 
rank dependence of unitary groupj andjm symbols. To emphasize the rank-dependent nature of 
this calculation, we have employed the composite Young tableaux notation (or back-to-back 
notation) to label the unitary group irreps. In using this notation, the transpose conjugate 
symmetry of the corresponding composite Young diagram leads to a new symmetry of the unitary 
group 6j and 3jm symbols. The transposition of the groups U m and Un gives rise to a further 
symmetry of the 3jm symbols of U mn ::> U m xU n • 

I. INTRODUCTION 

The purpose of this paper is to present rank-dependent 
algebraic formulas for some 6j symbols of Un and some 3jm 
symbols of U mn ::> U m xU n • The 6j table includes all primi
tive 6j symbols containing at most a power 3 irrep and all 
nonprimitive 6j symbols containing power 2 irreps. All 
primitive 3jm symbols of U mn ::> U m xU n up to and includ
ing power 3 and power 2 nonprimitive 3jm symbols are giv
en. In addition, 6j and 3jm symbols with product multiplic
ity have been calculated. No branching multiplicity occurs 
in the reduction U mn ::> U m xU n of the irreps considered. 

The unitary groups have been used extensively since 
Jahn'sl extension of Racah's2 fractional parentage work in 
atomic spectroscopy. From the various and wide applica
tions,3-7 it becomes apparent that one requires a method for 
calculating the 6j and 3jm symbols (symmetrized Racah and 
Clebsch-Gordan coefficients, respectively) of the unitary 
groups in a rank-independent manner. Our aim is to show 
that the building-up method, familiar to nuclear physicists, 
can be employed sucessfully to such a problem. Indeed, it 
could be applied to the series of Lie groups On ,SOn ,SPn . 
Such a calculation would satisfy the needs of particle phys
ics, for instance, where different group-subgroup schemes 
are always appearing. The method has previously been used 
to calculate tables of6jsymbols for SU6 and SU3 (Ref. 8) and 
3jm symbols for certain subgroup bases of SU6 and SU3· 
However, it is impractical to produce tables for each unitary 
group that arises. In addition, 6j and 3jm symbols of the 
point groups9 and algebraic formulas for S03 6j symbols and 
S03::>S02 3jm symbols 10 have been calculated by this meth
od. 

One of the advantages of the building-up method over 
the ladder operator techniques (familiar from angular mo
mentum theory and used by many workers for Un) is that 
only a knowledge of character theory, namely product and 
branching rules, is required. No representation matrices are 
needed. This aspect is useful for groups with large dimen
sional irreps and, as we shall show, in exploiting the rank 
independence of series of groups such as Un. The general 

properties underlying the method are given elsewhere.9-11 
An outline is given in Sec. IV. 

To emphasize the rank independence we have em
ployed the composite Young tableaux notation 12-17 (or back
to-back notation) to label the unitary group irreps. This is 
described in Sec. II along with other Ungroup information. 
A particular symmetry of Young tableaux is the transpose 
conjugate, which is generated by the alternating irrep [II] of 
SI. In defining this symmetry for composite Young dia
grams, we arrive at a new symmetry of the unitary group 6j 
and 3jm symbols. This symmetry is discussed in Sec. V. In 
Sec. VI we take a look at the symmetry of the U mn ::> U m 

xU n 3jm symbols under transposition of the groups Un and 
Um· 

II. Un GROUP INFORMATION 

In this section we give a brief outline of the properties of 
the irreps of Un. The irreps of Un and of all compact Lie 
groups may be labeled by partitions. A partition of an integer 
I into p parts AIA2, ... .AP with Al + A2 + ... + Ap = I, is de
noted (A I.A2' ... .AP) or merely A, and is said to be regular if the 
parts also satisfy 

(2.1) 

For Una full set of standard labels is obtained by using n 
nonincreasing parts Ai as in (2.1) but relaxing the positivity 
of the parts. By separately taking the positive and negative 
parts as two regular partitions I" and v, we obtain the com
posite label for Un irreps 

{A} = {A I.A2' ... .An } 

= {VI'V2, ••• ,vq , 0, ... ,0, 

-I"p' ... ' -1"2' -I"I} 

= { I";v}, where p + q<.n. 

(2.2a) 

(2.2b) 

(For Un irreps we enclose the label in braces.) The usual 
association between regular partitions and Young diagrams 
may be extended to cover those with negative parts by form
ing the composite Young diagram. This is obtained by re
flecting the Young diagram of I" about the vertical and pair-
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ing it "back-to-back" with that of v. This construction has 
been used by Murnaghanl2and Littlewood 13 but developed 
more fully by King and others. 14-17 

In (2.2) the composite labels { f-l;v} satisfy the condition 
p + q<.n. If the number of parts of { f-l;v} exceeds n, it forms 
a nonstandard composite label. This may be standardized by 
the removal of continuous boundary hooks. The simpler par
titions p and 0' are obtained from f-l and v, respectively, by 
removing (p + q - n - 1) adjoining cells (called a hook) 
from the lower boundary of the corresponding Young dia
grams. The hooks start at the foot of the first column of f-l and 
v and if they end in columns x and y, respectively, then 

{p;O'} = (- t+Y+ I{ f-l;v). (2.3) 

The label vanishes (i.e., it labels a null irrep) unless the parts 
of p and 0' are ordered as in definition (2.1). Repeated hook 
removals may be required to arrive at a standard composite 
label for Un. As an example, the composite label { 14;32} is 
standard in Un for n > 5 since the hook 
(h = p + q - n - 1 = 4 + 2 - n - 1 = 5 - n) is negative. 
However, for smaller values of n the label (1 4 ;32) must be 
"modified" 

n = 5, h =0, 

n =4, h = 1, 

n = 3, h = 2, 

n = 2, h = 3, 

n = 1, h = 4, 

n =0, h = 5, 

{l4;32} = - {l4;32}, 

i.e., { 14;32} = rp, 

{l4;32} = - {0;1}, 

(where rp is the null irrep). As can be seen from this example, 
the modification rule changes the irrep label in a nontrivial 
manner. 

For more discussion the reader is referred to the litera
ture. 15- 17 By using the composite labels for Un' many prop
erties can be expressed in an n-independent manner. The 
complex conjugate pairs of irreps are labeled by composite 
labels with the partitions interchanged, {f-l;v} = {V;f-l} *, 
and the power of the irrep { f-l;v} is given as the sum I + m, 
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where f-l and v are partitions of I and m, respectively. This 
simplicity is one of the principal reasons for using the com
posite labeling scheme. 

Various formulas have been given for the dimensions of 
Un irreps. Table I was derived using 

{ f-l;v} = N n ( f-l;v)1 H ( f-l)H (v), 

Nn (f-l;v) = II (n - i - j + f-lj + Vj + 1) 
j.j 

k,l 

(2.4) 

X(n+k+l-jik -vi-I), (2.5) 

where the product ranges over all cells of the partitions of f-l 
and v. The denominator functions H ( f-l) and H (v), which are 
Robinson'sl8 hook formula, and Nn(f-l;v) may be obtained 
diagrammatically. 19.20 The N n (f-l;v) gives explicitly the n de
pendence and takes the form of a factored polynomial of 
order I + m. 

Under the transpose conjugate (or tilde) symmetry, 
where the partition A is obtained from A by interchanging 
rows and columns of the Young diagram, we have 

H(ji) =H(f-l), Nn(ji;v) = (- 1)/+mN _n(f-l;v). (2.6) 

Hence the dimension formulas for { ji;v} may be ob
tained from those of{ f-l;v} by replacing all factors (n + a) by 
(n - a) for positive or negative integers a. This symmetry of 
the dimension formulas, and, as we will see below, the n
independent and tilde invariance of the Kronecker product 
rule for Un and branching rules U mn ::JUm XUn (modulo 
modification rules) carry through into corresponding sym
metries of the Un 6j and 3jm symbols (see Secs. V and VI). 

The Kronecker product rule for Un is given as l7 

{f-l;v} X {p;O'} = I [(f-lIS)' (pl;);(vl;)· (O'IS)} 
S.b 

(2.7) 

where "j" and "." are Schur function operations of division 
and outer multiplications and m~;~xp;a is the multiplicity of 
[ r;v} in the product of [ f-l;v} and [ p;O'}. Tables of the Schur 
function operators are given in Ref. 20. 

For a particular value of n, (2.7) may be subject to the 
modification rule. We illustrate this procedure by consider
ing the Kronecker square of the adjoint (or generator) repre
sentation. Equation (2.7) gives 

[1;l}X[I;I} 

= I [(l/S)·(l/;);(l/;)·(l/S)}, s,;=O,I 
u 

= [2;2} + [2Y} + [12;2} + {l2y} 

+ 2{l;1} + {O;O}. (2.8) 

For n>4 the labels, as composite labels, are standard. For 
n < 4, one applies the modification rule as appropriate to give 

U3:[1;l}x[1;1} = [2;2} + [2;12} + [12;2} +rp 

+ 2{l;1} + [O;O}, (2.9) 

U 2:{l;1}X {1;1} = {2;2} +rp+rp- [1;1} 

+ 2 {l; I} + {O;O} 

= {2;2} + [1; 1} + {O;O}, (2.10) 
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=rp, 

Vo:( - {OJ)X( - (OJ) = rp + {OJ + {OJ + rp 

- 2<p + {OJ = {OJ. 

(2.11) 

(2.12) 

The V 2 result (2.10) illustrates that the modification rules 
give a natural n dependence to multiplicity separations. 

We specify the Kronecker product rules by triads. Thus 
({ ,u;v) {p;o'} (r,v}r) forms a triad if the identity irrep {O;O} 
occurs at least r + 1 times in the triple product 
{ ,u;v} X { p;o'} X {1';v}. Note that the range of r is taken as 
r + 1 = 1, ... ,m;1;:xp;u; that is, r is initialized at zero. The 
transpose conjugate symmetry applied to the Kronecker 
product rule and to the Schur function operations allows one 
to prove that if ({,u; v J{ p;o'){ 1'; v} r) is a triad then 
({ ,u;v) { p;o'} { 1'; V } r) also exists as a triad for n large enough 
so that all partitions remain unmodified. 

The branching rule for the reduction of composite la
beled irreps of V mn to V m xV n is given by the expression 17 

{,u;vll L (-I)Z{((,u/O')OS)/p;((v/u)o;)/p) 
S.;,'T/,u,p 

X {S /1/;; /1/} 

(2.13) 
p,U.T." 

where 0' is a partition of z and "0" is the S-function operation 
of inner multiplication which defines the Kronecker pro
ducts ofirreps of the symmetric group. It is to be noted that 
the above expression gives a series of positive terms; how
ever, it is not possible to demonstrate in general the cancella
tion of all negative terms. 

In the special case when,u = 0 Eq. (2.13) simplifies to 

{O;,.t} = L {O;,.tov}{O;v} = Lm~v{O;,uJ{O;v}. 
v p,v 

(2.13') 

As an example of the use of Eq. (2.13) we reduce the adjoint 
representations 

{1;1} ~ L ( - I)Z{ ((1/O')oS )/p;((1/O')o;)/p) 

X {S /1/;; /1/}, (2.14) 

where O'is restricted to 0 and 1 by the division operation and 
s,; must be a partition of the same integer as (1/0') by the 
inner multiplication operators. Hence 

{1;l} ~ L ( + )( (1 ol)/p;(lol)/p} X { 1/1/;1/1/} 
P,'T/ 

X( - ){ (OOO)/p;(OoO)/p) X {0/1/;0/1/} (2.15) 

= [{ 1/0;1/0} + {1/1;1/l}] 

X [{ 1/0;1/0} + {1/1;1/1 J] 

+ {O/O;O/O} X { O/O;O/O}, (2.16) 

wherep,1/ are also restricted to 0 and 1 by the division oper
ation 
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11;l} ~ [11;l} + {O;OJ] X [11;l} + {O;OJ] 

- {O;O} X {O;O} 

= {1;l} X {l;l} + {l;l} X {O;O} 

+ {O;O} X {l;l}. (2.17) 

As with the Kronecker product rule, the branching rule 
also displays a similar transpose conjugate symmetry. If 

{ ,u;v} :J m~;;x r,v { p;O'} X { 1'; V }, 

(2.18) 

(what we shall term a ket branching) then for m and n large 
enough the three following ket branchings also exist: 

{ ,u;v} :Jm~;~XT;U {p;u} X {r;v}, 

{,u;v} :Jm~;:xT;uf p;O'} X {r;v}, 

{ ,u;v} :J m~;;x r,v { p;u} X { 1'; V } , 

where all the branching multiplicities are equal. 

(2.19) 

(2.20) 

(2.21) 

A further symmetry of the branching rule is the symme
try arising from the transposition of the groups V m and V n • 

Again for large enough m and n, if the ket branching of (2.18) 
exists then we also have 

{ ,u;v} :Jm~~xp;u {1';v} X { p;O'}, (2.22) 

with the same branching multiplicity. We call this symmetry 
the m-n transposition symmetry. For both this and the 
transpose conjugate symmetry the condition m and n large 
enough is to imply that the modification rule for irrep labels 
is not invoked. In the case when m and n are small, some of 
the ket branchings may have to be modified or may cancel 
with others, or may even be inadmissible. For example, in 
Vmn (m>2,n>2) 

{lY} !{O;l} X {O;l} + {0;1} X 11;12} 

+ {O;l} X {l;2} + {lY} X {0;1} 

+ {lY} X {l;2} + {l;2} X {O;l} 

+ {l;2} X {l;12}, 

while with m = 2, n > 2 

{l;12} !{ O;l} X {O;l} + {0;1} X {l;12} 

(2.23) 

+ {O;l}X {l;2} +rp X{O;I} +rp X {l;2} 

+ {l;2} X {O;l} + {l;2} X {l;12}, (2.24) 

andm = l,n>2 

{lY} !{O;l} X {O;l} + {0;1} X {l;12} 

+ {O;l} X {l;2} - {0;1} X {O;l} - {O;l} X {l;2} 

+ rp X {O;l} + rp X {1;12} 

~{0;1} X {1;12}. (2.25) 

Note the two symmetries ofEqs. (2.18), (2.19), and (2.22) in 
Eq. (2.23). In later sections we will discuss these symmetries 
in relation to the algebraic formulas of the 3jm symbols of 
V mn :J V m X V n . In addition, we shall look at the effects the 
modification rule has in determining the form of the algebra
ic formula of 3jm symbols. 

Our final remarks on the unitary group concern the 
infinitely many one-dimensional irreps labeled by {an} with 
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a taking positive and negative integer values. Such irreps are 
generated by the Kronecker powers of the one-dimensional 
determinantal irrep (1" I or its complex conjugate irrep 
( 1" I * = (( - 1)" I. [Note we are using the notational form 
of (2.2a) to label the irreps.] The Kronecker product of any 
U" irrep with the infinite series of one-dimensional irreps 
(a" I gives a series of "associated irreps" 

(JL;vl X (a" 1= (vl,···,vq,O, ... ,O -JLp, ... , -JLd X (a" I 
= (VI + a, ... ,vq + a,a, ... ,a, - JLp 

+a, ... , -JLI + al 

= (JL';v'l· (2.26) 

Clearly the property of association is n dependent. We 
also note that from a series of associated irrep labels there is a 
unique label of the form (O;..t I = (A I for which the nth part 
ofthe partition is zero and (A ) is a regular partition into n - 1 
parts. From (2.26) it follows that all associated irreps can be 
written as 

(2.27) 

This decomposition is important when considering the re
duction of U" irreps with respect to the subgroup SU" . Al
though we will be concerned with SUn only briefly, we men
tion here that all associated irreps are equivalent under 
reduction to SUn and can be labeled by (O;..t I = (A I. This is 
a consequence of the result that all one-dimensional irreps 
subduce to the scalar irrep of SUn. 

In applying (2.27) to Un Kronecker products we can 
rewrite 

as 

((a~ I X (Ad)x((a~ I X (A2 J) 

:J (( a~ I X a~ I) X (( A I I X (A2 I) 

:Jm(a~ I X (A3J, 

(2.28) 

(2.29) 

where a3 = a I + a2 and A3 is a regular partition into at most 
n parts. In triad form this is written 

(( JLI;vd (JL2;v21 (JL3;v3Ir) 

= ((a~ I (a~ I (a~ I )((AII (A21 (A3Ir). (2.30) 

Similarly, since under the reduction Umn ::JUm XUn 
(amnl ::J ((an)ml X ((am)" I, (2.31) 

a ket branching (2.18) can be put into the form 

(amnlX(A l::Jm'(bmlx (JLlx(enlx(vl 

::Jm'((bml X (en J)X(( JLI X (vJ), (2.32) 

where amn = bm = en and A, JL, and v are regular partitions 
of the same integer and A has at most mn - 1 parts. 

III. A GUIDE TO THE TABLES 

Table I lists the irreps ofU" up to power 3, giving the 
complex conjugation properties and algebraic formulas for 
the dimension of the irreps. In Table II we have given the list 
of 3j phases associated with each triad. The 3j phase, denoted 
( YI Y2 Y3rl, gives the symmetry on reordering coupled pro
ducts. We have used the fact that the irreps of Unlisted in 
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Table I are simple phase irreps; the first nonsimple phase 
irrepisthepower6irrep (21;21J of Un (n>4). Thepermuta
tion matrix appropriate to reordering can be chosen diag
onal lO and the diagonal elements are the 3j phases. If one of 
the irreps in the triad is the trivial (identity) irrep, the 3j phase 
reduces to the 1j phase 

( y*yOOl = ( YI· 

The quasiambivalent choice,1O (Yd ( Y21( Y31 = + 1, 
where ( YI Y2 Y3r) forms a triad, can be used for Un and im
plies that the A matrix appropriate to the complex conjuga
tion symmetry can be chosen unity. 

The 6j symbol is related to recouplings between a set of 
six irreps by mean off our triad couplings. The triads occur in 
the 6j symbol 

(3.1) 

in the order 

{'Lt. .. {~L .. {01..". {-} ... r.' (3.2) 

that is, (YI7]!7]3rl),(77I Y27]fr2),(7]T7]2 Y3r3)'( YI Y2 Y3r4)' re
spectively. 

Symmetries are used to reduce the size of the tables. The 
full symmetries are given elsewhere9

-
11 but to find a 6j in the 

table one needs the following. The 6j symbols are invariant 
under even permutations of the columns; there is the com
plex conjugation symmetry, 

r! rf}" 
7]*2 7]* ' 3 '1'2'3'4 

= {rT 
7]t 

(3.3) 

the row flip symmetries, the (23) flip being 

={rT 
7]T 

(3.4) 

and the column interchange symmetries, the (12) operation 
being 

= {;; ;~ ;; Lr,r,r. 
X (7]d (7]21( 7]31( YI7]!7]3rd (7]1 Y27]tr21 

X (7]t7]2 Y3r31 ( YI Y2 Y3r41· (3.5) 

The phase in (3.5) is the same for all interchanges but in 
addition we chose this phase + 1 for all multiplicity-free 6j 
symbols. This choice fixes the value of certain 3j phases and 
these are given in Table II. We note that the choice is also 
invariant under the transpose conjugate symmetry. Some 3j 
phases, in particular those of the form ( yyy'r I ' are fixed by 
the character theory. These values are also given in Table II. 

The 6j symbols of Un are tabulated in Table III. The 
bold typeface headings denote the top line of the 6j symbols 
and each subsequent entry denotes a lower line (three irreps 
and four multiplicity labels), the interchange sign, and the 
value. 

The irrep decompositions for U mn ::J U m xU n are given 
in Table IV. No branching multiplicity occurs for the cases 
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TABLE I. Irreps ofU •. 

Composite label 0;0 0;1 1;0 1;1 0;12 

Complex conjugate 0;0 1;0 0;1 1;1 12;0 
Dimension formula 1 n n (n + 1)(n -1) n(n - 1)/2 

Composite label 1;t2 I2; 1 1;2 
Complex conjugate 12;1 1;12 2;1 
Dimension formula (n + l)n(n - 2)/2 (n + l)n(n - 2)/2 (n + 2)n(n - 1)/2 

Composite label 0;13 P;O 0;21 
Complex conjugate 13;0 0;13 21;0 
Dimension formula n(n - l)(n - 2)/6 n(n - l)(n - 2)/6 (n + l)n(n - 1)13 

TABLE II. U. 3j phases and values. 

10;0 0;0 0;0 j 
11;00;10;Oj 
11;1 1;00;1j 
11;1 1;1 O;Oj 
11;1 1;11;1 rj 
10;12 1;01;Oj 
112;0 0;t2 O;Oj 
W;00;12 1;lj 
10;21;01;Oj 
10;212;01;1j 
12;0 0;2 0;0 j 
12;00;2 1;1j 
I1Y 1;II;Oj 
11'12 12'00'1j 
11:1 2 l·i 2 12'Oj t, , , 
11;12 1;122;Oj 
W;II;120;Oj 
112;11;12 1;1 rj 
11;21;1 I;Oj 
11;22;00;lj 
11;2 1;t2 12;Oj 
11;2 I;P 2;Oj 
11;212;ll;lj 
11;2 1;2 12;Oj 
11;21;22;Oj 
12;1 1;20;Oj 
12;1 1;21;1 rj 
10;13 12;01;Oj 
lOY 12;1 12;Oj 
10;13 12;12;Oj 
113;00;130;Oj 
W;O 0;13 l;lj 
10;21 I2;OI;Oj 
10;212;01;Oj 
10;2112;1 12;Oj 
10;21 12;1 2;Oj 
10;212;1 12;Oj 
10;212;12;Oj 
10;21 P;O I;lj 
121;00;210;Oj 
121;00;21 1;1 rj 
10;32;01;Oj 
10;32;1 12;Oj 
10;32;12;Oj 
10;321;01;1j 
13;00;3 0;0 j 
(3;00;3 1; lj 

= 10;Oj = + I" 
=IO;W 

= l1;lj = + I" 
= Hr 11;1 1;0 0;1 JI 0; 1j".e 
= _I" 
= 10;12j = + Ie 
= 11;11;00;1J10;ljd 
= + I" 
= 10;20;1 0;IJlO;12 1;0 I;Oll 1;1 1;0 0;1j 10;ljd 
= 10;2j = + Ie 
= 11;1 I;OO;Ij!O;ljd 

= I1Y 1;II;OllO;12 1;0 I;Olll;ll;OO;Ij!O;W 
= 10;12 1;0 1;0j! l;lj = _ 1"·d 
= 10;2 1;0 I;OJl l;lj = + 1"·d 
= 11;12j = 10;qc 
= H; 11;1 1;00;1 JlO;12jd.e 

= 11;21;11;0j!0;21;0 1;0j! 1;II;OO;Ij!I;ljd 
= 11;21;1 I;Oll 1;12 1;1 I;OJlO;1 2 1;0 I;OJl I;W 
= 11;21;1 I;Oj I 1;12 1;1 I;Oj 10;21;0 I;Oj I 1;ljd 
= 11;21;11;OJll;12 1;ll;OJll;11;00;IJlI;W 
= 10;12 1;0 I;OJl I;lj = - la.d 

= 10;21;0 I;Oj l1;lj = + 1"·d 
= 11;2j = 10;1je 
= H ;11;1 1;0 O;lj 10;2jd.e 

= 10;13 12;0 I;Oj I I;P 12;00;lj 10;12 1;0 I;Oj 10;12jd 
= lOY 12;0 I;Oj 11;t212;00;1J10;2 1;0 I;Oj{OYjd 
= 10;13j = 10;qc 
= 11;1 1;00;1 JlO;12jd 

= 10;21 12;0 I;Oj 10;21;0 I;Oj 10;121;0 I;Oj 10;12jd 
= 10;2112;0 I;Oj I1Y 12;00;1J10Y 1;0 I;OllO;1 2jd 
= 10;2112;0 I;OJll;12 12;00;1j!0;21;0 I;OllO;12jd 
= 10;21 2;0 I;OJl 1;2 2;00; III 0;12 1;0 I;OJl 0;2jd 
= 10'212'0 l'Oj 11'2 2'00'1j 10'21'0 1·0JlO·2jd 
= 10:21 12'0 i'Ojl(W' 12'01'Oj'l d 1'0' 0'lj'10'12jd 

t, "l' "l'" l' 
= 10;2lj = 10;qc 
=H;I1;11;00;1J10;12jd.e 

= 10'32'0 l'Oj I 1·2 2·0 O·lj 10'12 1'0 l'Oj 10'2jd 
= 10;32;0 I;Oj I 1;2 2;0 O;lj 10;2 t;{l t;{lj 10;2jd 
= 10;32;0 I;Oj 10;212;0 I;Oj I 1;1 1;0 O;lj 10;2jd 
= 10;3j = 10;qc 
= !I;11;00;1j!0;2jd 

"Fixed by character theory. 

[
+ 1, forSU2k + 1 , 

blO;lj = + 1, forSU2k , keven, 
-I, forSU2k , kodd. 

12;0 
0;12 
n(n - 1)/2 

2;1 
1;2 
(n + 2)n(n - 1)/2 

21;0 
0;21 
(n + l)n(n - 1)/3 

0;2 
2;0 
(n + l)n/2 

0;3 
3;0 
(n + 2)(n + l)n/6 

2;0 
0;2 
(n + l)n/2 

3;0 
0;3 
(n + 2)(n + l)n/6 

c Fixed by the condition I rd I r2j I r3j = + 1 for the triad (rl r2 r3r) imposed to give a unit choice for aliA matrices. This choice leads to imaginary values for 
some 6j symbols. 

d Fixed by the requirement that as many 6j symbols are invariant under transposition of columns. This may give a reality criterion for some 6j symbols and 
simplifies the transpose conjugate symmetry of others. 

eH=diag( + 1, -1),H' =diag( + 1, + 1). 
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TABLE III. U. 6j fonnulas. The boldfaced headings denote the top line of the 6j symbol. Each subsequent entry denotes a lower line (three irrep labels and 
four multiplicity labels), followed by the algebraic fonnula. We have also used the following notation: 

{ 
+ 1, if(1;II;II;1 r)I1;II;OO;1)!O;1) = 1, 8 

x,= +i, ifp;II;II;lrHl;II;OO;IHO;I)= +1, x=8" "0,,, 

E,.rl'l'. = ~[X",X'lX'lX,. + X~X~X~X~]t 
[ ' ) {I, ifll;II;II;1 r} = + 1, 

8, =! 1 + 1
1;11;11;1 r J = 0, ifp;II;II;1 r} = -1, 

1;1 

1;1 

1;1 

0;1 

1;1 

1;1 

1;0 

1;1 

0;2 

1;1 

0;2 

0;1 

1;1 

0;2 

2;0 

1;0 

1; 1 

1;1 

2;0 

2;0 

1;12 

1;0 

1;1 

1498 

1;0 

1;0 

1;1 

0;1 

1; 1 

1;0 

0;1 

1;0 

1;1 

1;0 

0;1 

0;1 

1; 1 

0;2 

1;0 

1;1 

1;1 

2;0 

1;1 

1; 1 

0;1 

1; 1 

0;1 

0;1 0000 

1;1 

0;1 OOOr 

1;1 

1;0 

1;0 0000 

1;1 

0;1 0000 

0;1 DOrO 

1;1 0000 

1;0 

1;0 0000 

1;1 

1;0 0000 

0;1 DOrO 

1; 1 0000 

1;1 0000 

1;1 

0;1 0000 

DOrO 

0;2 DOrO 

1; I 0000 

I; 1 0000 

1;1 0000 

1;0 

1;0 0000 

I; 1 orOO 

1;0 0000 
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10;1) - I 
(n + I)n(n - 1) 

_---'+_1 __ 
X, (n + 1)(n - I) 

(n + 28,)(n - 28,) 
2n 

( 2 4(3 +)) (n + 2x)(n - a) n" 
10"""" n - x - y z 2( 1)( I) n + n - i~ I 

+1 
n(n -I) 

+..JT1=2 
n(n -1) 

X '0'121'01'0}11'11'00'1} (n-48,) 
rl, " '" (n + I)(n - I) 

(n - 1 + $)(n - I - $) 
(n + I)n(n - I)(n - 2) 

+1 
(n + l)n 

+1 
(n + l)n(n - I) 

+1 X,!0;21;0 I;OHl;II;OO;1) ----'-
(n + 1)(n -1) 

-1 
(n + 1)(n -I) 

+1 
(n + l)(n -I) 

+{i1+2 
(n+ I)n 

X,!0;121;0 1;0}P;11;00;1) + 1 
(n + I)(n -I) 

n+4 X,!0;21;0 I;O)P;II;OO;I} --'-
(n + 1)(n - 1) 

+ ..j(n + 2)(n - 2) 
(n + I)n(n - 1) 

-1 

(n + I)(n -I) 

(n + I + $)(n + I - $) 
(n + I)n(n - l)(n - 2) 

[OYl;OI;O}!O;I} +1 
(n + 1)(n - 1) 

(n + 28,)(n - 28,,) 

2n(n - 2)(n - 28,) 

(n - 2)(n + 20,) 

2n(n - 28,) 

(n + 2)(n - 28,) 

2(n + 28,)n 

2(n + 2)(n + 28,)n 

n+2 
X '1;1 2 1;11'0} '0'1 2 1'0 I'O} '0'1} + 1 

rl 'I'" I, (n + 1)(n _ I) 2n(n - 28,) 

{0;1) + I 
(n + 1)(n - 1)(n - 2) 
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TABLE III. (Continued.) 

0;1 

1;1 

0;12 

0;2 

1;0 

12;0 

1;0 

12;0 

1';1 

0;1 

0;1 

1;0 

1;0 

1;1 

1;1 

12;0 

12;0 

1;12 

1;12 

12;1 

12;1 

12;1 

1;2 

1;0 

1;1 

12;1 

2;1 

1;1 

1;0 

0;1 

0;1 

1;1 

1;1' 

0;1 

1;1 

0;1 

1;1 

1;1' 

0;1 

0;1 

1;0 

1;0 

1;1 

1;1 

12;0 

12;0 

0;1 

0;1 

1;0 

1;0 

1;0 

1;1 

1;1 

0;1 

1;1 

1;1 

0;1 

1;0 

12;0 

I; I 

1;1 

1;0 

1';0 

1;1 

1;0 

2;0 

1;1 

1;0 

1;1 

0;1 2 

0;1 2 

1;1 

I; I 

0;1 

0;1 

1;0 

1;0 

0;1 2 

0;1 2 

1;1 

1;1 

1;1 

1;0 

1;0 

1;1 

1;0 

1;0 

0000 

0000 

0000 

0000 

0000 

0000 

0000 

0000 

0000 

0000 

0001 

0000 

0001 

00n> 

OOrl 

0000 

0001 

0000 

0001 

0000 

0001 

0101 

0000 

Or 00 

0000 

0000 

1499 J. Math. Phys., Vol. 26, No.7, July 1985 

+1 ~ 
n - I "\j (n + I)n 

(1;12 12;00;1l(0;12 1;0 1;0) -2 
(n + I)n(n - I)(n - 2) 

(1;1212;00;1) -±.!.. 2 
n-I (n+l)n(n-2) 

(1;1212;00;1) ~ ~ 2 
n + I n(n -I) 

-2 
(n + I)n(n - l)(n - 2) 

+1 n-3 
n - I (n + I)n(n - 2) 

10;12 1;01;0) /2TiI=3) 
(n + I)(n - lI(n - 2) 

+1 ~ 
n + I "\j n(n - 2) 

10;21;0 I;O)-±.!.. ~ 2 
n+1 n(n-l)(n-2) 

11;II;OO;I]lO;IJ 2(2n -I) I I 
(n + I)n(n - I) -V (n - 2)(n3 

- 2n2 - 2n + 2) 

i 2(n + 2)(n - 3) 
(n + I) (n - 2)(n3 

- 2n2 - 2n + 2) 

+ I I n3 
- 2n2 - 2n + 2 

(n + I)n(n - I) -V n - 2 

o 
(n + 28,) 

1
1-11'11'1 rJ (n

2 
- 2(1 + 8,))(n + 2) 

X, , " In + I)(n - I) 

I I-II-II-Ir) (n+2-28,) 
X, , " (n + I) 

2n(n - 28,)(n - 2)(n3 
- 2n2 - 2n + 2) 

(n + 28,)(n - 3) 
(n + 2),(n - 28,)(n - 2)(n3 

- 2n2 - 2n + 2) 

11; I 1;0 0; 1]1 0; 1) 2.J,-n3.,...-----=-2n-,2,...-~2n-+----=-2 
(n + I)n(n - I)(n - 2) 

o 

10;1) n 2(n-3) 
(n + I)(n - I)(n - 2) n3 

- 2n2 - 2n + 2 

-2i I n+2 
(n + I)n(n - 2) -V n3 

- 2n2 - 2n + 2 

112;1 1;121;10) (n
2 

- 6n + 4) 
(n + I)(n - I)(n - 2)(n3 

- 2n2 - 2n + 2) 

112;1 1;12 1;1 OJ (n - IW2(n + 2)(n - 3) 
(n + I)(n - 2)(n3 

- 2n2 - 2n + 2) 

112-1 1-12 1-10) 2(2n - I) 
, , , (n + I)n(n - 2)(n3 

- 2n2 - 2n + 2) 

10-21'01'0)1 0'1) +1 
, " , (n + I)(n - I) 

+1 
X,(1;21;II;OJlO;21;0 I;OJlO;I)-~-'--

(n + I)(n -I) 

10;1) + I 
(n + 2)n(n - I) 

10;1) + I 
(n + 2)(n + I)(n - I) 

n -28, 

2(n + 28,)n 
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TABLE III_ (Continued_) 

1;2 2;0 0;1 

0;1 1;1 1;0 0000 +10 
n + I n(n -I} 

1;1 1;0 2;0 0000 {1-22-00-1j{0-21-01-0) ---2 ~ 
, " '" (n + I}n(n - I) n + 2 

0;t2 0;1 I; I 0000 P;2 2;00;1) -- ---I f!; 
n(n -I} n + I 

1;1 0000 
+1 2 

0;2 0;1 P-22-00-1)--, , , n+ I (n + 2}n(n - I) 

1;2 1;1 1;0 0000 
-2 

(n + 2}(n + I}n(n - I) 

1;2 1;12 12;0 

1;0 0;1 1;1 0000 + I .v I 
-;; (n + I}(n - I) 

0;1 0000 +1 ~ 1;1 0;2 P-21-11-0j{1-1 21-11-0)-- --
, " , , , (n + I}n n - I 

12;0 1;1 1;0 0000 P-21-1 I-Ol!l-1 2 12-OO-IJ!I-1 1-00-1) ~ ~ 2 
, " , " '" (n + I) n(n - I}(n - 2} 

12; I 0;1 1;1 0000 {0-1)~.v 2(n-2} 
, (n + I) (n - Iln(n3 - 2n2 - 2n ± 2) 

12; I 0;1 1;1 0100 {0-2 1-0 1-0) ~ (n - 3) 
, , , (n + I) (n + 2)n(n - I}(n - 2}(n3 - 2n2 - 2n + 2) 

1;2 1;12 2;0 

1;0 0;1 I; I 0000 +1. 
n (n+ I)(n-I} 

1;1 0;2 0;1 0000 2 - I 2 
{1-21-1 I-OJ! I-I 1-11-0)--, " , , , n-l (n + 2}(n + I}n 

12;0 1;1 1;0 0000 {1-2 1-11-0) {1-1 2 12-0 1-0) {I-I I-OO-I}-- --+1 f!; 
, " , " '" n(n - 1) n + 1 

1;2 12;1 1;1 

0;1 0;1 1;1 0000 +1 
(n + I}(n -I) 

0;1 I; 12 I; I 0000 {0-2 1-0 toOl {0-1) - I ~ 2 
, " , (n + I}(n - 2) n(n - I} 

1;0 12; I 1';0 0000 {0-1) -I ~ 2 
, (n + I}(n - 2) n(n - I} 

1;1 1;1 1;0 OOrO X P-2 2-00-1j{ 1-12 12-OO-Ij{0-1) (n - 2(I-C,}) (n - 20,) 
r , " , " , (n + I}(n - I}(n - 2) 2n}(n + 2C,} 

0;12 0;2 0;1 0000 P-2 I-II-OJ! 1-12 1-11-0) --2 ~ , " , , , (n + I}(n - I) n 

1;12 0;1 1;1 0000 {0;2 1;0 1;0j{ 1;11;00;1) (n + 1}I(n _ I)~ (n _ 2}(n3 _ ~n2 _ 2n + 2) 

1;12 0;1 1;1 0100 
-i 2(n - 3} 
n (n + 2}(n - 2}(n3 + 2n2 - 2n - 2) 

12;1 1;0 2;0 0000 {0-1)~.v 2 
, (n+l}n (n-l}(n-2) 

1;2 0;1 1;1 0000 {O;I 1;01;0j{0;1) --2 -I ~ 
(n + 2}(n - I) (n + I}n 

2;1 1;0 2;0 0000 {O;I) -I ~ 2 
(n+2}(n-l) (n+ I}n 

1;2 1;2 12;0 

1;0 0;1 I; I 0000 +I~ -- --
(n-I) (n+2}n 

+1 2 
2;0 1;1 1;0 0000 {0-12 1-01-0)--, , , n-l (n + 2}(n + I}n 
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TABLE III. (Continued.) 

0;1 1; 1 0000 

1;2 1;2 2;0 

1;0 0;1 1;1 0000 

2;0 1;1 1;0 0000 

2;1 1;2 1;1 

0;1 0;1 0;2 0000 

0;1 0;1 0;2 0001 

1;0 1;0 1;1 0000 

1;0 1;0 1;1 0001 

1;1 1;1 0;1 OOrO 

1;1 1;1 0;1 OOrl 

2;0 2;0 1;0 0000 

2;0 2;0 1;0 0001 

0;1 0;2 0000 

0;1 0;2 0001 

1;0 1;1 0000 

1;0 1;1 0001 

1;2 0;1 0;2 0000 

1;2 0;1 0;2 0001 

2;1 1;0 1;1 0000 

2;1 1;0 1;1 0001 

2;1 1;0 1;1 0101 

1;0 

0;1 1;0 0000 

1;1 0;1 0000 

0;1 2 1;0 0000 

1;0 0;1 0000 

1;0 0000 

1;1 0;12 1;0 0000 

0;1 0000 
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(0;1}-±..!...... 
n(n -1) 

2 
(n +2)(n + 1) 

+1 n+3 
n+l (n+2)n(n-l) 

(0;21;01;0} J2l1i+3) 
(n + 2)(n + 1)(n - 1) 

(1;11;00;11(0;11 2(2n+ 1) I 1 
(n + l)n(n - 1) V (n + 2)(n3 + 2n2 - 2n - 2) 

i 2(n + 3)(n - 2) 
(n - 1) (n + 2)(n3 + 2n2 - 2n - 2) 

1 I n3 + 2n2 - 2n - 2 

(n + l)n(n - 1) V n + 2 

o 
(1'II'II'lr} (n2+2(1+8,))(n-2) (n-28,) 

X, , " (n + l)(n - 1) 2(n + 2)(n + 28,)n(n3 + 2n2 - 2n - 2) 

v (1'11-1 1-1r} (n-2+28,) (n+3)(n-28,) 
M , " (n _ 1) (n + 2)(n + 28,)n(n - 2)(n3 + 2n2 - 2n - 2) 

(1;11;00;1J(0;1I 2~n3+2n2-2n-2 
(n + 2)(n + l)n(n - 1) 

o 
[0;1I~ 2(n+2) 

(n - 1) (n + l)n(n3 + 2n2 - 2n - 2) 

[0'12 1'0 1'0} ~ 1 
, , , (n - 1) (n + 2)(n + l)n(n - 2)(n3 + 2n2 - 2n - 2) 

(0;21;0 1;0J( 1;11;00;11 
1 1 

r-__ --."..,.-J.:.:n:,.J-~1 ~n..::-:....:l~ (n + 2)(n3 + 2n2 - 2n - 2) 
- i 2(n + 3) 
n (n + 2)(n - 2)(n3 + 2n2 - 2n - 2) 

(O'l} n 2(n+3) 
, (n +2)(n + 1)(n -1) n3 +2n2 -2n -2 

-2i I n-2 
(n + 2)n(n - 1) V n3 + 2n2 - 2n - 2 

(2;11;21;10} (n
2 

+ 6n + 4) 
(n + 2)(n + 1)(n - 1)(n3 + 2n2 - 2n - 2) 

(2;11;21;10} i(n + lW2(n + 3)(n - 2) 
(n + 2)(n - l)(n3 + 2n2 - 2n - 2) 

(2;11;2 1;1O} (0;1} - 2(2n + 1) 
(n + 2)n(n - 1)(n3 + 2n2 - 2n - 2) 

(0'12 1'0 1'0}~ , , , n(n -1) 

(0'1 3 12'0 1'0} (1'1 1'00'l} (0'11-±..!...... ~ 1 
, " ", , n(n - 1) n - 2 

(0;1} + 2 
n(n - 1)(n - 2) 

+1 ~ 
n(n - 1) \,j n - 2 

2 -4 (0;1 1;01;0J(0;l} 
(n + l)n(n - l)(n - 2) 

(0;1 3 12;0 1;0J( 1;12 12;00;11 (1;1 1;00;1} + 2 ~ n - 3 
(n - 1)(n - 2) (n + l)n 

(0;1 2 1;01;0J(1;11;00;1I +2 ~ 2 
(n - 1)(n - 2) (n + l)n 
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TABLE III_ (Continued_) 

1;0 

1;1 

2;1 

1;0 

(10,21 

0;1 

1;1 

0;21 

0;1 

0;1 

1;1 

1;1 

1;2 

0;21 

1;0 

1;0 

1;1 

1;1 

(10,21 

1;0 

1;1 

1;1 

2;1 

2;1 

1502 

2;0 

0;1 0000 

1;0 0000 

0;1 0000 

1;1 

1;0 0000 

0;1 0000 

1;0 0000 

1;0 

1;0 0000 

0;1 0000 

1;0 0000 

2;0 1;0 

1;0 0000 

0;2 1;0 0000 

0;1 0000 

0;1 2;0 0000 

0;2 1;0 0000 

0;1 0000 

0000 

1;0 0000 

0;2 1;0 0000 

0;1 0000 

0;1 2;0 0000 

2;0 

0;1 0000 

1;0 0000 

0;2 1;0 0000 

0;1 0000 

0;1 2;0 0000 
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+..!.. 2 
n (n + l)(n - 2) 

(0-1' 12-0 1-0)[1-12 12-OO-1)[1-11-00-1J - 2 I "i 
, " , " '" n" (n + 1)(n - 1)(n - 2) 

(0;121;0 I;OJ ~ I 2 
n(n - 1)" (n + l)(n - 2) 

--±..!....- ~2(n - 3) 
n(n - 1) n - 2 

( 12-00-1 2 1-1J(0-121-0 I-OJ ~ 2(n - 3) 
, , , , , , n(n - I) (n - 2) 

( I-II-OO-IJ(O-IJ +2 ~ 2 
, " , (n - I)(n - 2) (n + I)n 

2 - I 
(0;1 1;01;0)[0;1] n(n _ I) 

2 -..m=I 
(0;211 ;0 I;OJ (1;11;00;1] (0;1] (n + I)n(n _ I) 

(0;1] + 2 
(n + I)n(n - I) 

3 
(n + I)(n -I) 

-I 
{0;2 1;0 I;O)[O;IJ (n + I)n 

[0-211 2-0 I-OJ [0-1 2 1-0 I-OJ {I-II-OO-IJ [O-IJ I II 
, " , " '" , (n + I)(n - I) -V n 

[0-212-0 I-OJ [I-II-OO-IJ[O-IJ -..;n:t2 
, " '" , (n + I)n(n - I) 

[O;IJ + 2 
(n + I)n(n - I) 

+1 ~ 
n - I -V (n + I)n 

[oy 1;0 1;0)[ 0; I J __ --'+'-'2:...-__ 
(n + I)n(n - I)(n - 2) 

(0-2112-OI-OJ(1-12 12-OO-IJ(I-II-00-IJ -I ~ I 
, " , " '" (n + I)(n - I) n - 2 

[0-212-0 I-OJ [1-12 12-00-1 J [0-1 2 1-0 I-OJ I II 
, " , " , , , (n + l)(n - I) -V n 

[0-121-01-0)[ 1-11-00-1] -I ~_2(n_-_3) 
, " '" (n + I)n(n - I) n - 2 

(0;12 1;0 I;OJ _1_ I 6 
(n + I)n" (n -I)(n -2) 

--±..!....- ~21n + 2) 
In + I)n n-I 

(0-2112-01-0J(I-1212-OO-IJ(I-II-00-IJ ..;n:t2 
, " , " '" (n + I)nln - I) 

(0-212-01-0J(I-121-II-OJ(I-II-00-IJ(0-IJ I IT 
, " , " '" , (n + I)(n - I) -V n 

(0;21;0 I;OJ --±..!....- I 2 
In + I)n" In + 2)(n - I) 

I 6 

nln - I) In + 2)ln + I) 
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TABLE III. (Continued.) 

&,21 

1;0 

1;0 

1;1 

1;1 

&,21 

1;0 

1;0 

1;1 

1;1 

2;1 

2;1 

0;21 

0;1 

0;1 

0;1 

21;0 

1;0 

1;0 

1;0 

1;0 

2;0 

2;1 

0;1 

0;2 

0;1 

0;1 

2;1 

0;1 

1;2 

0;2 

0;1 

0;1 

0;1 

1;2 

0;2 

0;1 

0;1 

&,21 

1;0 

1;0 

1;0 

1;0 

2;0 0000 

2;0 0000 

1;0 0000 

1;0 0000 

0000 

2;0 0000 

2;0 

2;0 0000 

2;0 0000 

1;0 0000 

1;0 0000 

0000 

2;0 0000 

1;1 

0000 

0000 

0000 

1;0 0000 

1;0 0000 

0000 

0;2 0000 

1;1 

0000 

0001 

0;2 0000 

0;2 0001 

0;1 0000 

0;1 0001 

0;1 0000 
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~~2(n-2) 
n(n - 1) n + 1 

[0;1) -2 3 
(n + l)n(n - 1) (n + 2)(n - 2) 

[0.2112.01.0)[1.21.11.0)[1-11.00.1) + 1 IT 
, " '" '" (n + 1)(n - 1) '\j n 

[0·212·01·0) [1·22·00·1) [1-1 1·00·1) +.Ji1=2 
, " '" '" (n + l)n(n - 1) 

+ 1 I 6 
(n + l)n 'I (n - 1)(n - 2) ,..----
[0;12 1;0 1;0) ~ I 2 

n(n - 1) 'I (n + 2)(n - 2) 

+1 ~ 
n + 1 '\j n(n - 1) 

[0.21.01.0)[0.1) +2 
, " '(n + 2)(n + l)n(n - 1) 

[0.2112.01.0)[1.22.00.1)[0.21.01.0) +1 IT 
, " '" '" (n + 1)(n - 1) '\j n 

[0.212.01.0)[1.22.01.0)[1.11.00.1) -1 ~ 1 
, " '" '" (n + 1)(n - 1) n + 2 

[0.21.0 1.0) ~ 6 
, , , n(n - 1) (n + 2)(n + 1) 

[0.21.01.0) p.ll.00.1) - 1 2(n + 3) 
, " '" (n + l)n(n - 1) n + 2 

+1 ~ 
n - 1 '\j (n + l)n 

[0;1) -1 ~ 2 
(n - 1)(n - 2) (n + l)n 

-1 '---6-
[0;21;01;0) [0;1) n(n -1) 

(n + 1)(n - 2) 

[0.2112.01.0110.1 3 12.01.0110.21.0 1.0110.1) ~ 2 
, " , " '" , n - 1 (n + l)n(n - 2) 

[0·21 12.01.0110.13 12.01.0) p·l 1·00·1) [0.1) ~~. 6 
, " , " '" , n(n - 1) n + 1 

P;II;00;1110;1) +1 2(n-3) 
(n+l)n(n-l) (n-2) 

[0;121;0 1;011 0;1) ~ I 6 
(n + l)n 'I (n - 1)(n - 2) 

2 - 1 [0·211 ·01·0) [0·21·01·0) [1-1 1·00·1)--
, " ", '" n(n -1) 

[0.211 2.01.0)[1-11.00.1) i~(n+2)(n-2) 
, " '" (n + l)n(n - 1) 

2 - 1 
[0;212;01;0110;1 1;01;0111;11;00;1) (n + l)n 

[ 0.212.01.0)[1.11.00.1) i~(n+2)(n-2) 
, " '" (n + l)n(n - 1) 

[0;2112;01;0110;1) -.Ji1=2 
(n + l)n(n - 1) 

[0.2112.01.0)[0.12 1.01.0)[0.1) 2i..J1l+2 
, " , " , (n + l)n(n - 1) 

+1 IT 
[0;212;01;0) [0;21;01;0) [0;1) (n + 1)(n _ 1) '\j-; 
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TABLE III. (Continued_) 

2;0 

2;0 

2;0 

2;1 

2;1 

2;1 

2;1 

1)-,3 

0;1 

1;1 

1;2 

0;3 

1;0 

1;1 

1)-,3 

1;0 

1;0 

1;1 

2;1 

0;3 

0;1 

0;1 

0;1 

0;2 

P;O 

2;0 

2;0 

1;0 

1;0 

1;0 

1;0 

1;0 

1;0 

1;0 

1;0 

2;0 

0;2 

0;1 

0;2 

2;1 

0;1 

0;2 

0;1 

2;1 

0;1 

1;2 

0;2 

0;1 

21;0 

0;1 

1;2 

1;2 

0;2 

0;2 

0;1 0001 

0;1 0000 

0;1 0001 

0000 

0001 

0;2 0000 

0;2 0001 

O;P 0000 

0001 

0;2 0000 

0;2 0001 

1;0 

1;0 0000 

2;0 0000 

1;0 0000 

0;2 0000 

1;0 0000 

2;0 0000 

2;0 

0;2 0000 

2;0 0000 

1;0 0000 

2;0 0000 

1;1 

2;0 0000 

P;O 0000 

2;0 0000 

1;0 0000 

1;0 0000 
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o 

{0;212;01;01l0;IJ -,fri+2 
(n + l)n(n - 1) 

2i../11=2 
{0;21 2;0 1;01l1;1 1;00;1) (n + I)n(n _ I) 

[0-211 2-0 I-OJ {0-2 1-0 I-OJ[O-IJ 2 
, " '" , (n + l)n(n - 2) 

{0;21 12;0 1;01l0;1) - i ~ n + 2 
(n + I )1I(n - I) n - 2 

{0;21 2;0 1;01l0;l) + I ~ 3 
(II + I)(n - I) (n + 2)n 

{0;21 2;0 1;0J{0;1) --+i ~ 
(II + 1)(n - 1) n(1I - 2) 

{0;21 12;01;0}[0;1) --+1 ~ 
(n+I)(n-l) n(n-2) 

{0;21 12;0 1;0J[0;l) I __ +- ~ 
(n + l)(n - 1) (n + 2)n 

2 -2 {0-21 2-0 I-OJ {O-I 1-01-0) {O-I) 
, " • •• , (n + I)n(n - 2) 

[0;212;01;0J{0;1) ---i Jf¥,-2 
(n + I)n(n - I) n + 2 

+2 [0-21-01-0)[0-1)--
• ,. '(n + l)n 

10-32-01-0jll-11-00-1jlO-1j-- --+2~ • •• ••• • (n + l)n n + 2 

[Oil) + 2 
(n +2)(n + I)n 

+.l 2 
n (n+2)(n-l) 

[0;32;01;0J{1;22;00;1J{1;11;00;1) +2 
n (n + 2)(n + 1)(n - 1) 

[0-21-0 I-Oj ~ 
• , • (n+ I)n 

+ 1 2(n + 3) 
(n + I)n n +2 

2 

(n + 2)(n -I) 

[0-21-01-0JIO-IJ -4 
• ,. '(n + 2)(n + I)n(n - I) 

{0-32-01-0J[1-22-00-1j{l-l1-00-lj +2 ~ n+3 
• ,. .,. .,. (n + 2)(n + I) n(n - 1) 

{0;2 1;01;0] {l;1 I;OO;lJ --+2 ~ 
(n +2)(n + 1) n(n -1) 

+1 ~ 
n + I -V n(n - I) 

[0;21;0 I;OJ[O;I) ~ 6 
n(n - I) (n + 2)(n + I) 

{Oil) + 1 ~2(n - 3) 
(n + I)n(n - I) n + 2 

[0;32;0 I;Oj {0;212;0 I;OJ {1;11;00;l) {Oil) -( -II) ~ 6 
n+ n n-l 

r---~--
{0-3 2-0 I-OJ [0-212-01-0) [0-1 2 1-01-0] [O-l) --=-!..-. 2 

, " ) " , " , (n + 1) (n + 2)n(n - 1) 

R. W_ Haase and P_ H_ Butler 1504 



                                                                                                                                    

TABLE III. (Co1lti1lued.) 

1;12 0;1 2;0 0000 2 - 1 {0'1 1'01'0l!0'1)--
6 

, " '(11+ 1)11 (11+2)(11-1) 

1;2 0;1 2;0 0000 {0;1j -1 ~ 2 
(11 + 2)(n + 1) n(1I-l) 

3;0 0;3 1;1 

1;0 1;0 0;2 0000 +1 
(11+ 1)11 11+2 

2;0 2;0 0;1 0000 {2'00'2 Hl!0'2 1'0 l'O} + 2~2(11 + 3) 
, " '" (11 + 2)(11 + l)n 

2;1 1;0 0;2 0000 (l'11'00'1l!0'1) +2 ~ 2 
, " , (11 + 2)(11 + 1) 1I(n - 1) 

considered. Thus the 2jm symbol associated with each ket 
branching becomes only a phase factor for which a sign can 
always be chosen, that is, 

(3.6) 

The symmetry relation 

(71~:*) = { r}{71j*{Kj* (;J (3.7) 

determines the relationship between 2jm phases of complex 
conjugate pairs of ket branchings. 

The 3jm symbols are zero unless the top and bottom 
rows form triads of the group and subgroup, respectively, 
and unless the columns form ket branchings. The symme
tries of the 3jm (Refs. 9-11) are as follows: invariance under 
cyclic permutations of the columns; a possible sign change 
for a column interchange, for example, the (12) interchange 
is 

( 
rl r2 r)' 

71IKI 712K2 713;3 st 

( r2 rl r3 )' 
= 71~2 71IKI 713K3 st 

(3.8) 

X { rl r2 r3r j{ 71171271~j{KIK~3t j 
(we are only using simple phase irreps); and a possible sign 

TABLE IV. Urn. :::>Um xU. branching rules. The values ofthe 2jm sym
bols of the ket branchings below are all chosen + 1. Those associated with 
the complex conjugate ket branchings are obtained using Eq. (3.7). The val
ues of the m-1I transposition phases for each ket branching are + 1 except 
{I;12 00;lXO;1} = -1 and {0;POO;21XO;21} = -1 [seeEq. (6.7)]. 

0;0 l O;OXO;O 
0;1 l 0;1 XO;l 
1-1 l O'OXH + l'lXO'O + l'lX1'1 
0;1 2 l 0';12 X'0;2 +'0;2x'0;12 , , 
0;2 l 0;12 XOY + 0;2xO;2 
1;12 l 0;1 XO;1 + 0;1 X I;P + 0;1 X 1;2 + 1;12 XO;1 

+ 1;12 X 1;2 + 1;2 XO;1 + 1;2 X 1;12 

1;2 l 0;1 XO;1 + 0;1 X lY + 0;1 X 1;2 + 1;12 XO;1 
+ lY X I;P + 1;2 XO;l + 1;2 X 1;2 

0;13 l 0;13 XO;3 + 0;21 XO;21 + 0;3 XO;13 

0;211 0;13 XO;21 + 0;21 XO;1 3 + 0;21 xO;21 
+0;21XO;3 +0;3XO;21 

0;3 l 0;13 XO;1 3 + 0;21 XO;21 +0;3XO;3 
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change under the complex conjugation symmetry 

11 

(3.9) 

The list of some U,nn ::J U m XU" nontrivial 3jm symbols is 
given in Table V. The 3jm table uses the group triad 
( rlr2r3r) as a header. Each subsequent entry gives the al
lowed subgroup irrep labels 71,K, the subgroup product mul
tiplicity labels s and t, and the algebraic formula. The 3jm 
symmetries are also used to reduce the size of the table. The 
group triad is ordered such that the irreps appear as in Table 
I with highest power first down to the lowest power. 

IV. THE METHOD OF CALCULATION 

The 6j and 3jm symbols are calculated recursively by 
building up from the trivial6j and 3jm symbols. The method 
takes advantage of the "phase freedoms" within the Racah
Wigner algebra that are allowed by Schur's lemmas. These 
phase freedoms describe transformations in the product or 
branching multiplicity space and exist for each triad and ket 
branching. In the multiplicity-free case, the phase freedom 
reduces to just a phase; hence the origin of the term phase 
freedom. As stated earlier, simplifications occur within the 
Racah-Wigner algebra because the unitary groups are qua
siambivalent and no nonsimple phase irreps occur in the 
present calculation. 

Detailed accounts of the method9
•
11 with numerical ex

amples have been given elsewhere. But in outline the basic 
procedure is the solution oflinear equations generated by (i) 
the unitary condition, (ii) the Racah backcoupling relation, 
and (iii) the Biedenharn-Elliott sum rule, for 6j symbols; and 
(i) the unitary conditions and (ii) the Wigner relation, for 3jm 
symbols. Since the 6j symbols are independent of any group
subgroup scheme, these are calculated first. A small set of 
the 6j symbols for both group and subgroup are required in 
the Wigner relation to calculate the 3jm symbols. 

V. THE TRANSPOSE CONJUGATE SYMMETRY 

In Sec. II we discussed the similarities in the Kronecker 
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TABLE V. U m" :::> U m XU" 3jm formulas. The boldfaced headings denote a U m. triad of the 3jm symbol. Subsequent entries denote the U m XU" subgroup 
triad followed by the algebraic formula. The Ij and 3j phases appear with subscripts mn, m, or n corresponding to the unitary group in which its value must be 
taken. The following notation has also been used: 

_ {+ I, if {1;1 1;11;1 rIm. = + I, 
X, - + i, if (1;1 1;1 1;1 rIm" = - I, 

{ 
+ I, if {1;1 1;1 1;1 slm = + I, 

X. = +i, if{1;1 1;1 1;lslm = -I, 

{ 
+ I, if{1;1 1;1 1;1 tl. = + I, 

X,= +i. if(I;II;II;ltl.=-I. 

1;1 1;0 0;1 

O;OX 1;1 I;OX 1;0 0;1 XO;I 

1;1 X 0;0 I;OXI;O 0;1 xO;I 

I;IXI;I I;OX 1;0 0;1 XO;I 

1;1 1;1 1;1 

O;OX 1;1 0;0 X 1;1 O;OXI;I 

1;1 X 0;0 I;IXO;O 1;1 X 0;0 

I;IXI;I 1;1 X 0;0 O;OX 1;1 

I;IXI;I I;IXI;I O;OX 1;1 

I;IXI;I I;IXI;I I;IXO;O 

I;IXI;I 1;1 X 1;1 I;IXI;I 

0;12 1;0 1;0 

0;I2XO;2 I;OX 1;0 I;OX 1;0 

0;2XO;1 2 I;OX 1;0 I;OX 1;0 

12;0 0;11 1;1 

12;OX2;0 0;1 2 XO;2 O;OXI;I 

12;OX2;0 0;1 2 XO;2 1;1 X 0;0 

12;OX2;0 0;1 2 XO;2 I;IX 1;1 

2;OX 12;0 0;1 2 XO;2 I;IXI;I 

2;OX 12;0 0;2XO;1 2 O;OXI;I 

2;OXI 2;0 0;2XO;1 2 1;1 X 0;0 

2;OXI 2;0 0;2XO;1 2 I;IXI;I 

&.2 1;0 1;0 

0;12 XO;12 I;OX 1;0 I;OX 1;0 

0;2XO;2 I;OXI;O I;OX 1;0 

0;2 11;0 1;1 

0;1 2 XO;1 2 12;OX2;0 O;OX 1;1 

0 

00 

00 

00 

r 

Ot 

,I{) 

00 

Ot 

,I{) 

st 

0 

00 

00 

0 

00 

00 

00 

00 

00 

00 

00 

0 

00 

00 

0 

00 
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I5:io = HI + {1;1 1;1 1;1 rIm.]. 

15:" = ![l + (1;1 1;1 1;1 rIm. (1;1 1;1 1;1 slm (1;11.]. 

c5~, =![l + (1;1 1;1 1;1 rIm. {1;1jm (1;1 1;1 1;1 t I.], 

15:, =HI + {1;1 1;1 1;1 rl m.{1;II;II;1 slm{1;II;II;1 t I.]. 

+ (n + I)(n - I) 

(mn + I)(mn - I) 

+ (m+ I)(m-I) 

(mn + I)(mn -I) 

+ (m + I)(m - I)(n + I)(n - I) 

(mn + I)(mn - I) 

(0;1Imo (0;1Im~X,c5~, 
(n + U,)(n + I)(n - I)(n - U,) 

(mn + U,)(mn + I)(mn - I)(mn - U,) 

(m + U.)(m + I)(m - I)(m - U,) 

(mn + U,)(mn + I)(mn - I)(mn - U,) 

x~I5:io 
(m + I)(m - I)(n + I)(n - I) 

(mn + 2c5,)(mn + I)(mn - I)(mn - U,) 

X~X,~, 
(m + I)(m - I)(n + 2c5,)(n + I)(n - I)(n - U,) 

(mn + U,)(mn + I)(mn - I)(mn - U,) 

X~X,c5:" 
(m + U,)(m + I)(m -l)(m - U,)(n + I)(n - I) 

(mn + 2c5,)(mn + I)(mn - I)(mn - U,) 

X~X,X,c5;, 
(m + U,)(m + I)(m - I)(m - 2c5,)(n + 2c5,)(n + I)(n - I)(n - 215,) 

(mn + U,)(mn + I}(mn - I)(mn - 215,) 

(0;1 2 1;01;0}m. 
(m -I)(n + I) 

(mn -1)2 

(0;1 2 1;01;0Im. 
(m + I)(n -I) 

(mn -1)2 

(0;1 2 1;0 I;Olm (0;1Im (m - I)(n + 2)(n + I)(n - I) 

(mn + I)(mn - I}(mn - 2}2 

(m + I}(m - I)(m - 2)(n + I) 
(mn + I}(mn - I)(mn - 2)2 

(O;I}m 
(m + I}(m - I)(m - 2)(n + 2)(n + I)(n - I) 

(mn + I}(mn - I}(mn - 2}4 

+ ~(m + I)m(m - I)(n + I)n(n - I}/(mn + I)(mn - I}(mn - 2}4 

(0;21;0 I;Olm (O;1jm 
(m + I}(n + I)(n - I}(n - 2) 

(mn + I}(mn - I}(mn - 2)2 

(m + 2)(m + I}(m - I)(n - I) 

(mn + I}(mn - I}(mn - 2)2 

(O;l}m 
(m + 2)(m + I)(m - I)(n + I}(n - I)(n - 2) 

(mn + I)(mn - I}(mn - 2}4 

(0;21;01;0Im. 
(m+ I)(n-I) 

(mn + 1)2 

(0;21;01;0Im. 
(m+ I)(n + I) 

(mn + 1)2 

- (0;I2 1;0 I;Olm (0; II m. (O;l} m (0;11. 
(m - I}(n + I}n(n - I) 

(mn + I}mn(mn - 1}2 
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TABLE V. (Continued.) 

OYxO;12 2;OxF;0 1;1 X 0;0 00 - {0;12 1;0 1;01. {O; I] m. {O;I] m {O; 1]. (m + I)m(m - I)(n - I) 

(mn + I)mn(mn - 1)2 

0;1 2XO;1 2 12;OX2;0 I;IXI;I 00 - {O;I 1m. [0;11 m {O;I]. 
(m + I)(m -I)(m - 2)(n + I)n(n - I) 

(mn + I )mn(mn - 1)4 

0;12XO;12 2;OX 12;0 I;IXI;I 00 - {O;l]m. {O;l]m {O;I]. 
(m + I)m(m - I)(n + I)(n - I)(n - 2) 

(mn + I)mn(mn - 1)4 

0;2X0;2 1~;X2;0 1;1 X 0;0 00 - {0;2 1;01;01. [O;l]m. {O;l]m [0;11. 
(m + I)m(m - I)(n + I) 
(mn + I)mn(mn - 1)2 

0;2XO;2 12;OX2;0 I;IXI;I 00 - {O;l]m. [0;1 1m {O;I 1. 
(m + I)m(m - I)(n + 2)(n + l)(n - I) 

(mn + I)mn(mn - 1)4 

0;2XO;2 2;OX 12;0 0;0 X 1;1 00 
(m + I)(n + I)n(n - I) 

(mn + I )mn(mn - 1)2 

0;2XO;2 2;OX 12;0 I;IXI;I 00 - {0;11 m• {O;l]m {O;I]. 
(m + 2)(m + I)(m - I)(n + I)(n - I) 

(mn + I)mn(mn - 1)4 
2;0 0;2 1;1 0 

12;OX 12;0 0;12XO;1 2 O;OX 1;1 00 {0;1 2 1;0 I;Olm {O;l]m 
(m - I)(n + I)(n - I)(n - 2) 

(mn + 2)(mn + I)(mn - 1)2 

12;OX 12;0 0;12XO;12 I;IXO;O 00 
(m + I)(m - I)(m - 2)(n - I) 

(mn + 2)(mn + I)(mn - 1)2 

12;OX 12;0 0;12XO;1 2 1;1 X 1;1 00 
(m + I)(m - I)(m - 2)(n + I)(n - I)(n - 2) 

(mn + 2)(mn + I)(mn - 1)4 

2;OX2;0 0;12XO;12 I;IXI;I 00 + 
(m + I)m(m - I)(n + I)n(n - I) 

(mn + 2)(mn + I)(mn - 1)4 

2;OX2;0 0;2XO;2 O;OX 1;1 00 {0;21;0 I;Olm {O;l]m 
(m + I)(n + 2)(n + I)(n - I) 

(mn + 2)(mn + I)(mn - 1)2 

2;OX2;0 0;2XO;2 1;1 X 0;0 00 
(m + 2)(m + I)(m - I)(n + 1) 

(mn + 2)(mn + I)(mn - 1)2 

2;OX2;0 0;2XO;2 1;1 X 1;1 00 {O;l]m 
(m + 2)(m + I)(m - I)(n + I)(n - I)(n - 2) 

(mn + 2)(mn + I)(mn - 2)4 
1;11 1;1 1;0 0 

0;1 XO;I O;OX 1;1 I;OX 1;0 00 + 
(m + l)(m - I)nn 

(mn + I)mn(mn -I)(mn - 2) 

O;IXO;I I;IXO;O I;OX 1;0 00 [0;12 1;01;01m. 
mm(n + I)(n - I) 

(mn + I)mn(mn - I)(mn - 2) 

O;IXO;I I;IXI;I I;OX 1;0 00 - lOY 1;0 I;Olm. 
(m-n) 

~(mn + I)mn(mn - I)(mn - 2) 

0;1 X 1;12 O;OXI;I I;OX 1;0 00 + 
(m + I)(n + I)n(n - 2) 

(mn + I)mn(mn - 2)2 

0;1 X 1;12 1;1 X 1;1 I;OX 1;0 00 lOY 1;0 I;Olm. {0;1 2 1;0 1;01. 
(m - I)(n + I)n(n - 2) 

(mn + I)mn(mn - 2)2 

0;1 X 1;2 0;0 X 1;1 I;OX 1;0 00 + 
(m - I)(n + 2)n(n - I) 

(mn + I)mn(mn - 2)2 

0;IXI;2 I;IXI;I I;OX 1;0 00 {0;12 1;0 I;Olm. {0;21;0 1;01. 
(m + I)(n + 2)n(n - I) 

(mn + I)mn(mn - 2)2 

1;12XO;1 1;1 X 0;0 I;OX 1;0 00 + 
(m + I)m(m - 2)(n + I) 
(mn + I)mn(mn - 2)2 

1;12XO;1 I;IXI;I I;OXI;O 00 {0;12 1;0 I;Olm. {0;1 2 1;0 I;Olm 
(m + I)m(m - 2)(n - I) 

(mn + I)mn(mn - 2)2 

1;12X 1;2 1;1 X 1;1 I;OX 1;0 00 + (m + I)m(m + 2)(n + 2)n(n - I) 

(mn + I)mn(mn - 2)2 

1;2XO;1 1;1 X 0;0 I;OX 1;0 00 + 
(m + 2)m(m - I)(n - I) 

(mn + I)mn(mn - 2)2 

1;2XO;1 I;IXI;I I;OX 1;0 00 lOY 1;0 I;Olm. [0;21;0 I;Olm 
(m + 2)m(m - I)(n + I) 
(mn + 2)mn(mn - 1)2 

1;2XIY I;IXI;I I;OX 1;0 00 + 
(m + 2)m(m - I)(n + I)n(n - 2) 

(mn + I)mn(mn - 2)2 
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TABLE V. (Continued.) 

Ijl1 I1jO Ojl 0 

0;1 XO;I 12;OX2;0 0;1 XO;I 00 - (0;12 1;0 1;01 .... (OY 1;0 I;O} ... 
(m+ I)(n-I) 

(mn + I)(mn - I)(mn - 2) 

0;1 XO;I 2;OX 12;0 O;lXO;1 00 + {0;12 1;0 1;01 .... {0;2 1;01;01 ... 
(m-l)(n+l) 

(mn + I)(mn - I)(mn - 2) 

0;1 X 1;12 2;OX 12;0 O;IXO;I 00 + (oy 1;0 1;01 .... (0;2 1;0 I;OJ ... 
(n + I)(n- 2) 

(mn + I)(mn - 2) 

0;IXI;2 12;OX2;0 O;IXO;I 00 + (0;1 2 1;0 1;01 .... (oy 1;0 I;Olm 
(n +2)(n -I) 

(mn + 2)(mn - I) 

1;12XO;1 12;OX2;0 O;IXO;l 00 + (OY 1;0 1;01 .... (0;21;0 I;O}. 
(m + l)(m -2) 

(mn + l)(mn - 2) 

1;12x 1;2 12;OX2;0 O;IXO;I 00 + {0;12 1;0 1;01 .... 
(m + I)(m - 2)(n + 2)(n - I) 

(mn + I)(mn - 2)2 

1;2XO;1 2;OX 12;0 O;IXO;I 00 + (0;12 1;0 I;OJ .... (0;12 1;0 I;OJ. 
(m + 2)(m -I) 

(mn + I)(mn - 2) 

1;2XI;12 2;OX1 2;0 O;lXO;1 00 + (0;12 1;0 I;OJ .... (m + 2)(m - I)(n + I)(n - 2) 

(mn + I)(mn - 2)2 
1;2 Ijl IjO 0 

O;IXO;I O;OX 1;1 I;OXI;O 00 + (m + I)(m - I)nn 

(mn + 2)(mn + I)mn(mn - I) 

O;IXO;I 1;1 XO;O I;OX 1;0 00 (0;21;01;OJ",. 
mm(n + I)(n - I) 

(mn + 2)(mn + I)mn(mn - I) 

O;IXO;I 1;1 X 1;1 I;OXI;O 00 - (0;21;0 I;OJ .... 
(m+n) 

~(mn + 2)(mn + I)mn(mn - I) 

0;1 X 1;12 O;OXI;I I;OXI;O 00 + 
(m - I)(n + I)n(n - 2) 
(mn + 2)mn(mn -1)2 

0;1 X 1;12 I;IXI;I I;OXI;O 00 /0;21;0 1;0} .... /0;t2 1;0 I;OJ. 
(m + I)(n + I)n(n - 2) 

(mn + 2)mn(mn - 1)2 

0;IXI;2 O;OX 1;1 I;OXI;O 00 + (m + I)(n + 2)n(n - I) 

(mn + 2)mn(mn - 1)2 

0;IXI;2 1;1 X 1;1 I;OXI;O 00 (0;21;0 I;OJ .... /0;21;0 I;OJ. 
(m -I)(n + 2)n(n - I) 

(mn + 2)mn(mn - 1)2 

1;12 XO;1 1;1 X 0;0 I;OX 1;0 00 + (m + I)m(m - 2)(n -I) 

(mn + 2)mn(mn -1)2 

1;12XO;1 I;IXI;I I;OXI;O 00 (0;21;0 I;OJ",. (0;121;0 I;OJ", (m + l)m(m - 2)(n + I) 
(mn + 2)mn(mn -1)2 

1;1 2 X I;t> 1;1 X 1;1 I;OX 1;0 00 + (m + l)m(m - 2)(n + I)n(n - 2) 
(mn + 2)mn(mn - 1)2 

1;2XO;1 1;1 XO;O I;OXI;O 00 + (m + 2)m(m - I)(n + I) 
(mn + 2)mn(mn - 1) 

1;2XO;1 1;1 X 1;1 I;OXI;O 00 (0;21;0 I;OJ",. (0;21;0 I;OJ ... (m + 2)m(m - I)(n - I) 

(mn + 2)mn(mn - 1)2 

1;2X 1;2 1;1 X 1;1 I;OXI;O 00 + (m + 2)m(m - 1)(n + 2)n(n - I) 

1;2 2jO 0;1 
(mn + 2)mn(mn - 1)2 

0 

0;1 XO;I 12;OX 12;0 O;IXO;I 00 - (0;2 1;0 I;O} .... (0;1 2 1;0 I;O} ... (m+ I)(n + I) 
(mn + 2)(mn + l)(mll - 1) 

O;IXO;I 2;OX2;0 O;IXO;I 00 + /0;2 1;0 I;OJ .... /0;2 1;0 I;OJ ... 
(m -I)(n -I) 

(mil + 2)(mn + I)(mn -1) 

0;IXI;1 2 12;OX 12;0 O;IXO;I 00 + /0;2 1;0 I;OJ",. {0;J2 1;0 I;O}", (n+ 1)(n-2) 

(mn + 2)(mn - I) 

0;IXI;2 2;OX2;O O;IXO;I 00 + {0;2 1;0 1;0} .... (0;21;0 I;OJ ... (n +2)(n -I) 

(mn + 2)(mn - 1) 

1;12XO;1 12;OX 12;0 0;1 XO;I 00 (m+ 1)(m-2) 

(mil + 2)(mn - I) 

1;12x 1;12 12;OX 12;0 O;IXO;l 00 + /0;2 1;0 I;OJ .... (m + 1)(m - 2)(n + I)(n - 2) 

(mn + 2)(mn - 1)2 
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TABLE V. (Continued.) 

1;2XO;1 2;OX2;O O;IXO;1 00 + {0;21;0 1;01 .. _{0;2 1;01;01_ (m +2)(m + I) 
(mn + 2)(mn - I) 

1;2X 1;2 2;OX2;0 O;IXO;I 00 + {0;2 1;0 1;01 .. _ (m + 2)(m - I)(n + 2)(n - I) 

0;13 11;0 1;0 0 
(mn + 2)(mn - 1)2 

0;1 3 XO;3 12;OX2;0 I;OXI;O 00 + (m -I)(m - 2)(n + 2)(n + I) 
(mn - 1)(mn - 2)6 

0;2IXO;21 12;OX2;0 I;OX 1;0 00 + (m + I)(m - I)(n + I)(n - I) 

(mn - I)(mn - 2)3 

0;2IXO;21 2;OX 12;0 I;OXI;O 00 (m + 1)(m - I)(n + I)(n - I) 

(mn -1)(mn - 2)3 

0;3XO;1 3 2;OX 12;0 I;OX 1;0 00 + (m + 2)(m + I)(n - I)(n - 2) 

(mn - I)(mn - 2)6 
&,21 11;0 1;0 0 

0;1 3 XO;21 12;OX2;0 I;OX 1;0 00 + (m-l)(m-2)(n+ I)(n-I) 

(mn + I)(mn - 1)6 

0;2IXO;1 3 2;OX 12;0 I;OXI;O 00 + (m + I)(m - I)(n - I)(n - 2) 

(mn + I)(mn - 1)6 

0;21XO;21 12;OX2;0 I;OX 1;0 00 + (m + I)(m - I)(n + I)(n - I) 

(mn + I)(mn - 1)6 

0;2IXO;21 2;OX 12;0 I;OX 1;0 00 (m + I)(m - I)(n + I)(n - I) 

(mn + I)(mn - 1)6 

0;2IXO;3 12;OX2;0 I;OXI;O 00 + (m + I)(m - I)(n + 2)(n + I) 
(mn + I)(mn - 1)6 

0;3XO;21 2;OX 12;0 I;OXI;O 00 + (m + 2)(m + I)(n + I)(n - I) 

(mn + I)(mn - 1)6 
&,21 2;0 1;0 0 

0;1 3 XO;21 12;OX 12;0 I;OX 1;0 00 + (m - I)(m - 2)(n + I)(n - I) 

(mn + 1)(mn - 1)6 

0;21XO;J3 12;OX 12;0 I;OX 1;0 00 + 
(m + I)(m - I)(n - I)(n - 2) 

(mn + I)(mn - 1)6 

0;21 X0;21 12;OX 12;0 I;OXI;O 00 + (m+ I)(m-I)(n+ I)(n-I) 

(mn + I)(mn - 1)6 

0;2IXO;21 2;OX2;0 I;OX 1;0 00 (m + I)(m - 1)(n + I)(n - I) 

(mn + 1)(mn - 1)6 

0;2IXO;3 2;OX2;0 I;OX 1;0 00 + (m + I)(m - 1)(n + 2)(n + I) 
(mn + I)(mn -1)6 

0;3XO;21 2;OX2;0 I;OX 1;0 00 + (m + 2)(m + I)(n + I)(n - I) 

(mn + I)(mn - 1)6 
&,3 2;0 1;0 0 

0;1 3 XOY 12;OX 12;0 I;OXI;O 00 + (m - I)(m - 2)(n - I)(n - 2) 

(mn + 2)(mn + 1)6 

0;2IXO;21 12;OX 12;0 I;OX 1;0 00 + (m + I)(m - I)(n + I)(n - I) 

(mn + 2)(mn + 1)3 

0;2IXO;21 2;OX2;0 I;OX 1;0 00 
(m + I)(m - I)(n + I)(n - 1) 

(mn + 2)(mn + 1)3 

0;3XO;3 2;OX2;0 I;OXI;O 00 + (m+2)(m + 1)(n+2)(n + 1) 

(mn + 2)(mn + 1)6 

{rl r2 r3 } 
711 712 1/3 '.'2'3" .. 

and 

{~I Y2 Y3} 
711 f'h 1]3 '.'2'3' .. 

product rule and the branching rules arising from the trans
pose conjugate symmetry of partitions (A.) and (l). We also 
noted how the dimension formula for one irrep can be ob
tained from that of its transpose conjugate partner. This 
transpose conjugate symmetry carries over to the Un 6j sym
bols and U mn ::::> U m xU n 3jm symbols, and relates the pair 
of 6j symbols and the four 3jm symbols 
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( rl r2 r3 r 
TIIKI 1]~2 1]3K3 st ' 

( rl r2 r3 r 
f7lcl f72K2 f7ic3 st' 

( YI Y2 Y3 r 
1]l<1 1]2K2 1]ic3 st • 

and (5.2) 

( 
YI Y2 Y3 )' 

f7IKI f7~2 f73K3 st • 

Here r,1],K denote composite labels. If {r} = { ,u;v} then 
{ Y} = { {.t;v}. Note we have also used 1] as a label for Un in 
(5.1) and Um in (5.2). However, no confusion should arise. 

As a consequence of the combinatoric similarities aris
ing from the transpose conjugate symmetry, the equations 
used to solve for pairs of 6j symbols related by (5.1) or pairs of 
3jm symbols related by (5.2) are closely related. Indeed the 
solution, that is, the algebraic formula, of one may be ob
tained from the other by a simple procedure. 

(1) For 6j symbols, (i) replace all factors (n + a) by 
(n - a), (ii) replace any 3j phase { rlr2r3r} by the transpose 
conjugate3jphase { YIY2Y3r},and(iii)replacingany Ijphase 
{ r} by {y}. We note that if a 6j symbol is a self-transpose 
conjugate, to within the row and column symmetries dis
cussed in Sec. III, the algebraic formula will reflect this by 
having pairs of factors (n + a)(n - a), and having self-trans
pose conjugate 3j (or III phases, or pairs of 3j (or lj) phases 
which are transpose conjugates. 

(2) For 3jm symbols, if the irreps of any two of the 
groups U mn' U m' or Un have been transpose conjugated 
then (i) the corresponding factor (mn + a), (m + a), or 
(n - a) must be replaced by (mn - a), (m - a), or (n - a), 
respectively, (ii) the 3j and ljphases of these two groups must 
be replaced by their tranpose conjugate 3j and lj phases, and 
(iii) in 2jm phases the irrep label of the two groups must be 
replaced by the transpose conjugated irrep. Similar to 6j 
symbols, self-transpose conjugate 3jm symbols have pairs of 
factors (mn + a)(mn - a), (m + a)(m - a), or (n + a)(n - a) 
and self-transpose conjugate pairs of 3j, lj, or 2j phases. 

During the calculation, the phase freedom choices5•9•11 

are chosen in a manner so that the above transpose conjugate 
symmetry is satisfied. These phase choices sometimes im
pose conditions on some 3j phases and transposition phases 
(see Sec. VI) which would otherwise be chosen freely. For 
example, we have from the 6j calculation 

{
0'2 12;0 1'1} 
0;1 0;1 1;0 0000 

= ~1/(n + l)n(n - 1), 

{
0;2' T2;0 T;T} 
o·T o·T 1-0 0000 , , , 

= {0;1
2 

2;0 1;1} 
0; 1 0; 1 1;0 0000 

{
0'2 12;0 H}* 

- 0;1 0;1 1;0 0000 

X {0;2 12;0 1;1 0}{0;2 1;0 1;0 O} 

X {0;12 1;0 1;0 O} {1;1 1;00;1 O} {0;1 O}, 
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(5.3) 

(5.4) 

after applying a (12) column interchange and a complex con
jugation. If the transpose conjugate symmetry is not to intro
duce additional phase factors then the product of 3j phases in 
(5.3) must be chosen as unity. Such a choice also satisfies the 
requirement that a multiplicity-free 6j symbol be invariant 
under an odd column interchange. Furthermore, it implies 
that this 6j symbol is real. 

VI. THE m-n TRANSPOSITION SYMMETRY 

The U mn ::J U m X Un has a further symmetry due to the 
occurrence of the direct product subgroup U m xU n' The 
subgroup obtained by transposing U m and Un, that is, 
Un xU m' is also contained in U mn' The relationship 
between the basis vectors of the two group-subgroup 
schemes is written formally as 

l' • I r(U mn )a1](U m }jK(U n )k ) 

= IrlUmn )a'K(Un )k1](Um )j)T(r,1]K)O'a' (6.1) 

where l' is the transposition operator acting on the direct 
product subgroup and T(r,1]Kt'a are elements, which we 
call transposition factors, of an m~K X m~K unitary matrix. In 
giving this result we have required that the irrep matrices of 
U m xU nand Un xU m be the same. The factorization of the 
subgroup basis then follows from Schur's lemmas. The invo
lutary nature of the transposition operator gives the relation 
(in matrix form) 

T(r,K1]) = T(r,1]K)t, (6.2) 

and the complex conjugation symmetry appropriate to any 
transformation factor gives 

T(r*,1]*K*) = A (r,K1])T(r,1]K)*A (r,1]K)t*, (6.3) 

where A (r,1]K) is the complex conjugation matrix formed 
from the 2jm symbols 

( 

r* 
A (r,1]Kt'a = a' 

1]*K* 
:). 

1]K 
The transportation factors can be chosen diagonal 

T(r,1]Kt'a = { ra1]K}8a
'o' 

(6.4) 

consistent with the following choice of the complex conjuga
tion: 

A (r,1]K) = {
I, 

J, 
if{r}{1]j*{Kj* = + 1, 

if{r}{1]j*{Kj* = - 1. 

(J is the symplectic matrix 

(6.5) 

and 1 the unit matrix.) The transposition phase (or l' phase), 
{ra1]K j, satisfies from Eqs. (6.2) and (6.3) 

{ raK1] j = { ra1]K} * = { r*a1]*K*j. (6.6) 

For 1](U m ) #K(U n) the transposition phases are arbitrary 
subject only to the conditions (6.6). The interesting case oc
curs when 1](U m ) = K(U n ), for which the transposition phase 
{ ra1]1] j is only a sign. This sign is determined by the inner 
plethysm of Schur functions in the following manner. If r 
and 1] are both irrep labels of the form {O;l1. } and are parti-
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tions ofthe same integer, then 

{ yal1l1 J 

= {+ 1, if 110 { 2 J contains the ath occurrence of y, 
- 1, if 110 { 12 J contains the ath occurrence of y 

(6.7) 

(0 denotes the inner plethysm operation). 
If y and 11 are not of the form {O;,.t J we use (2.27) and 

write {yal1l1 J as a product of two transposition phases, one 
labeled by one-dimensional irreps and the other by irrep la
bels of the form {O;,.t J. Both these phases are determined by 
(6.7). As examples we give for U It' :> U" XU" 

{0;1 00;1 O;l} = + 1, 

{0;200;20;2J = {0;200;120;12J = + 1, (6.8) 

{ 0; 12 0 0;2 0; 12 J = {O; 12 0 0; 12 0;2 J = + 1, 

while we have 

{l;101;11;l} 

= { _ 1 ,,' 0 - nIt - nIt } 

X {0;21" - 2 0 O;n + l,n" - 2 ,n - 1 

O;n + l,n"-2,n -l}, 

= { - 1 ,,' 0 - nIt - nIt 1 
X {OYl" - 3 0 O;n + l,n" - 1 O;n + l,nn - 1 J. 

From (6.6) and (6.7) 

(6.9) 

{ - 1 ,,' 0 - nIt - nn J = {I ,,' 0 nIt nn J * = ( _ )Z, 

wherez = n(n - 1 )12. [see Ref. 21, Eq. (6.12)]. The two other 
transposition phases of(6.9) can be determined from Eq. (6.2) 
of Ref. 21 

{0;21 It' - 2 0 O;n + l,nn - 2 ,n - 1 O;n + l,n" - 2 ,n - 1} 

=(_)Z, 

{0;22 1,,'-3 0 O;n + l,n"-1 O;n + l,nn-1 J 
=(_)%+1. 

Hence we have 

{l;1 0 1;11;1} = + 1, 

{lYOO;1 0;1} = -1. 

The values of these phases have a striking consequence for 
one particular 3jm symbol, as we will see shortly. 

Using (6.1), the m-n transposition symmetry for the 
3jm symbols can be written 

( ~: 
111KI 11~2 

(6.10) 

a' a' 
X T( Y1>111Ktl1a, T( Y2,112K2) 2a, 

X T( Y3'11~3ria3' 
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The prime is used here to distinguish the two sets of 3jm 
symbols, those belonging to U mIt :> U m XU" and those of 
U mIt :> U m XU". Since no branching multiplicity occurs 
and the transposition factors are diagonal, (6.9) simplifies to 

(6.11) 

An immediate result is that the magnitudes of prime and 
unprimed 3jm symbols in (6.9) are equal while the phase 
difference is given by the product of transposition phases. 

Arising in the 3jm table is a striking example for which 
the m-n transposition phases determine a nontrivial zero. 
The product of transposition phases for the U ,,' :> U" xU n 

3jm symbol 

( 
1-12 1;1 1'0) 

0;1 ~0;1 1;1 X 1;1 1;0~ 1;0 
(6.12) 

is fixed and from (6.8H6.12) has the value 

{lYO 0;10;1 J{ 1;101;1 1;1} 

X {l;0 01;0 I;OJ = - 1. 

Hence by (6.11)the 3jm of(6.12) must be zero for m = n. The 
algebraic formula must have an (m - n) dependency. Indeed 
the formula obtained using the recursive method has such a 
dependency. This is the first occurrence of the (m - n) fac
tor-all other 3jm symbols have factors of the form 
(mn + a), (m + b ), and (n + c). 

VII. THE COMPOSITE LABELING MODIFICATION 
RULES 

In the last section we showed that the m-n transporta
tion symmetry can determine a vanishing of the 3jm symbol 
for certain values of m and n. A partial explanation, which is 
linked to the modification rules for the U" irreps, can be 
given for vanishings of the algebraic formulas for the other 
nontrivial 6j and 3jm symbols. Consider the irrep label 
{1;12 J for various n. From the modification rules this label 
vanishes for n = 0,2 while its transpose conjugate label { 1;2 J 
vanishes for n = 1. Thus the dimension formula for {1;12 J 
must contain factors which vanish for n = 0,2, - 1. The lat
ter value is given by the transpose symmetry. These three 
factors must be the only ones and so 

(l;1 2 J cx:(n + l)(n)(n - 2). (7.1) 

In a similar manner many of the factors (n - a) appearing in 
the tables of 6j and 3jm symbols may be explained by this 
argument. However, in some cases the tabulated result has 
arisen after cancellation of pairs of such factors and no ex
plicit (n - a) factor appears despite the inadmissibility of an 
irrep label for n = a. It must be remembered though that 
when an inadmissible label occurs the 6j or 3jm symbol no 
longer satisfies the triad and ket branching criterion and 
hence of necessity must be zero. 

A more subtle aspect of the modification rules is illus
trated by the label { 12; 12 J for n = 2. This label occurs in (2.8) 
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and since 

{12;12} = - {1;1}, forU2, (7.2) 

it canceled another term in (2.10). This cancellation changed 
the multiplicity of { 1; 1) in { 1; 1) X { 1; 1) or equivalently the 
Un triad 

((1;1){ 1;1){ 1;1Jr) (7.3) 

from 2 to 1 for U2. Thus the appearance of the factor 
(n - 'M,), where 6, takes on the value 1 or 0, in the algebraic 
formulas for a1l6j and 3jm symbols containing triad (7.3) is 
an obvious consequence of this irrep label cancellation. The 
tables presented here, however, are of insufficient size to un
derstand the full consequences of modification rules as ap
plied to 6j and 3jm symbols. 

VIII. CONCLUDING REMARKS 

We have obtained a set of algebraic formulas for some 
nontrivial Un 6j symbols and U mn ::::> U m xU n 3jm symbols 
valid for all m and n, by a straightforward application of the 
building-up method previously used to obtain numerical val
ues ofSU6 and SU3. The composite labeling has allowed the 
triads of Un and ket branchings of U mn ::::> U m xU n to be 
written in a rank-independent manner. Linear equations 
generated from the unitarity condition, Racah backcoupling 
relation and Biedenharn-Elliott sum rule for 6j symbols, and 
the Wigner relation for 3jm symbols have been solved to give 
the rank-dependent algebraic formulas for these unitary 
group 6j and 3jm symbols. The combinatoric properties of 
the composite labels lead to symmetries and vanishings. 
These symmetries are quite different from the row and col
umn interchange symmetries satisfied by all 6j and 3jm sym
bols of all groups22-24 and the Regge symmetries25,26 satis
fied by all SUn. Those symmetries equate to within phases 
and dimension factors two 6j symbols (or 3jm symbols) for 
different irreps ofthe one group (respectively, the one-group
subgroup chain). Modification rules for composite labels re
late in a more complicated way two 6j or 3jm symbols involv
ing different irreps, that is, different triads and ket 
branchings. 

Other rank-dependent formulas for the unitary groups 
have been obtained by Biedenharn and his co_workers.27-3o 

They have exploited the canonical embedding Un::::> Un _ 1 
to derive recursively the matrix elements of coupled and un
coupled tensor operators (equivalently, our 6j and 3jm sym
bols). However, they consider only the regular partition la
bels for Un and although the canonical chain 
Un ::::> Un _ 1 ... ::::> U 1 has the advantage of being multiplicity
free, noncanonical bases such as U mn U m xU nand U m + n 

::::> U m X Un do occur in physical applications. The rank de
pendence and the vanishings and cancellations are similar 
where they focus on the properties of the "shift operator" of 
the Kronecker products to give a unique product multiplic
ity separation. Our method of applying modification rules to 
irrep and multiplicity labels is different. 

In our present considerations we have not exploited two 
important symmetries: the Schur-Weyl duality which con
nects the unitary group with the symmetric group, and the 
relationship between Un and SUn which is generated by the 
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equivalence of the one-dimensional irreps ofU n in SUn. The 
Schur-Weyl duality provides many rank-independent rela
tions between 6j symbols and similarly 3jm symbols to with
in phases and dimension factors. These symmetries, and the 
formulas that follow from them, have beeen studied by 
Jucys,31,32 Vanagas,33 Kramer and Seligman,34,35 and more 
recently Sullivan36 and Chen.37 See also Ref. 38. Sullivan in 
particular has discussed the consistency of phase choices 
with respect to the Schur-Weyl duality and SUn. The iso
morphism between the direct product groups Cn xU n and 
U 1 X SUn (where Cn is the n-fold cyclic group) provides a 
further symmetry between associated irreps ofU n , although 
a rank-dependent one. Bickerstaff39 discusses this relation
ship especially in connection with the reality criterion ofU n 

and SUn to 6j and 3jm symbols. Since Cn and U 1 are Abelian 
groups it seems possible to choose phases such that numeri
cal values of the Un 6j and 3jm symbols are simultaneously 
the same as the corresponding SUn symbol. Both the "Un -
SUn simultaneity" and the Schur-W eyl duality are attrac
tive symmetries to include since they give great simplifica
tions and ease in calculations of the unitary group 6j and 3jm 
symbols. However, a simple structure for the matrices that 
express the Un -SUn simultaneity and the Schur-W eyl dual
ity may not be compatible with (i) the already-existing 
choices of permutation matrix and A matrix expressing the 
column interchange and complex conjugation symmetries of 
6j and 3jm symbols, (ii) the new transpose conjugate and 
m - n transposition symmetries discussed earlier, and (iii) 
the special choice of 6j invariance under column interchange 
made in our calculation. Indeed the imposition of Un -SUn 
simultaneity can lead to awkward resolutions of product 
multiplicity if the separation choice is assumed rank-inde
pendent. 
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This paper describes a general group theoretical analysis of the temperature-Hartree-Fock
Bogoliubov (HFB) equation and its solution. The action of the symmetry group Go of the system 
on the HFB Hamiltonian, the HFB density matrix, and the HFB Green function are defined. It is 
shown that the HFB equation and its solution are classified by a subgroup G of Go, which is the 
invariance group of the HFB Hamiltonian, the HFB density matrix, and the HFB Green function 
corresponding to the solution. General expression of the instability of a solution and its 
decomposition into R-rep (single-valued irreducible representation over the real number field) 
components of the invariance group of the solution are obtained. The self-consistent field (SCF) 
condition is decomposed into R-rep components of Go. 

I. INTRODUCTION 

Recently a number of new states of solids with multiple
order parameters have been suggested. These states are the 
coexisting states of a charge density wave or a magnetism 
with the superconductivity.' Many of them have been dis
cussed by the temperature-Hartree-Fock-Bogoliubov 
(HFB) equation2 of several types. In spite of many works on 
particular types of the HFB equation, there has been no com
plete general theory on the classification and the intercon
nection of the HFB solution without reference to the struc
ture of the system. Such a general theory is very much 
needed for finding systematically the possible phases and 
phase transitions. 

where the sums run through a complete set of single particle 
states (N) and J.L is the chemical potential. We take the HFB 
Hamiltonian as follows: 

In Fukutome3 and our previous papers,4 a theory for 
classification, characterization of the unrestricted Hartree
Fock (UHF) solution, and a group theoretical bifurcation 
theory of the UHF equation has been developed. 

In this paper we show that the above group theoretical 
analysis for the UHF equation can be extended to the HFB 
equation. Here we give the general group theoretical analysis 
of the HFB equation. The special cases of the system with the 
symmetry of the lattice group (electrons in solid) or Euclid
ean group (Fermion gas) will be studied in subsequent pa
pers.s In Sec. II we give a short review of the HFB equation. 
In Sec. III we describe the group action on the HFB Hamil
tonian, the HFB density matrix, and the HFB Green func
tion. In Sec. IV we give the group theoretical analysis of the 
self-consistent field (SCF) condition. In Sec. V we give the 
group theoretical classification of the HFB equation and its 
solution. In Sec. VI we give the general expression of the 
instability of a HFB solution and the decomposition of the 
instability into R-irreducible components. 

II. A SHORT REVIEW OF THE HFB EQUATION 

We consider a system offermions with a Hamiltonian 
N 

K= L (Tij -J.L8ij)at aj 
;j=1 

N 

H(Z) = L {(xij -J.L8ij)at aj 

where 

;j= 1 

+ !yijat a/ + !{Y+)ija;aj J 

liN 
=-(A +ZA)+- LXii' 

2 2 ;=1 

A + = (at , ... ,aJ, al, .. ·,aN ), 

Xij=xij-J.L8ij' x+=x, y'= -Y, 

Z=( X, 
-y*, Y *), -x 

(2.2) 

(2.3) 

andx+ denotes the Hermite conjugate ofx andy' denotes the 
transposed matrix ofy. The HFB free energy F (Z ) is given by 

F(Z) = (K - H(Z)z - (11,8) log Q(Z), (2.4) 

where 

Q(Z) = Tr[e-.BH(Zl], 

( ... )z = Tr[e-.BH(Zl ..• /Q(Z)], 

(2.5) 

(2.6) 

and,8 = (lIkT). We note the second term p:xu in (2.2) does 
not contribute to the HFB free energy F(Z). Then in the 
following we can omit this term. 

The HFB density matrixR (Z ) corresponding toH (Z) is 
given by 

R (Z) = (AA +)z = (.!A. * 1 ~p*)' (2.7) 

where 

p(Z)ij = (a/a;)z, A. (Z)ij = (aja;)z, 

and they satisfy 

p + = p, A.' = - A.. 
R (Z) is expressed explicitly by Z as 

R (Z) = (1 + e.BZ)-I. 

(2.8) 

(2.9) 

(2.10) 
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Thus we can consider R an independent variable in
steadofZ.IntermsofR theHFBfreeenergyF(R ) is given by 

F(R)= f Tijpji +~ L [inlV~m]pjiPmll 
ij= I 2 ij 

m,Il 

m,n 

+! (lI,B)tr[R In R + (1 - R )In(l - R I], 
(2.11) 

where 

[inlV~m] = (inlV~m) - (inlVlmj) (2.12) 

and tr denotes the trace of the matrix. Here Z (or R ) which 
minimizes (2.4) [or (2.11)] is the HFB solution. 

The first-order variation of F (R ) by R is 

~F= !tr[~R [f' + (lI,B)ln{R (1 - R )-I)], (2.13) 

where 

- ( € 
€= -..d* ..d *), 

-€ 

€ij = Tij -I"~ij + L[inlV~m]Pmn' 
mn 

..din = L (inl V~m)Ajm' 
jm 

Thus we have the HFB equation 

R = (1 + efii)-I. 

From (2.16) and (2.10) we have 

xij = Tij -I"~ij + L [inlV~m]Pmn' 
mn 

Yin = L (jinlV~m)Ajm' 
jm 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

which are just the SCF conditions. Here R can be obtained 
from (2.10) by diagonalizing Z by Bogoliubov transforma
tion U as follows. Now Z of the type (2.3) can be diagonalized 
by an unitary matrix U, 

(2.18) 

or 

(2.19) 

where 

By this transformation R becomes 

'il 

where 

/; = (1 + ~1-1. 
Then R is obtained by 

R = U(I 0 )u+ 
\0 1-1 

=(A B*)(I 0 )(A+ B+) 
\.B A * \0 1 - I \.B T A 

(2.23) 

(2.24) 

(2.25) 

= (AlA + + B *( 1 - I)B t, AfB + + B *( 1 - I)A. ). 
\BIA + + A *( 1 - I)B t, BfB + + A *( 1 - I)A. t 

(2.26) 

Usually the HFB equations (2.10) and (2.17) are solved by an 
iterative procedure as follows. Begin with an educated guess 
for the HFB Hamiltonian z = (x,y). Then diagonalize Z by 
U. Then we obtain R = (p,A. ) by (2.26). Inserting this (p,A.) 
into (2.17) we obtain a new set of (x,y)'s. This process is re
peated until the same densities are obtained on successive 
iterations. 

As in solid state physics, the Green function is used 
frequently, now we give the HFB equation in terms of the 
Green function. Define the finite temperature Heisenberg 
operator by6 

A + (,po) - _H(Z)Tllia+e-H(Z)Tlli H(Z),i' -e- i , 

A (,po) - _H(Z)Tllia e-H(Z)Tlli H(Z),i' -e- i . 

(2.27) 

The single particle temperature Green functions are defined 
by 

Gff(Z)(7'- 7") = - (TAH(z).i(7')A. ii(z)j(7")z, 

Fff(Z)(7' - 7") = - (TAH(z),i(7')A.H(Z))r))z, 

Fff(Z)(7' - 7") = - (TA ii(Z),i(7')A. ii(z)j(r)}z, 

Gff(Z)(7' - 7") = - (TA ii(Z),i(7')A.H(Z)j(7")z' 

(2.28) 

In terms of the matrix of the Green function, the HFB Green 
U= (A B*) 

\.B A*' 
(2.20) function ~ is defined by 

A tB + B tA = A * B + + B * A t = 0, 

and 

1515 J. Math. Phys., Vol. 26, No.7, July 1985 

(2.21) ~H(Z)( _ ')= _ 7'-7', 
(
GH(Z)( ') 

7' 7' FH(Z)(7'_7"), 

(2.22) where GH(Z), etc., are the matrices of the Green function 
whose ijth elements are given by (2.28). The matrix Green 
functions in (2.29) satisfy the following relations: 
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{GH(Z)(1" - 1"') J + = GH(Z)(1" - 1"'), 

{FH(Z)(1" - 1"')j' = - FH(Z)(1"' - 1"), 

GH(Z)(1" - 1"') = - {GH(Z)(1"' - 1") J *, 

FH(Z)(1"_1"') = - {FH(Z)(1"' -1")J*. 

The Fourier transforms of [§ are defined by 

H(Z) _ n' n 
(

GH(Z)(W) FH(Z)(W)) 

[§ (wn ) - FH(Z)(w
n

), GH(Z)(w
n

) 

= I: d1"e;"'nT [§H(Z)(1"), 

where 

Wn = (2n + 1)'IT/13ft, 

and the GH(Z)(wn), etc., satisfy the following relations: 

{GH(Z)(wn) J + = GH(Z)( - wn), 

{FH(Z)(wn)J' = - FH(Z)( -wn), 

GH(Z)(Wn) = - {GHIZ)(wn)J*, 

FH(Z)(wn) = - {FH(Z)(wn)J*. 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

The HFB equation in terms of the Green function is written 
by 

:1" [§H(Z)(1") = - ft(~ ~)c5(1") - E [§H(Z)(1"). (2.34) 

In terms of the Fourier transform, 

:J (2.35) 

Eij and ':sjm in E can be written in terms of Green functions 
1 ~ .. HIZ) 

Eij = Tij - f-lc5ij + 7.i -7' tr(P/G (wn )) 

(2.36) 

':sjm = ~ ~ tr(NmFH(Z)(wn)), 

where rij and Nm are matrices such that 

(2.37) 

III. THE SYMMETRY GROUP ACTION ON THE HFB 
HAMILTONIAN, THE HFB DENSITY MATRIX, AND THE 
HFB GREEN FUNCTION 

Let g be an unitary or anti unitary canonical transfor
mation. For a complex number f, 

g(fa/)g-l =/(.) Ia,.+gi'i' 
i' 

(3.1) 

g(fai)g-I =/(.) Ia;.g~i' 
.. 

where (*) denotes the complex conjugate in the case of an-
tiunitary g and {g,-; J = g is a unitary matrix corresponding 
to g. We use the same notation g for g or g in the following. 

The symmetry group Go of the system is defined by 
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Go = {glgKg- I =KJ. (3.2) 

Then g E Go means that 

and (3.3) 

= (ijlVlkl). 

Here we give two examples of the symmetry group. 

Example 1: Electron gas or liquid 3He in n-dimensional 
space. In this case 

Go =EnXS X<P + t {EnXS X<P J = (EnXS)XM, 
(3.4) 

where En is the Euclidean group in n-dimensional space, Sis 
the group of the spin rotation,3,4 t is the time reversal, <P is the 
group of phase transformations such as, for rP E <P, 

(3.5) 

and 

M= <P+ t<P. (3.6) 

Example 2: Electron in solid with a lattice group. In this 
case 

Go = P(al, a2, a3)XS XM, (3.7) 
where P(al' a2, a3) is the triclinic space group with the basis 
vectors ai' a2, and a3. 

In the case of the molecular system with a spatial point 
symmetry we have considered the UHF equation in the pre
vious paper.4 In subsequent papers5 we will study in detail 
the case of the above examples. 

The Go action on the HFB Hamiltonian H (Z ) is defined 
by 

g.H(Z) gH(Z)g-1 =H(Zg), for gE Go, (3.8) 

where 

( 
Xg 

Z-
g - -Y; (3.9) 

_ (g 0) 
g= 0 g*' (3.10) 

Xg =gx(O)gt, Yg =gy!0)g'. (3.11) 

The Go action on the HFB density matrix R (Z) is de
fined by 

g·R (Z)==(AA +)z = ( Pg 
g -A; 

Then 

Pg = g p(O)g+, Ag = g A (O)g'. (3.13) 

The Go action on the Green function is defined by 

g.Gff IZ )(1" - 1"') = - (T AH(zg).;(1")AH(Zg)j(1"')}zg 

and so on. Then we have 

g.[§ H(Z)(1") = g [§ (1")g\ 

that is, 
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g.FH(Z)(r) = gFH(Z)(r)gt, 

(3.16) 
g.GH(Z)(r) = g*GH(Z)(rJg1. 

The Go action on the Fourier transform of the Green func
tion is given by 

• ~ H(Z) liJ _ g liJ" R5 , or umtary g, 
{

- ~H(Z)( liYt fi . 

g ( II) - -a?H(Z)*( _ liYt fi gJ liJn R5' or antiunitary g. 
(3.17) 

IV. DECOMPOSITION OF THE SCF CONDITION INTO 
IRREDUCIBLE COMPONENTS 

The set of N XN Hermitian matrices x(or p) is a 
(r 1 = N 2)-dimensional vector space Wx (or Wp) over the real 
number field R with the bases, Eaa, Eap + EfJa, and i(Eap 
- EfJa), where 1 <;.a,{J<;.NandEaP isanN X Nmatrix whose 

a{3 th entry is 1 and the others are zero. The set of N X N 
antisymmetric matrices y (or A) is a (r2 = N 2 - N)-di
mensional vector space Wy (or W,t) over R with the bases 
Eap - EfJa and i (Eap - EPa)' From (3.11) Wx and Wy be
come representation spaces of Go over R. We decompose Wx 
and Wy into R-irreducible (R-rep) spaces of Go, then for 
x E Wx andy E Wy we have 

(4.1) by "1' 

y= r r r y;J~" 
Y p= ,,= 1 

where x;, and y;, are real numbers, r denotes an irreducible 
representation DY of Go over R, ay and by are the multiplic
ity of DY in Wx and Wy, ny is the dime.nsion of DY, e;, 
(t = 1, ... ,ny) form the pth basis of DY in Wx and I;, 
(t = 1, ... ,ny ) form thepth basis of DY in Wy: 

yi.1 + - "D Y (g) Y gep , g - ~ ,« epK ' 

K' 

gfyi.1 t _ "D Y (glfY P,g - ~ K' pK' 
K 

(4.2) 

In the same way we can decompose W and W,t corre
sponding to the HFB density matrix R in~o R-irreducible 
vector spaces; for p E Wp and A E W,t we have 

ar ny 

p= r r r p;,e;" 
Y p= ,,=1 

ar "1' 
(4.3) 

A=r r r A;,I;" 
Y p=1 ,=1 

where p;, and A ;, are real numbers. 
Now we consider group theoretical properties of the 

SCF condition (2.17). 
For this purpose we have a proposition. 

Proposition 4.1: Let p be a Hermitian matrix and A be an 
antisymmetric matrix. Define matrices xfp] and Y[A ] by 

{x[p]}ij=r [injVVm]Pmn' 
mn 

(4.4) 

mn 
Then for g E Go 
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(4.5) 
y[-gA(.)gt 1 =g{Y[A ]}(.)gt. 

The proof of the Proposition is given in the Appendix. 
Now we consider e;, and I;, as elements of Wp and 

W,t. Define E;, and.:1;, by 

E;, ==x [ e;, ] , .:1;, y [I;, ] . (4.6) 

Then we have a theorem. 

Theorem4.2:E;, (t = 1, ... ,n)and.:1 Y, form the bases of 
DY' W p 

In x and Wy: 

Proololthe Theorem: From (4.2), (4.5), and (4.6), 

gEt~lgt = x [get~lgt] = x[ ~ D ~,(g)e;K ] 

= rD~,(g)x[e;K] = rD~,(g)E;K' 
K K 

In the same way we have (4.7) for.:1 ;, . 

(4.7) 

Thus in the SCF condition the decomposition of W,t 
and Wp is propagated into the decomposition of Wx and Wy • 

Then E;, and.:1 ;, can be written as follows: 

E;, = rXY(p't'lP tIe;. ,', 
p',' 

(4.8) 

.:1 ;, = r YY(p't'lP tv;,. ,', 
p',' 

where X Y (p' t 'IP t) and Y Y (P' t 'IP t) are real numbers. 

V. GROUP THEORETICAL CLASSIFICATION OF THE 
HFB EQUATION AND SOLUTION 

The HFB free energy F(R ) = Ffp,). ) contains external 
parameters, temperature T, pressure p, and others. We write 
these parameters by II for brevity's sake and then the HFB 
free energy is written as F(ll,p, A). From the Go invariance 
(3.2) of the Hamiltonian we can easily obtain the Go invar
iance of the HFB free energy F (ll,p,). ), that is, 

F(ll,pg,Ag)=F(ll,p,A), for gEGo. (5.1) 

Thus the problem is to determine the extreme point of the Go 
invariant function F(ll,p, A) of (p, A) with parameters ll. 
Mathematically this is just the same problem as the UHF 
theory (generally it is called1 the Landau problem). By simi
lar consideration with the previous paper,3.4 we can develop 
the group theoretical classification of the HFB equation and 
solution and the group theoretical bifurcation theory of the 
HFB equation. Here we give only results on the group theo
retical analysis on the HFB equation. Their derivations are 
similar with those of the previous paper and we do not give 
them here. 

Definition 5.1: Let R be a HFB solution. The invariance 
group G (R ) C Go is defined by 
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G(R) = {gE Golg·R = R}. (5.2) 

If R is a HFB solution, for any g EGo, g·R is also a 
solution with the same HFB free energy. The conjugate sub
group gG (R )g-I is the invariance group of g·R, that is, 

G(g·R) =g·G(R ).g-I. (5.3) 

As the relation of the conjugation of subgroups is an equiv
alence relation (we denote it by - ), we can decompose the set 
S (Go) of all the subgroups of Go into equivalence classes ac
cording to this equivalence relation, and we obtain a quotient 
setQ(Go) = S(Go)/ -. The quotient set Q (Go)representsphy
sically distinct types of HFB solutions. Thus we can classify 
the HFB solutions by Q (Go). 

From the SCF condition (2.17) and Proposition 4.1 it 
follows for Z = (x,y) corresponding to a solution R = (p,). ), 

Xg =X, Yg =y, for gE G(R), (5.4) 

or 

g·Z=z. (5.5) 

From the definition of Go action on the Green function we 
have for g E G (R ) 

g.f1 (7) = f1 (7), g.f1 (mn ) = f1(m n ). (5.6) 

So far we classified the HFB solution. Now we consider 
the classification of the HFB equation. Let G C Go be a sub
group of Go and Wp(G) and w'dG) be vector subspaces of 
Wp and W" such that 

(5.7) 
W,,(G)= {AE W"IAg =,1" forgEG}. 

In the same way we define Wx (G ) and W y (G). Thus we de
fine the G-HFB equation with an invariance group GC Go as 
the variational problem of the HFB free energy F (II,p, A ) in 
the restricted subspace Wp(G) Ell W,,(G). Solving the G
HFB equation in the iterative procedure is begun with a 
guessedRo = (Po, ,1,0) in Wp(G) Ell W,,(G). From (4.5) weob
tain Zo = (xo,Yo) in Wx (G) Ell Wy (G ). From (2.10) we obtain 
the next R I = (PI' Ad, which is in Wp (G) Ell W" (G). 

Thus in the process of iteration, the space of the vari
ation is conserved. Then we can classify the HFB equation 
by Q(Go). 

VI. GROUP THEORETICAL CLASSIFICATION OF THE 
INSTABILITY OF THE HFB SOLUTION 

Since the HFB free energy F (II,p, A ) is Go invariant, Wp 
and W" are the representation spaces of Go, we can apply 
Sattinger's8 group theoretical bifurcation theory to the HFB 
equation as in the previous paper.4

(C),4(d) Now we give some 
notation and definition. We shall represent the phrase "irre
ducible single valued representation over R " by the abbre
viation "R -rep" and we denote an R -rep of a group G C Go by 
G. We denote the representation space of Gin Wp Ell W" by 
V (G ). Let G ' be a subgroupyof G such that Ker( G) kG' C G 
and for some R '( :;;f0) E V(G) 

g·R'=R', forallgEG'. (6.1) 

We call such G' the invariance group (IG) of G and R' the 
in variance vector (IV) of G '. Then we get the following Pro-
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position by the similar argument with the paper.4
(C) 

Proposition 6.1: The instability of a HFB solution R is 
characterized by anR-rep G (R )oftheinvariancegroupG (R ) 
of R. The invariance group of the solution bifurcatin$ from 
the instability is the one of the invariance groups of G (R ). 

There exists a criterion [Criterion 6.1 of Ref. 4(c)] to 
determine whether a subgroup G ' C G can be an invariance 

y y 

group of G or not, but the IG of G cannot be obtained in 
general form. This problem will be discussed individually in 
special cases in the subsequent paper.5 

Here we shall give the general expression of the instabil
ity of a HFB solution and its decomposition into R-irreduci
ble components. The instability of a HFB solution R = (p, A ) 
is given by the second-order variation 8 2 F (II,p, A ). Using the 
same method with Mermin's one,9 the second-order vari
ation becomes 

48 2F = tr{8R8E} + (l/,8)tr[8R8In{R /(1 - R)}] 
N 

= L {8pkdll'lVlk k']8pk'I' + c.c. 
k,I,k'l' 

-8Akl(!klVlk'!')*8Ar'l' -c.c.} 

2N E. - E. 
+ L (8R ')jj J I (8R ')y, (6.2) 

jj~ I Fj-Fj 
where {Fj } and {Ej } are elements of the diagonal matrices 

C F] U+RU= 0 
FN 

FN+ I 

ifl 0 

-· . 
IN 

= 
1-11 . . . 

0 I-IN 

(6.3) 
EI 0 

. · . 
U+'i:U= 

EN 

EN+ I . . . 
0 E2N 

EI 0 
. . · 

EN 

-EI . . . 
0 -EN 

8R' = U+8RU, (6.4) 

( 8p 
8R = -8,1,* 

8,1, ) 
-8p* ' 

(6.5) 

U=~ B*) 
A * ' (6.6) 
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and U diagonalizes R. Expressing 6R ' in (6.2) by (6p,6.-t ) we 
get 

4c5 2p = 'AtlJ A, (6.7) 
where lJ and A are the matrices represented by 

Qpp Qpp• Qp,t Qp,t. 

Q:p Q;,t. Q:,t 

Qp~. Qu Qu • 
lJ= (6.8) 

Qp1 Q1.t. QL 

(6.9) 

(6.10) 

and Qpp' etc., are the matrices whose (kl - k '1 'lth elements 
are given as follows: 

N E-E 
Qpp(kl,k'l') = [ll'lVlkk'] + 2: _j __ i {AjkAJjAit"-A/:; +BJkB~B:k·Brjl 

ij= I/;-ij 

+ ~ Ei +Ej { 
~ -~~- A jk B ~B Jk· A/:; + B JkAJjA J.B r:; J, 

ij= 1 1 - /; - ij 

Qpp.(kl,k '1') = -.f E
j 

_- Ei {A jk AJjB it-Bn + B JkB 'JiA :k·A r'j I 
,j=l/; ij 

- ~ Ei +Ej { 
~ A jk B'JiA :k· B /:; + BJkAJjBit·A r'j J, 
ij=ll-/;-ij 

N E. _ E. N E. + E. 
Qp,t(kl,k'!') =.l: : _; {A jk AliA J.BI'j +BJkB'JiB:k·A r j J +.l: 1 ~ I" .:.. I" {A jk B'JiB:k·BI:; + BjkAJjA ik· A r j }, 

'J=lJi Jj 'J=l Ji Jj 
Qp,t.(kl,k'I') = - Qp,t (!k,1 'k ')., (6.11) 

Qu(kl,k'l') =.f ; = :i {A l BJjA it-Bn +BJkA 'liB :k·A r:;} 
'J=lJi Jj 

They satisfy the following relations: 

Q;'" = Qpp' Qpp(lk,I'k') = Qpp(kl,k '1')·, 

Q~ = Qu, Q,t,t(!k,I'k') = Qu(kl,k'!'), (6.12) 

Q~. = Q,t,t.' Q;* = Qpp.' 

Now let us decompose 4c5 2 Pinto R -irreducible compo
nents of the group G (R ). Then, 6p and 6.-t can be decomposed 
into R -irreducible components of G (R ) as follows: 

6p = 2:2:2: 6p1'",art:na, 
p. m a 

(6.13) 

p. n a 

where 6p1'",a and 6pp-ntJ are real numbers, It denotes an R -rep of 
G (R ), and rt:na andf~ form the mth and nth bases of the R
repDP. ofG(R lin Wp and W,t. Inserting (6. 13) into (6.7) and 
using the orthogonality conditions of the R -rep G (R ), we get 

(6.14) 

where 
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2 p. _ -t -4c5 P - Ap.lJp.Ap.' 

lJp. = C~;;)' ~~). 
'A = (8p1'",a) p. ~.-t p. , 

U. n{J 

and the matrices Q~p' etc., are given by 

Q~p(ma,m'a') = (rt:na IQpp Irt:n'a') + C.c. 

+ (rt:na IQ .Irt:n~a·) + C.c., pp 

Q~,t (ma,np) = (rt:na I Qp,t lf~) + C.c. 

(6.15) 

(6.16) 

(6.17) 

+ (rt:na IQp,t.lf~) + C.c., (6.18) 

Q~,t (np,n'B') = (f~p IQu lf~·p·) + C.c. 
+ (fnP IQ,t,t* If:·p·) + C.c., 

and satisfy the relations 

(Q~p)t = Q~p, (Q~)t = Q~,t. (6.19) 

As in the case of the paper,4{c) if lY" is absolutely irredu
cible, the Q~p' etc., become diagonal with respect to a, p, 
etc., that is, 
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Q~p(ma,m'a') = 8aa,Q~p(ma,m'a) 
(independent of a), 

Q~(ma,np) = 8apQ~,dma,na) 

(independent of a), 

Q'M.(np,n'p') = 8pp,Q~).(np,np) 
(independent of p ). 

(6.20) 

Thus we have obtained the R-irreducible instability matrix 
nil characterized by an R-rep IY of G (R). 

ACKNOWLEDGMENTS 

The author would like to express his sincere thanks to 
Professor H. Fukutome and Dr. Machida for helpful advice 
and discussion. 

APPENDIX: PROOF OF PROPOSITION 4.1 

In(3.3), replacing (i,j',k ',k,l',l )by (n',n" ,j',j,m" ,m') we 
get 

= (in'IVUm'). (AI) 

Multiplyinggn;;, gm'm on both sides and summing by n' m', we 
get 

~ (., IVI" )(.) + ~ + (. 'IVI' ') ~gu' In J m gfj = ~gnn' In Jm gm'm' 
i'j' n'm' 

(A2) 
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= L [in' IV Um'] (gp(·)g+)m'n' 
m'n' 

= ~ {].;,gn;;' [in'IVUm']gm'm }p~~ 

= L {Du' [tnl VIj'm](·)gA- }p~~ 
mn i'j' 

[from (A2)] 

= L {gu, L [i'nlVli'm](·p~~glt} 
;'1 mn 

= (gx[p](·)g+)ij' 

This completes the proof of the first equation of (4.5). 
The second equation of (4.5) is proved in a similar manner. 
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Group theoretical analysis of the Hartree-Fock-Bogoliubov equation. II. 
The case of the electronic system with triclinic lattice symmetry 
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This paper describes a group theoretical classification of the temperature-Hartree-Fock
Bogoliubov (HFB) equation in a crystalline solid system and the electronic state of the system. It is 
shown that the state with a single-order parameter (charge density wave, spin density wave, etc.) is 
classified into 47 classes and the BCS state coexistent with other nonsuperconducting orders, such 
as magnetic superconductors, is classified into 26 classes. The standard HFB Hamiltonian for 
each class is obtained. It is found that in each of above coexistence states (except 
BCS + ferromagnetism) an abnormal Cooper pair occurs. 

I. INTRODUCTION 

The electron system in a crystalline solid can be in many 
different states such as normal paramagnetic (NP), ferro
magnetic (FM), spin density wave (SDW), charge density 
wave (CDW), BCS superconducting states. Each of these 
states can be described as the zeroth approximation by a 
symmetry-broken solution of a certain type of the tempera
ture-Hartree-Fock-Bogoliubov (HFB) equation. 

Recently new states with multiple-order parameters 
such as BCS states coexistent with magnetism have been 
suggested. I Many of these states have been studied individu
ally by the HFB equation.2

-6 In the future other new states 
will probably be found. 

Therefore, it is interesting and important to solve the 
following general problems. 

(a) What kinds of phases (broken-symmetry HFB solu
tions) with single- or multiple-order parameters are group 
theoretically possible? 

(b) What kinds of instabilities (the second-order phase 
transition) are group theoretically possible? 

In Fukutome's 7 and our previous8 papers, these prob
lems have been solved for the molecular system (withoue or 
with8 a spatial point symmetry) in the frame of the zero
temperature Hartree-Fock (HF) equation. 

In order to solve these problems in the case at finite 
temperature including superconductivity, in a previous pa
per9 (referred to as I) we have developed the general group 
theoretical analysis of the HFB equation. In the paper we 
have shown that the group theoretical analysis of the HF 
equation can be generalized to the HFB equation. 

In this paper we will apply the general theory to the 
electron system in crystal with triclinic lattice symmetry. By 
obtaining all R-reps (irreducible single-valued representa
tion over the real number field) of the symmetry group Go of 
the system and the invariance group Gs of the ordinary BCS 
superconducting state, we have 24 types of instability for NP 
and 17 types for the ordinary BCS state. 

For each R -rep of Go and Gs we have obtained all invar
iance groups and their corresponding HFB Hamiltonians. 
Thus we have obtained 47 classes of states with a single
order parameter and 26 classes of the BCS states coexistent 
with other nonsuperconducting orders. 

In Sec. II we describe the symmetry group Go of the 

system and its elements in detail. In Sec. III the single-valued 
irreducible representations of Go over the real number field 
R (R-reps) are obtained. The bases of R-reps of Go in the 
HFB Hamiltonian space are obtained. In Sec. IV we give the 
classification of the states with single-order parameters and 
the standard HFB Hamiltonian and the self-consistent con
dition for each class. In Sec. V the BCS states coexistent with 
other nonsuperconducting orders are discussed and classi
fied. The standard HFB Hamiltonian for each class is ob
tained. 

The notations used in this paper are the same as those 
used in I and our previous papers.7

•
8 

II. THE SYMMETRY GROUP OF THE SYSTEM 

We consider the electron system of the crystal with a 
triclinic lattice symmetry. For simplicity we take a single 
band model which has the following Hamiltonian: 

JY = L E(k )a~ aks 
ks 

+ .!.. '} V(k,k',q)a:+qsa;:-'_qs.ak's'aks' (2.1) 
2 q;tl. 

£,5' 

where (k,k ') and (s,s') denote the momentum and the spin 
states (t,!), respectively, and 

V(k,k ',q) = «(k + q)s,(k' - q)s'l Vlks, k's') (2.2) 

(independent of sand s') 

in the notation of I. The Hamiltonian JY has the following 
symmetry group Go: 

Go = {L (81,82,83) + IL (a l ,82,83)} xS X {CP + tCP I 
(2.3) 

where L (81,82,83) is the three-dimensional translational 
group with the basis vectors 8 1, a2, and a3, I is the inversion, S 
is the group of the spin rotation, cP is the group of phase 
transformation, t is the time reversal, P(81,82,83) 

= L (81,82,83) + IL (al ,82,83), and M = cP + tCP. 
L (81,82,83), I, S, and cP act on (a~ ,aks ) as follows: 

(2.4) 

(2.5) 
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u(e,O) -a~ = ~ {u(e,O) L·sa~., 
s' 

(2.6) 
u(e,O)-aks = ~ {u(e,O)}'saks" 

s' 

(2.7) 

where n is an element of L (a1,a2,a3); n = n1a1 + n2~ + n3a3, 
u(e,O) E S is a spin rotation by ° radian around the e axis, and 
~ E cP is a phase charge by 4> (0<4><217'). The time reversal t 
acts on (a~ ,aks) as follows: 

t· (fa:l ) = - f*a::::kl' t· (lakl ) = - f*a -kl' 

t· (fa;/;) =f*a _ kl' t· (lakl ) =f*a -k I' 

wherefis a complex number. Note that t~ #~t. 

(2.8) 

From the commutation relations of (a~ ,aks)' Hermiti
city of K, and invariance of K for t and I, we have condi
tions on V(k,k',q): 

V(k,k',q) = V( -k, -k', -q) = V(k+q,k' -q, -q) 

= V(k ',k, - q) = V*(k,k ',q). (2.9) 

Note that V(k,k ',q) is real. 
The following group theoretical analysis works almost 

in the same way even in the case of multiple bands or the 
other space group, although with some cumbersomeness. 

III. IRREDUCIBLE SINGLE-VALUED REPRESENTATION 
OF THE SYMMETRY GROUP OVER THE REAL NUMBER 
FIELD 

As the R-rep of Go characterizes8
•
9 the instability of the 

normal paramagnetic state (NP) and is needed in the follow
ing section, in this section we give all R-reps of Go in the 
representation space WH = {a;:;ak's',a~ak+;s',akSak's' 1: 
where { A.B, ... }: denotes a vector space spanned over the 
complex number by A, B, etc., such that its elements are 
Hermite. 

TABLE I. Bases of R -reps of Go. 

Basis of Go 

Here we give some notations and definitions; G: a 
v v v v 

group,G:anR-repofG,[G]:anin.,yariancegroupofG, V[G]: 
the invariance vector space of [G] in WHO The invariance 

v-
group of G is the maximal subgroup G' k G such that for 
some element x( #0) in the representation space, 

g.x=x, forgEG'. (3.1) 
v-

An R-rep Go of Go is represented by the Kronecker pro-
v v v v 

duct of the R -reps of P (al,~,a3)' S, and M; Go = P ® S ® M. 
For P(al ,a2,a3) there are the following five types of R-reps: 
v "" v po ±, pQ ±, and pq, where 

and 

po + (n) = pO+(In) = 1, (3.2) 

pO-In) = 1, pO-lin) = - 1, (3.3) 

pQ±(n) = exp(IQn), pQ±(In) = ± exp(iQn), (3.4) 

P q(n) = ( c~(qn), 
- sm(qn), 

pq(In) = (c~s(qn), 
sm(qn), 

Sin(qn)) 
cos(qn) , 

Sin(qn)) 
- cos(qn) , 

(3.5) 

Q = Qlbl + Q2b2 + Q3b3 = !K#O (Qi = Oor ± !), 
bAI = 1,2,3) is the reciprocal basis vector, 

K is a reciprocal lattice point, and q( #O,Q) is a vector in the 
first Brillouin zone. 

TheR-reps of Sin WH are SO andS l
: 

SO(u(e,O)) = 1 (3.6) 

and 

S l(u(e,O)) = R (u(e,O )), (3.7) 

where R (u(e,O)) is a 3 X 3 orthogonal matrix satisfying 

U(TiU+ = ~ Rij(Tj' l,j = 1,2,3, (3.8) 
j 

where (Ti(l = x, y,z) are the Pauli matrices. 

e",,,, ,x'''(k) = i(x+ (I Of,,)!2) '" (a+ a ± a+ a )(u.) b 
1,).1 ~ k+ps ks' -k-ps -ks' J S$ +H.C. 

p=O,Q 
p, = ± 1 

p,= ± 1 

q#O,Q 

P=O,Q 

q#O,Q 

'x=O,1. 
bj=O, 

j= 1,2,3, 

1522 

>9' 

eq,x'''(k) = jtx+ (lOf,,)!2) '" (a+ a + a + a )(u.) 
1.1.1 ~ k+qs ks' -k-qs -k5 1 sS 

,< +H.C. 

+H.C. 

e",± ,x,2(k) = ,1m - x +(l ± ')/2) '" (a+ a + ± a+ a + )(iu.u ) 
I.}.m ~ k+p' -ks -k-p' ks J 2>9' + H.C. 

m= 1,2 

eQ,x.2(k)=lx+m)"'(a+ a+ -a+ a+)(iu.u) 2.J.m ~ k+qs -ks' k-qs ks' J 2ss-

for x =0, 

for x = 1, 

>9' 
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The R-reps of Min WH are M ± I and M2 as follows: 
v _ v....., 

M ± I((J ) = 1, M ± l(t(J ) = ± 1, (3.9) 

- sin 2(J) 
cos 2(J , 

'" 2 - (COS 2(J, - sin 2(J ) 
M(~)= . 

'f' _ sin 2(J, - cos 2(J 

(3.10) 

Thus we have 5 X 2 X 3 = 30 types of R-reps of Go, 
v v v v 
G~,X,/L=PA®SX®M/L, (3.11) 

where...t is 0 ± , Q ± , and q, x = 0 or 1, p. = ± 1 and 2. 
Denoting the basis of 0 ~,x, /L by e!:i:: we have for g = pum 
(peP, u eS, m eM), 

g. e!:i:: = L PA(p),.../CS(ulnM(m)v'"e!::J~v" (3.12) 
/C',)',v' 

"'0 01 "'0 0 I In these 30-reps, the following 6-reps of Go -, , , Go +, ,- , 

G'" 0+,1, + I G
V 

0_,1, - I 0 0 -,0,2 and G 0+,1,2 are forbidden in W
H o '0 ,0' 0 

for Hermite or antisymmetric conditions. The basis of each 
R-rep is summarized in Table I. 

IV. CLASSIFICATION OF THE STATE WITH A SINGLE
ORDER PARAMETER AND THE STANDARD FORM OF 
THE HFB HAMILTONIAN FOR EACH CLASS 

v 
In the present section we give the invariance group [Go] 

v v 
of Go, the HFB Hamiltonian corresponding to [Go]. Also the 
self-consistent (SC) condition on the order parameter is ob
tained. The state corresponding to [00 ] has a single-order 

v 
parameter. We have obtained all the invariance groups [Go] 
in a manner similar to the previous papers and we will not 
describe the procedure to obtain them. 

For simplicity we consider only the cases of 0 ~,x, /L with 
...t = O± ' Q ± ' q, where Q = ~bl and q = (ml/nl)bl (ml,n l 
are mutually prime integers, m I <.n 1/2). 

For other...t, [0 ~,x, /L] has a similar characteristic to the 

above cases though with some cumbersome notation. Then 
we do not discuss the latter cases. 

We use the following definitions and notations: xo(k), 
yo(k), xl(k), x{(k), ydk), andy~ (k) are real numbers; z(k), 
zj(k), w(k), and wj(k) are complex numbers; 
L (al) = L (al,a2,a3), L (2al) = L (2al,a,a3), P (al) 

= P (al,a2,a3), and P (2ad = (1 + I)L (2ad; ( nat! is a trans-
lation by na l when n is an integer, zero translation when n is 
not an integer; A (ej) = {u(ej,O )10<.O<.41Tj; u2j(i = ~.f,z)isa 
spin rotation by 17' radian around the i axis; EfT = (0,17') C 4>; 
MfT = {EfT + tEfT}; CCW is the charge current wave; CDW 
is the charge density wave; BOW is the bond order wave; 
ASCW is the axial spin current wave7

; FM is ferromagne
tism; ASDW is the axial spin density wave7

; SBOW is the 
spin bond order wave; HSCW is the helical spin current 
wave; HSDW is the helical spin density wave; sse is the 
singlet superconducting state; and TSC is the triplet super-
conducting state. v 

In Table II we give [Go] and the corresponding HFB 
Hamiltonian. In the table the total HFB Hamiltonian for Gj 
(i#O) should be understood as 

H=Ho+Hj +H/(ifH/ #Hj ), (4.1) 

xl(k), xj(k), etc., are the order parameters. 
Now we consider the self-consisting (SC) condition on 

the order parameter. The SC condition is easily obtained by 
(2.15) and (4.8) of I. We introduce the following notation: 

Ow P(k,k') = 2V(k ',k' + p,p) - V(k + p,k ',k' - k), 

IWP(k,k') = - V(k+p,k',k'-k), (4.2) 

2WP(k,k') = V(k + p, - k,k' - k). 

Then we have the SC conditions. For Go, 

xo(k') = E(k') + L (a k+t ak t )OWO(k,k '). (4.3) 
k 

TABLE II. Invariance group and its HFB Hamiltonian of states with a single-order parameter. 

v v 

Go [Gol 

Gg •. o. + I Go=PXSXM 

normal paramagnetic state 

Gg_·o.- I GI = { 1 + tIlL (aJlStP 

CCW 

G~ .. O.+I G2 = P(2al)XS xM 

CDW 

G~L,O,+I G3 = (1 + ~ I)L (2aJlSM 

BOW 

G~+·O.-l G4 = (1 + t ~)P(2aJlStP 

CCW 

G~_·O,-I Gs = (1 + IiI)(1 + tI)L (2al )StP 

CCW 

G3,O.1 G6 = P(nla)XS XM 

CDW 

1523 J. Math. Phys., Vol. 26, No.7, July 1985 

HFB Hamiltonian 

Ho = L xo(k )(a/I ak 1 + ak"; akl ) 
k 

xo( - k) = xo(k ) 

HI = Lxdk)(a:,ak, +ak';akl ) 
k 

xd - k) = -xI(k) 

H2 = LXt(k )(a/+Q1akl + a/+ Qlakl) 
k 

x l ( - k) =xt(k) 

H3= LixI(k)(a/+Q1akl +a/+Q1akl ) 
k 

xI(-k)= -xdk) 

H4= Lixl(k)(a/+Q,ak' +a/+Q1akl ) 
k 

xt(-k)=xl(k) 

Hs = +xdk)(a/+Q,ak' +ak+Qlakl) 

xI(-k)= -xI(k) 
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TABLE II. (Continued). 

0 •. 0.-' 
o 

0 0 •• '.-, o 

GQ,I.+I 
o 

0""-' o 

G7 = (1 + (n,a,12)I)L (n,a,)SM n, = 4n + 2 

CDW 

CDW 

CCW 

GIO = (1 + tI)(1 + (n,a,/2)I)L (n,a,)S«P 

CCW n, =4n 

Gil = (1 + (n,a,/2)t)L (n,a,)S«P 

CCW 

G'2 = (I + [u2x )L (a.)A (e.)M 

ASCW 

GI3 = (I + u2y t )P(aM (ez)«P 

FM 

G'4 = (I + s.u2x )P(2aM (ez)M 

ASCW 

G'5 = (1 + a,I)(l + [u 2x )L (2aM (ez)M 

ASCW 

G'6 = (I + a,u2x )(1 + tU2y )P(2a.)A (ez)«P 

ASDW 

H7= I'Iix~(k)(ak~rakr +ak~,ak' 
j k 

Hg = II {Zj(k )(ak~rakl + a';;-,ak,) 
j k 

H9= I'Iix~(k)(ak~,akl +ak~,ak' 
j k 

+ a ~ kjl a _ k r + a ~ kj' a _ k') 

HIO= I'Ix~(k)(ak~,akr +ak~,ak' 
j k 

- a~kjfa ~kT - a~kj!a -ki) 

H II = I'Iz'(k)(ak~rakr +a';;-,ak, 
j k 

H'2 = I x,(k )(ak+, ak I - aki ak, ) 
k 

xII - k) = -x,(k) 

HI3= ~x.(k)(ak-+;akl -ak~ak') 

xII -k) =x.(k) 

H'4= Iix.(k)(at+Qlatr -at+Q,ak,) 
k 

xII - k) =x,(k) 

HI5= Ix,(k)(ak++Qrakr -ak++Q,ak,) 
k 

x,(-k)= -x,(k) 

H'6= Ix.(k)(ak\Qlakl -at+Q,ak,) 
k 

xII - k) =x,(k) 

GI7 = (I + [a.)(1 + [u2x )(1 + tU2y )L (2a,)A (ez)«P HI7 = I ix.(k )(at+ Qr akl - at+ Q,ak,) 
k 

SBOW xII - k) =x,(k) 

ASCW 

H,g= IHIix~(k)(ak~,akl -ak~,ak' 
j k 

+ a ~ kjf _ k f - a ~ kjL - kJ ) 

G'9=(I+[u2x )(I+ (n,a,12)u2x )L(n,a.)A(ez )M H'9= I"Ix{(k)(ak~akr -ak~ak' 
j k 

ASCW n,#4n 

G20 = (I + (n,a,12)u 2x )L (n,a,)A (ez)M 

ASCW 

G2, = (1 + [u2x )GTs(q)M 

HSCW 

H20 = II (Zj(k)(ak~,ak' -a';;-,ak,) 
j k 

- Z j(k )*(a ~ kJ' _ k I - a ~ k
j

, a _ k' ) 1 

H2, = Iix,(k)(at+qrak' +a~k_q,Q_kl) 
k 

G22 = (I + tU2y )(1 + (n,a,12)u2x )P(n,a,)A (ez)«P H22 = I"I x~ (k )(a';;-rak r - ak~' a" 
j , 

ASDW 

G23 = (1 + [u2x )(1 + tU2y )(1 + (n,a,12)!) 

XL (n,a,)A (ez)«P 

ASDW 

G24 = (I + tU2y)L (n,a,)A (ez)«P 

ASDW 

G25 = (I + [u2x )(l + tU2y )GTS (q)«P 

HSDW 

+ a~kjta_kf - a~kjL Q-kl) 

H 23 = I"I i.x~ (k )(ak~,akl - a,~,ak' 
j k 

- a ~ kjf a _ k f + a"!:. kjL a _ kL ) 

H24 = II Z j(k )(ak~r ak I - a';;-, a" 
j k 

+ Zi(k )*(a~ kjl a _ k r - a~ k
j

, a _ k,) 

H 25 = Ix,(k)(ak++qrak, +a~k_q,a_kl) 
k 
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TABLE II. (Continued). 

BCS 
r-.J 

G21 = (I + i l ('lT12))P(2a l )SM" 

SSC 
r-.J 

G28 = (I + i l 1)(1 + I ('lT/2))L (281)SM" 

SSC 

SSC 
__ r-.J 

G30 = (l + (n I 81/2)I)(1 + I· ('lT/2)) 

XL (n18)SM", n l ¥4n 

SSC 

SSC 

G32 = (I + t/)Gro(q)S 

SSC 

Triplet super conducting state TSC 
__ r-.J 

G34 = (l + IUlz)(l + tUz.,,)(1 + (n I 81/2)('lT/2)) 

XL (8 1)GSG 

TSC 
r-.J 

G35 = (I + i lu2x )(1 + tUZy)(l + i l('lT/2)) 

XP(2atJA (ez)E" 

TSC 
r-.J 

H26 = ~Yo(k)(a:,a~kl -a,;';a~k') 

Yo( - k) = Yolk ) 

H 21 = IY1(k)(a:+Q,a~k' -a:+Qla~k') 
k 

Yl( - k) =Yl(k) 

H 28 = IiYl(k)(ak++Q,a~kl -a:+Q,a~k') 
k 

Yl(k) = -Yl(k) 

H 29 = I") y{(k)(a:,a~k' -a';;-Ia~k' 
J "'( J 

+ a~ k1,a:; - a ~ kJ,at,) 

H31 = I"I [wJ(k)(ak~,a~kl -ak~la~k') 
J k 

+ wJ(k )*(a ~ kj' ak~ - a ~ kjl ak+,) 1 

H32 = ~Yl(k)(a:+q,a~k' - a:+qla~k') 

H33= ~Yl(k)(a:,a~k' +ak~a~k') 

Yl( -k)= -Yl(k) 

H34 = IY1(k)ak-+;a~k' 
k 

Yl( - k) = - Yl(k) 

H35 = IY1(k)(a:+Q,a~k' +a:+Qla~k') 
k 

Yl( - k) =Yl(k) 

G36 = (l + i l u2z)(1 + tU2y )(I + i l('lT/2))P(28tlGSG H36 = IY1(k)a:+ Q,a~k' 
k 

Yl( - k) =Yl(k) 
r-.J 

G31 = (I + Iil)(1 + Iu2x )(1 + tU2y )(1 + i l('lT/2)) H31 = ~ iYl(k)(a:+Q,a~kl + a:+Qla~k') 
xL (281lA (ez)E" Yl( - k) = - Yl(k) 

TSC 
r-.J 

G38 = (I + Iil)(1 + iluzz)(1 + tU2y )(I + i l('lT12)) H38 = ~ iYl(k )a:+ Q,a ~k' 

XL (28 1)GSG Yl( - k) = - Yl(k) 

TSC 

G39 = (I + (n I 8 112)uu )(1 + tu2y ) 

r-.J 
X(I + uz.,,('lT12))P(n I8tJA (ez)E" 

TSC 

TSC 

TSC 

H39= I"Iy{(k)(a:,a:':kl +ak~la~k' 
j k J 

+a:':kj,ak~ +a:':kj,a:,) 

H40= ~"~ iy{(k)(ak+,a~kl +a:la~k' "7 i- J J 

- a~kjtak~ - a~kj,atf) 
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TABLE II. (Continued). 

rv 
G'2 = (1 + IU2y t)(1 + U2x (17/2))GTG (q)A (e.) 

TSC 

TSC 

G.s = (1 + lu2.)(1 + I( n,s,/211(1 + tu2y ) 

rv 
X (1 + u2z(l7/2))L (nls.lGSG 

TSC rv __ 
G'6 = (1 + tU2y )(1 + u2z(17/2))(1 + u2.( nl s l /2)) H'6 = ~.~ wj(k )(ak~,a:': k, - a:': k

j
, at,) 

XL (nlsl)GSG 

TSC 

G'1 = I ns,u.(8)((8 + 21T{m ,/n ,)n)/2)]L(n ,s,) H'1 = Iy,(k)(at+q,a:':kT) 
k 

TSC 

1.,/2) 

ak) = k + qj. qi = (j/n.lbl• I = I . where [nl/2] denotes the maximum integer <nl/2· 
j j= 1 

bI' means thatjruns odd number <[nl/2]. 
i 

c Zi(k) is a complex number. 
d( n,sl/2) is put to zero when nl is odd . 

. I" = I'. for even n l • = I. for odd n l · 
i) i 

fGTS(q) = I nslu.( - 21T{m,/n,)n)ln = O. ± 1 .... 1. 
g M" = (0.;;') + t (O';;')I"V 
hGTG(q) = I( nsJ(1T{ml/n,)n)jn = o. ± 1 ... ·1· 
iGSG = J~.(;)(m)10<;<4171. 
JE" = (0.17). 

xo(k ') = E(k ') + ~ L { (ak+t ak t ) 
2 k 

+ (a~kra_kT)JoWO(k,k'), 
(4.4) 

xl(k') = ~~ ((a:rakr) - (a~kta_kr)JoWO(k,k'). 
For G12, 

xo(k') = E(k') + ! ~ {(a:rakt ) + (aj/; akl) 

+ (a~kta_kt> + (a~kla_kl)JoWO(k,k'), 
(4.5) 

xl(k') = ~ L ((a:,ak,) - (aj/;akl) 
4 k 

- (a ~ k ,a _ k , ) + (a ~ kl a _ kl ) J I WO(k,k '). 

For G13, xo(k ') has the same SC condition as (4.5), and 

1526 

xl(k') = ! ~ ((atrakt ) - (akiakl ) 

+ (a~kta -k,) - (a ~kla -kl) J 1 WO(k,k '). 
(4.6) 
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For G;(2<i< 11 or 14<i<25), Hi is generally expressed by 

(4.7) 

wheretheui(k )ss' arexl(k ),x~ (k ),ixl(k ),etc. TheSCcondi
tion is given as follows. The SC condition on xo(k ') is (4.3) and 

(4.8) 

where x = 0 for i<11 and x = 1 for 14<i<25. For G; 
(26<i<47), H; is generally expressed by 

(4.9) 

Then the SC condition is given as follows: xo(k ') has the same 
form as (4.3) and 

vi(k 'Iss' = L (a _ ks·ak+p,,)2WP)(k,k '). (4.10) 
k 

Here we give a few comments on some classes of Table 
II: Go is the normal paramagnetic state (NP); G2 corresponds 
to the charge density wave (CDW) state in the half-filled 
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band case; and G3 is the bond order wave (BOW) state (or off-
v 

diagonal CDW state) which is obtained by Cizek and Pal-
dus. IO Note that the COW state is invariant to I and the 
BOW state is antisymmetric to I. We have that G6 is a COW 
state with inversion symmetry. The case with q = (l/3)bl 
especially has been discussed in detail in relation to the frac
tional charge soliton by Su and SchriefferY Also, G8 is a 
COW state-breaking inversion symmetry, which is a hither
to unknown type; GI3 is the ferromagnetic (FM) state; GI6 is 
the spin density wave (SOW) or antiferromagnetic (AF) 
state; and G17 is the spin bond order wave (SBOW) (see Ref. 
to) (or off-diagonal SOW). Note that the SOW state is sym
metric to I and SBOW is antisymmetric to I. We have that 
G25 is the Overhauser'sl2 helical spin density wave (HSOW) 
state; and G26 is the usual BCS state. 

G:r.s(q), Gro(q), and GSG in Table II appearing in 
(G2I>G25,G43 ), G42, and (G34,G36,G38,G41,G45,G46) are the rel-

ative translation-spin, the relative translation-gauge, and the 
relative spin-gauge symmetry in the usage of Liu. 13 In this 
usage G47 may be called the relative translation-spin-gauge 
symmetry. 

Thus all the known ordered states are included in Table 
II. If other ordered states with a single-order parameter are 
found, these must be in Table II. 

v. CLASSIFICATION OF THE BCS STATE COEXISTENT 
WITH A NONSUPERCONDUCTING ORDER 

In this section we consider the states with multiple-or
der parameters such as the coexisting state of superconduc
tivity and magnetism. For this purpose we consider the BCS 
superconducting state characterized by Gs = G26 
= P(al,a2,a3)XS XM" of Table II. The coexisting states 

v v 
are obtained from the invariance group [Gs ] of the R -rep Gs 

of Gs • The R-reps of Gs are expressed by 

TABLE III. The invariance group and its HFB Hamiltonian of BeS coexistent state with other nonsuperconducting orders. 

G?+.O. + I 

G?-'O'- t 

G?··o.+, 
G?-.o.+ I 

G?··o.-, 
G?-·o.-, 
G~·O.l 

G?+>I.- I 

G?-"'-' 
G!l+·t.+l 
G?_·I,1 

G?··'·-' 
G?-"'-' 
G~"" 

G""-' , 

G,n = G, = P(8,)SM~ 
Gd = (1 + tI)L (8,)SE~ 

Gsl = P(2a,)SM~ 

G,3 = (1 + i, I)L (2a,)SM~ 

G". = (1 + i,t)P(28,)SE~ 
G" = (1 + Ii,)(1 + i,t)L (28,)SE~ 

G., = P(n,8,)SM~ 
G" = (1 + (n,8,/2)I)L (n,8,)SM~ 
G,. =L(n,8dSM~ 

Gr. = (1 + (n,8,/2)t)P(n,8,)SE .. 
GslO = (1 + (n,8,12)t)(1 + tI)L(n,8,)SE~ 
GsH = (1 + (n,8,/2)t)L (n,8,)SE .. 

G,\2 = (1 + Iu2x )L (8M (e.)M~ 

Gs\3 = (1 + tu2y )P(8M (e.)E~ 

G,'4 = (1 + Iu2x )(1 + tU2y )L (8,).4 (e.)E~ 

Gs'S = (1 + i,u2x )P(28M (ez)M~ 

GdO =(1 +i,u2x )(1 + i,I)L(2a,).4(e.)M .. 

G,\1 = (1 + i,u2x )(1 + tu2y )P(2aM (e.)E~ 

G,'8 = (1 + i,u2x )(1 + tU2y )(1 + Iu2x )L (28,).4 (e.)E~ 

GdO = (1 + (n,8,/2)u2x )P(n,8,).4 (e.)M~ 
GslO = (1 + (n,8,12)u2x )(1 + Iu2x )L (n,8,).4 (ez)M~ 
Gs2' = (1 + (n,8,/2)u2x )L (n,8,).4 (e.)M" 
Gm = (1 + IU2x)GTS(q)M~ 
Gm = (1 + (n,8,/2)u 2x )(1 + tU2y )P(n,8,).4 (e.)E~ 
Gsl4 = (1 + (n,8,/2)u2x )(1 + tU2y )(1 + Iu2x )L (n,8M (e.)E" 

GslS = (1 + (n,8,12)u 2x )(1 + ty2y)L (n,8M (e.)E" 
GslO = (1 + Iu2x )(1 + tU2z)GTS (q)E" 

·)This state does not have nonsuperconducting order. 
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H, 

H2 +H27 

H3+ H28 

H4 +iH27 

Hs +iH28 

Ho+H29 
H7+ H30 
H8+ H3' 

H9+iH29 
HIO + iH30 
Hl1 +iH3' 

H'2 +H33 

H\3 

H'4 + iH3S 

H,s +iH37 

H'6 + H3S 

H17 + H37 

H'8+ iH39 
H,o + iH40 
H20 + iH4' 
H 2, + iH43 

H22 +H39 
H23 +H40 

H24 +H4, 
H2S +H43 
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(5.1) 

where A = O± ,Q±, q, x = 0, 1,p = ± 1, and 
v _ v.... v v 
M;= 1(0) = M;= (1/") = 1, M;= I(t) = M;= l(tiT) = ± 1. 

(5.2) 

By the similar manner to Sec. IV we have obtained all invar-
. v 
lance groups of Gs • These are listed in the second column of 
Table III. The HFB Hamiltonian corresponding to Gs; is 
obtain~ by looking for the invariance vector space V [Gs ] of 
Gs; = [G.]. We can immediately obtain the HFB Hamilto
nians of invariance groups [ G ;,0, :: I ] and [ G ;,1, - I] 
(A = O± ,Q± ,q) from Table II and [G.l of Table III. For 
example, for G.2 = P(2adSM"., it is easy to see that H2 and 
H27 are invariant on G.2 because G2 = P (2ad SM-::J Gs2 and 
G27 = (1 + al(~/2))p(2al)SM'V-::JGS2' 

But for [G ;,0, - I] and [G ;,1, + I] the HFB Hamilton
ian cannot be directly obtained from Table II and [Gs ] of 
Table III. For example, for Gs4 = (1 + alt )P(2a I )SE"., it is 
easy to see that H4 belongs to Gs4 as G4 = (1 + alt) 
XP(2a l )S4>-::JGs4 .1t seems that there is no other H; which 
belongs to Gs4 • However, we can obtain G ~7 from G27 by 
conjugation of (;;)4): 

G27 = (~)Gd~)-I 

= (1 + a l(;;j2))(l + alt )P(2a I )SE1T -::JGs4 • (5.3) 

Then (~)H27 = iH27 is G ~7 invariant, thus the iH27 belong 
to Gs4 • 

For other cases, in a similar manner we can obtain the 
HFB Hamiltonians. These HFB Hamiltonians for G· Sl 

(i = 1, ... ,26) are listed in the third column of Table III. In this 
column the total HFB Hamiltonian for Gs; should be under
stood as 

H=Ho +H26 +H 2~ +Hs; + (Hsi ifHs;=I=Hsi)· 

(5.4) 

Note that in each of the coexisting states except GsI and Gs13 

there occurs another abnormal (non-BCS) Cooper pair. GSI3 

is the BCS state coexistent with ferromagnetism6 and does 
not involve an abnormal Cooper pair because the spatially 
homogeneous triplet Cooper pair is inversion antisymmetric 
while Gsi3 is inversion symmetric. 

Gs2 , Gs3 , and Gsl7 are the BCS coexistent states with 
CDW (see Ref. 3), BOW, and SDW (see Refs. 2 and 5). 

The other coexistent states with multiple-order param
eters, such as CDW and BOW, can be obtained by the same 
method as above. 
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VI. CONCLUSION 

The main results ofthe present paper are Tables II and 
III, which summarize the group theoretical classifications of 
the state with a single-order parameter and the BCS state 
coexistent with other nonsuperconducting orders. The ta
bles give also the standard HFB Hamiltonian for each class 
in the case of a single band model. 

It is an interesting and important problem whether ev
ery class of the tables has physical significance or not and, if 
it has, under what conditions. However, this problem must 
be solved numerically and individually in the concrete case. 
Our tables are useful for the systematic search of realizable 
phases for the individual case. 

These classifications work also for the electron system 
with multiple bands, though with slight modifications in the 
HFB Hamiltonians of the third column of the tables. 

In the case of a crystal with the other space 8!-0ups P' 
than P, we must consider the R -rep Go = P' ® S ® M and its 

v v 
invariance group [Gol. Also in this case [Go] can be obtained 
in a manner similar to that in the previous paper.s 

Finally we note that the present classification works 
similarly for the mean field theory of the coexistence of the 
BCS superconductivity and the magnetic order by the local
ized spins. 14 
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An alternate approach to finding and using the Lie group of the Vlasov 
equation 
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Two recent methods for finding exact solutions to the Vlasov-Maxwell equations using Lie group 
theory are compared by the introduction of an "intermediate" approach. In the latter, the Lie 
group and general similarity solutions of the Vlasov equation are found through a method which 
treats independent and dependent variables as forms that are on an essentially equal footing. A 
Maxwell equation is then used to constrain the solutions further. The procedure is shown to 
illustrate a more general theorem that implies that the reduction of the number of variables in a set 
of equations through the use of canonical variables generated from the Lie group invariance of one 
equation in the set leads to the same solutions as are found by considering the invariance of the 
entire set. 

I. INTRODUCTION 
Recently a variety of methods have been used to find 

exact solutions to the Vlasov-Maxwell equations that are 
more general than those of the BG K 1 type. One set of meth
ods has involved the use of Lie groups to construct solutions 
that exploit the invariance properties of the equations.2-5 

Abraham-Shrauner used Lie group methods presented in 
Cohen6 to find the Lie point group of the Vlasov equation 
alone, and then subsequently required the solutions thus 
found to satisfy Maxwell's equations. These solutions were 
put in a form that could be easily compared to the solutions 
of Lewis and Symon 7 that provided part of the motivation 
for the Lie group approach. Roberts used the point of view of 
BIuman and ColeS to find the point group and general simi
larity solutions of the Vlasov-Maxwell equations considered 
simultaneously. Many of these solutions were found to be 
equivalent to those found by Abraham-Shrauner, but it was 
difficult to see if the methods were actually equivalent in 
results. The point of this work is to show that using the ap
proach of BIuman and Cole in constructing the invariance 
group of the Vlasov equation alone both simplifies finding 
some of the results of the method based on Cohen's presenta
tion and sheds light on the above question of the equivalence 
of methods for finding solutions to the Vlasov-Maxwell 
equations. The present method also generates the group and 
associated possible forms for the electric field for the Vlasov 
equation without the need for auxiliary differential equa
tions; this both makes the explicit form of the group more 
transparent and allows the straightforward application of 
the Maxwell equation constraints on the solutions. In what 
follows, previous methods will be presented briefly; next, the 
group of the Vlasov equation and associated results will be 
developed by an alternate method, and these results will be 
compared to the results of previous methods. Finally, it will 
be shown that the present case illustrates a more general 
phenomenon: Lie group solutions to sets of equations based 
on the invariance of one of the equations will, under specific 
conditions, be equivalent to those found by considering the 
invariance of the entire set. 

II. PREVIOUS METHODS 
Abraham-Shrauner,2.3 following Cohen,6 uses the fact 

that the Lie group that leaves invariant the one-dimensional 

equation of motion of a particle of charge q a' mass ma , posi
tion x, and velocity v, in an electric field E, 

(la) 

with 

dx -=v, (lb) 
dt 

also leaves invariant the associated partial differential equa
tion (the Vlasov equation) 

ala + v ala + (~) E ala = o. (2) 
at ax ma av 

This is essentially due to the fact that the level sets offa solve 
(1), or equivalently that Eqs. (1) are the characteristic equa
tions of (2). Roberts,5 following BIuman and Cole,S starts 
directly with (2) and the two associated nontrivial Maxwell 
equations for E to find the Lie group that leaves all three 
invariant. This procedure leads to an initially more restrict
ed set of solutions than the Abraham-Shrauner procedure, 
but in the latter case, applying Maxwell's equations as con
straints similarly restricts the set of solutions. The differ
ences in the results, as will be shown in detail below, are 
primarily (1) Abraham-Shrauner's method (as outlined 
above; see her paper2 for an alternate approach) limits the 
solutions by implicitly taking fa (which is not used in the 
procedure) to be invariant under the group action; (2) in the 
case of a plasma with a space- and time-varying background, 
Roberts' method only allows those solutions for which the 
background has specific group transformation properties, 
unlike Abraham-Shrauner's method; and (3) treating initial
ly arbitrary functions in the equations (such as E in the Vla
sov equation) as separate forms, rather than as explicit func
tions, may in some cases eliminate interesting solutions. 

III. AN ALTERNATE APPROACH 

This section develops an "intermediate" approach to 
solving the Vlasov-Maxwell equations. It differs from Ro
berts'5 method in that only the Vlasov equation is required to 
be invariant, not the entire Vlasov-Maxwell set. On the oth
er hand, unlike the Abraham-Shrauner method presented 
above, it uses the Vlasov equation rather than the character-
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istic equations, thus allowingl to be transformed, and treats 
E as an independent variable, rather than as an initially arbi
trary function of x and t. 

The approach to finding the point group of the Vlasov 
equation that is suggested by following the methods of BIu
man and Cole8 consists of treating all dependent and inde
pendent variables as forms that are on an essentially equal 
footing, leading to a group generator given by 

_ a a a Ea aa 
U - tt at + tx ax + tv av + 7J aE + ~ 7J ala . 

(3) 

A self-consistency condition (termed an "invariant surface 
condition" in BIuman and Cole) exists for the variation in the 
dependent variables; their transformation according the 
above generator must agree with their transformation by 
varying the independent variables in explicit solutions, giv
ing, for example, 

(4) 

The characteristic equations for this condition and the corre
sponding one for I generate the general similarity forms for 
the dependent variables, as well as new "natural" or "ca
nonical" forms for the independent variables. 

Associated with the above generator are generators for 
the derivatives ala I at, etc., which have coordinates given by 

7J; = a7Ji + L a7Ji auf' _ L atv aUi 

aXj f' auf' aXj v aXj axv 

L atv auf' aUi 
- ,..,v au,.. aXj axv' (5) 

where the dependent and independent variables are denoted 
generically by U i and xj , respectively, and the sums are over 
all possibilities. An invariance group of the Vlasov equation 
results from finding a general form for U. This can be done 
by applying the "extended group generator" U', with 

U' = U + 7J; a , (6) 
a(au;laxj) 

to the equation, and requiring this to result in at most the 
same equation multiplied by a function p of t, x, v, E, andJ, 
but not of al I at, etc. The restriction on the form of p leads in 
general to a restriction on the generality of the group; in 
particular, it restricts the possibility of generating terms, 
through the last term in (5), that give the original equation 
multiplied by a derivative. This case only arises if the tv 
depend on the dependent variables, and this possibility, 
which virtually never occurs for physically relevant partial 
differential equations,8 will be neglected in the present devel
opment. Note that all other terms besides the last one in (5) 
are linear in the derivatives au;laxj , thus justifying the as
sumption that U' applied to the equation will at most gener
ate a linear function of the original equation when tv is inde
pendent of uj • 

Explicitly, the invariance condition just stated be
comes, for the Vlasov equation (2), 

na + vna + f:' ala + ~ E ala + ~ E a 
·It ., x ~v a 7J a 7J v 

x rna v rna 
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(7) 

[In principle it is possible for 7Ja in the multispecies case to 
depend on/p f/3 ¥a), thus requiring a sum on the right-hand 
side, but this turns out to be possible only for the artificial 
case where qa1rna = qplrnp, so this possibility is neglected 
here.] The coefficients of the various forms (allat, etc.) in (7) 
must be equated individually for the equation to be satisfied, 
since (7) is a statement on the equivalence offorms, and not a 
differential equation. A first result of this is that 7Ja is inde
pendent of E, since the second term in (5) generates unique 
terms such as that involving aE lat. 

The remaining constraints in (7) come from equating 
the coefficients of 1, aj I at, aj I ax, and all avon both sides of 
the equation. The results are, respectively, 

a7Ja a7Ja qa a7Ja 
-+-+-E-=O, (8) 

at ax rna av 

and 

atv +v atv +~Eatv _~7JE= -p'~E, (11) 
at ax rna av rna rna 

wherep' =p -a7Jalala' 
Since 7Ja is independent of E, (8) shows that it is also 

independent of v; still using (8) this latter fact shows that 7Ja 
is independent of x, and subsequently of t. Thus the form for 
7Ja is simply 

7Ja = Flfa)' (12) 

where F is an arbitrary differentiable function. To satisfy (9), 
p must then be chosen so that p' is independent ofla . 

To proceed further, we note that since E is required to 
be independent of v, it should be independent of v under an 
infinitesimal transformation. Using this requirement and (4) 
shows that t" tx and TJE are all independent ofv. Given this, 
(9) shows thatp' is independent of E, and thus, from (11), that 
7JE is at most linear in E. Also from (9) we see that p' is at 
most linear in v, so from (10), tv is at most quadratic in v. 
Thus the forms ofp' and the coordinates ofthe generator are, 
at this point, 

tt = St(t,x), tx = tx(t,x), 

tv = V2g2(t,X) + vg1(t,x) + go(t,x), 

7JE = Eh1(t,x) + ho(t,x), 7Ja = cda' 

p' = VPl(t,X) + Po(t,x). 

(13) 

Putting these forms into (9)-( 11) and equating coefficients of 
E and powers of v gives a set of equations involving the new 
functions. These equations are, from (9), 

att 
-= -Po 
at 
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and 

ax 
from (10), 

and 

asx 
ar-go=o, 

asx 
---gl = -PO' 
ax 

gZ=PI; 

and from (11), 

ago -!!:=""ho= 0, 
at rna 

ag, + ago = 0, 
at ax 

ag2 + ag, =0, 
at ax 

ag2 =0 
ax ' 

gl-h, = -Po, 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

From (18) and (24) we see that gz = PI = 0, which implies, 
using (15), thatst is independent of x, and using (21) thatg l is 
independent of x. Solving (20) for go gives 

go = x ~' + g3(t ), (25) 

whereg3 is an arbitrary function of time. Now, using this and 
(16) gives 

a2Sx dg l 
ax at - dr' (26) 

while (17) and (14) give 

J2Sx dg, dZS, 
--=-+-. 
ax at dt dt Z (27) 

Combining (26) and (27) and integrating with respect to t 

gives 

1 dSt g,= ---+CZ, 
2 dt 

where Cz is a constant. Integrating (17) now yields 

(
IdS, ) Sx = --+cz x+k(t), 
2 dt 

where k is another arbitrary function of t. 

(28) 

(29) 

At this point, all remaining unknowns can be deter
mined in terms of Sf> k, and Cz. First, from (23) 

3 dSt hi = ---+cz. (30) 
2 dt 

Next, combining (16), (29), (25), and (28) gives 

(31) 
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This combined with (19), (28), and (25) gives 

ho = rna (~ d
3
St + dZk). 

qa 2 dt 3 dt Z (32) 

Collecting everything and recalling the forms (13), we have 

St =S,(t), (
IdS, ) Sx = --+C2 x+k(t), 
2 dt 

(
IdS, ) X (dZSt) dk Sv = ---+C2 V+- -- +-, 
2 dt 2 dt Z dt 

(33) 

TJE=(_~ dS, +Cz)E+ rna (~d3S, + d 2
k), 

2 dt q a 2 dt 3 dt 2 

TJa = Flfa)' 

These expressions give the general form of the generator (3) 
for the Lie group that leaves the V1asov equation invariant. 

The results for St and Sx in (33) are exactly the same as 
those in Abraham-Shrauner's work, Z except that in the pres
ent development, there is no possibility of an ax term appear
ing in St. The origin of this is that making E a separate de
pendent variable imposes more constraints; in (11), for 
instance, if E is considered to be an explicit function of x and 
t, we would not be able to equate its coefficients. The solu
tions neglected here are not of great interest; the form re
quired for E by them is completely determined by the group 
parameters, leaving little freedom to satisfy Maxwell's equa
tions. The other solutions involve an arbitrary function [E in 
(41) below] that allows nontrivial solutions. This shows, 
however, that in solving a single equation by Lie group meth
ods, making free functions into separate dependent variables 
might possibly eliminate interesting solutions. 

The first benefit in using the forms (33) is seen by consid
ering the expression for TJE ; the distinction between the mul
tispecies and single species cases becomes immediately ap
parent. Since E cannot depend on species, the rna / q a term in 
TJE must be zero for the multispecies case, except again in the 
artificial case of two different species of equal q/rn ratios. 
This means that the multispecies case corresponds to St at 
most quadratic in t and k at most linear in t. Abraham
Shrauner3 arrives at similar conclusions, but more indirect
ly. 

The second advantage of the present approach is that it 
allows us to reduce the forms of E and/ to quadrature, with 
no auxiliary differential equations except for the Vlasov 
equation reduced by one dimension. To find the form of E, 
we return to (4), using the forms found in (33). It is interesting 
to note that the equation now given by (4) is also stated by 
Abraham-Shrauner,2 but the present approach more clearly 
suggests the present method of solution. (The method of so
lution used there was motivated by comparison to solutions 
found by Lewis and Symon.7

) The form for/will be derived 
using the analog of (4) given by 

a/ a/a a/a _ a 
St at + Sx ax + Sv au - TJ . (34) 

This equation is new, the difference between this and the 
Abraham-Shrauner case outlined above being that in the lat
ter development TJa is assumed implicitly to be zero. 
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To simplify the notation, let sx = klx + k, sv 
=gIV+g4X+g3, and 7l=hIE+h4X+h3' where (33) 

shows that the functions kl' k,gl,g3,g4' hi' h4' andh 3 depend 
only on time. Then the characteristic equations for (4) and 
(34) are the following (with F linear for an integrable exam
ple): 

dt dx dE 
(35) = 

and 

dx dfa 
(36) 

dv dt 
=---

St klx + k glv + g4X + g3 elfa 

The solutions to pairs of these equalities that involve only 
independent variables yield new "natural" or "canonical" 
variables. With the forms for E andf found using the remain
ing equalities, the Vlasov equation will be reduced from a 
three-dimensional equation to a two-dimensional one. 

The first equality in the above equations may be written 

dx kl k 
---X=-, 
dt St St 

(37) 

which has an integrating factor II' given by 

II = exp ( - J ;,1 dt ). (38) 

so the first natural variable;1 can be taken to be the integra
tion constant in the solution to (37) 

;1 = xII - III ~dt. (39) 
St 

The form for E can then be found by equating the first and 
third terms in (35). The solution of the resulting equation 
requires a second integrating factor 12 given by 

(40) 

Calling the integration constant £ (; I)' the form for E is 

E - £1 -I + I -I I I h4x + h3 d - 2 2 2 St t, (41) 

where in performing the last integration, we must use (39) to 
give 

X=;ll-I +11 -
1 J II ~dt, (42) 

St 
and; I is held fixed for the integration. 

A similar procedure, based on (34), may be used to find 
the second natural variable;2 and the form for! The results 
of all these calculations, simplified somewhat by performing 
some integrations, are as follows: 

;1 =xst -1/2C- 1 - I St - 3/2C- lkdt, (43) 

; = vs 1/2C -\ - xl;- -112C -I I ~ d
2
s t dt 

2 t ~t 2 dt2 

+ (JSt -3/2C - l kdt) J~ d
2
s t dt _ ~Jd2St 

2 dt 2 2 dt 2 

x( J St - 3/2C -Ik dt )dt - I St - 1I2C -I ~~ dt, 

(44) 
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E = £ (; I)St -3/2C + ; XSt -2 I ~ d~~t St dt 

+ ; St -3/2C [I St 1/2~:~ C -Idt 

- J St -
3/2

C -Ik (J + ::~t St dt )dt ]. (45) 

and 

fa = fa (; \>; 2)exp( J ~I dt)' (46) 

where C is given by 

C = exp( I ;: dt ). (47) 

andjis a new initially arbitrary function. Substituting these 
variables into the Vlasov equation leads, after considerable 
algebra and many integrations by parts, to the "reduced" 
equation 

eJ + (;2 - e~l) aj + ( - e~2 + q£) aj = o. (48) 
a;1 m a;2 

Comparing these results to those of Abraham
Shrauner,2 we see that, apart from some relabeling, ;1' ;2 
and the reduced Vlasov equation are exactly the same in both 
cases, and E has the same general form. The difference in the 
latter case is that here E has been reduced to quadrature, 
whereas Abraham-Shrauner introduces a function p (unre
lated to p above) by 

S, =p2, (49) 

and gives the form of E as 

E=F(t)-fJ2(t)x-~exp(Ie2dt) dUe(;Il, 
p3 p2 dbl 

(50) 

where Ue is a nonquadratic potential, fJ (t ) satisfies the equa
tion 

p + (qlm)fJ 2 = k'lp 3, (51) 

and F(t) also satisfies an auxiliary differential equation. 
(Here, k ' is a constant, the notation has been changed some
what for easy comparison, and species SUbscripts have been 
dropped for simplicity.) Explicitly comparing forms, noting 
that the linear part (k 'bl) of E must be taken out to isolate 
linear terms in x, we find 

fJZ(t) = -s,-z I St(~ ; ::~t)dt_ m;'St-2. (52) 

This form satisfies (51), as it should. Further detailed com
parisons can be made, but these are not enlightening. Some 
of the utility of the quadrature solution for E is illustrated by 
the development in the next section, which is more lengthy 
without it (c£. Abraham-Shrauner, Ref. 3). 

IV. THE EFFECT OF CONSTRAINING EQUATIONS AND 
A GENERALIZATION TO OTHER CASES 

Maxwell's equations must be solved along with the Vla
sov equation, and this puts further constraints on the solu
tions. Poisson's equation with a background of density nb 
and charge per particle q b , 
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(53) 

(54) 

This can be solved as is, without further restrictions, for nb , 

but in a case with multiple species and no background, a 
complete reduction to the new variables requires (apart from 
an uninteresting multiplicative constant) 

3 dSt 
C I +c2 = ---. (55) 

2 dt 

This makes St linear in t, and relates CI and C2• The results 
now become equivalent to those found by looking for the 
invariance group of the one-dimensional Vlasov-Maxwell 
equations considered simultaneously (Roberts, Ref. 5.). 

The reduction of the group for the Vlasov equation 
alone to that for the Vlasov-Maxwell equations through the 
application of Maxwell's equations as constraints is a special 
case of a more general theorem: The reduction of a set of 
equations to a set involving one fewer independent variables 
by the method of finding the Lie invariance group of one 
equation in the set, and using the resulting canonical varia
bles to reduce the other equations, will never result in any
thing more general than is found using the canonical varia
bles found from the Lie invariance of the complete set to 
perform a similar reduction. That this is true can be seen as 
follows. 

Suppose we have two equations involving the same de
pendent and independent variables U I , ..• ,Un and 
XI' ... ,xm. Finding the most general one-parameter point 
group of the first equation allows us to find canonical inde
pendent variables tl' ... ,tm and general similarity forms 
for the dependent variables such that one independent vari
able (say, tm) does not appear in the equation in terms of the 
new variables. (Note that the one-parameter group may in
volve arbitrary constants and functions in its only gener
ator.) In terms of the new independent variables, the group of 
the first equation can always be made to be the translation 
group in tm. (See BIuman and Cole. 8

) We now require that 
the substitution of the new variables in the second equation 
results in an equation involving only t 1> ••• ,t m _ I • In gen
eral, this restricts the forms allowed for the generator of the 
group of the first equation, by restricting the allowable forms 
of tl' ... ,tm. On the other hand, the fact that the new sec
ond equation is independent of the restricted form of tm 
means that it is invariant under translations in that variable. 
Since the latter group is a special case of the group of the first 
equation, both equations are invariant under translations in 

1533 J. Math. Phys., Vol. 26, No.7, July 1985 

the restricted form of t m • This means that the reduced form 
of both equations is at most as general as that found by con
sidering the most general invariance group of both equations 
simultaneously. The procedure outlined above can be ex
tended to more equations, and in fact should provide one 
(perhaps cumbersome) method for finding the general invar
iance group of a set of equations. 

An essential part of the above reasoning is the assump
tion that we wish to put all the equations in terms of a re
duced set of variables. Generally speaking, it is this require
ment that simplifies the work in finding solutions. However, 
as is illustrated above, this will not always be the case; the 
introduction of the new variable nb made it possible to find 
solutions to (53) corresponding to any solution of the Vlasov 
equation, thus eliminating the need to state (53) in terms of a 
reduced set of variables. In this case, a method based on the 
invariance of a single equation gives more general results 
than one involving the invariance of the set. 

V. DISCUSSION 

The development above shows some of the advantages 
and disadvantages of various approaches to finding Lie point 
group solutions to both the Vlasov-Maxwell and other sets 
of equations. It will sometimes be the case that solutions 
generated by any point group method will be limited in uti
lity, in which case more general transformations (contact or 
Lie-Backlund, for example; see Anderson and Ibragimov9

) 

may be useful. The disadvantage of the latter methods is that 
they are often much more involved and less systematic. 
Especially in the case of nonlinear systems of equations, 
where any exact solution is often a useful step, Lie point 
group methods may provide a good starting point, and if so, 
the above discussion should help in sorting out alternative 
approaches. 
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Generating functions are calculated for polynomial tensors in the components of tensors of the 
one- and two-dimensional space groups t'm and p4m. For tensors whose k vectors lie at rational 
points (denominator q) of the Brillouin zone, the problem is imaged by the corresponding problem 
for an appropriate finite group, and known methods are used for its solution. For tensors with 
continuous k the solution is obtained by letting q become infinite. 

I. INTRODUCTION 

Polynomial space group tensors are needed for renor
malization group calculations and for applications of Lan
dau theory to phase transitions in crystals. I Even when only 
space group invariants are required, these are often based on 
reducible representations; then it is simplest to construct all 
space group tensors based on the irreducible components 
and combine them to make composite scalars. 

A great deal of effort has gone into hand or computer 
calculation of polynomial space group tensors of low de
gree. 2 This paper proposes analytic methods for finding such 
tensors of all degrees. 

By an (I,m) tensor of a group G we mean one whose 
components transform by the representational I of G and are 
homogeneous polynomials in the components of a tensor 
transforming by the representation m. The problem of deter
mining (I,m) tensors has been solved for point groups,3,4 and 
the method is applicable to any finite group; as we shall 
show, it may equally well be used to solve the same problem 
for space groups. 

The first step in enumerating (I,m) tensors of a finite 
group G is to calculate3,4 the generating function 

NX· 
Blm(A.) =N- 1 L c c/ 

c det( 1 - A.Aem) 

00 

= L C\::;A. n (Ll) 
n=O 

for the pair (I,m) of irreducible representations (IR's). In 
(1.1), N is the order of G, Nc is the number of elements in the 
class c, Xc/is the character of the class c for the IR I, and A em 
is the matrix that represents an element of the class c in the 
IR m. The coefficient C\::; in the power series expansion of 
Blm (A. ) is the number oflinearly independent (I,m) tensors of 
degree n. It turns out that Blm (A. ) is a rational function 

h (u) A. u 

B (A.) - " 1m (1 
1m - ~ TI,(l -A. ') .2) 

the sum over u and the product over t are both finite. The 
coefficients h \~ are non-negative integers; the denominator 
factors are equal in number tolm' the dimension of the IR m, 
and are the same for all generating functions with the same 
m. The denominator factors correspond to functionally in
dependent scalars of degrees t. The numerator terms corre
spond to (I,m) tensors, of degrees u, which are linearly inde
pendent when their coefficients belong to the ring of 
denominator scalars. The properties of the generating func-

tions Blm(A.) are discussed more fully in Refs. 3 and 4. We 
note that a generating function for which m is reducible can 
be expressed in terms of those for which m is irreducible. The 
generating functions with fixed m satisfy a dimensionality 
condition4 

LhBlm(A.) = (1 - A.) -1m
, (1.3) 

I 

which provides a useful check on their correctness. The I 
sum in (1.3) is over all IR's. 

The (unitary) IR's of a space group G are labeled (k)s. 
The vector k lies in or on the boundary of a sector of recipro
cal space comprising 1/ g of the Brillouin zone, where g is the 
order of the point group of G; the integer s takes a finite 
number of values 1,2, ... , and distinguishes inequivalent IR's 
belonging to k. We write k as a linear combination of the 
primitive reciprocal lattice vectors K; and suppose the coef
ficients are rational fractions 

k=q-I LP;K;. 
i 

(1.4) 

(The K; are defined in terms of the primitive lattice transla
tions aj by K; • aj = 21TDij; the Brillouin zone is the region of 
k space closer to the origin than to any other integer linear 
combination of K;.) 

For fixed denominator q there is a finite number of IR's; 
direct products ofIR's with the same q, of which polynomial 
tensors are a special case, can lead only to tensors with k = 0, 
or with q' = q (or a factor of q); we are dealing with a finite 
image, or matrix, group which is in fact the quotient of our 
space group G by the same group with the translations in
creased by a factor q. The continuous k case is obtained by 
letting q--+ 00 • 

The matrices which represent the group operations are 
obtained by a method due to Raghavachacharyulu.5

,6 Start
ing with a one-dimensional IR of the translation group, one 
induces IR's of higher groups until one arrives at the group 
of k, and, in a final step, at G. 

The approach (but not the results) of this paper is de
scribed in Ref. 7. 

II. THE ONE-DIMENSIONAL GROUP I?m 

The one-dimensional space group I?m (see Ref. 8) con
sists of pure translations (Eln) and reflection in the origin 
followed by translation (P In). The translations 
(n = 0, ± I, ± 2, ... ) are measured in units of a, the funda
mental lattice displacement; we measure k in units of 21T/a. 
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The order of the point group is 2; hence k, as an IR label, 
ranges over halfthe Brillouin zone (BZ), O<k<!. 

It turns out that at each of the two points of symmetry 
k = 0, ~, there are two one-dimensional IR's of ~m, while at 
an interior point, 0 < k < !, there is one two-dimensional IR. 
The representation matrices are given in Table I. The char
acters (traces) are easily read from the table. 

It is easy to see, for given q, which operators are distinct, 
which of the distinct ones belong in the same class, and 
which representations are those of the corresponding image 
group. For k = 0 the translations have no effect and the im
age group is the point group with the representations (0)1' 
(Olz. For q = 2 four operators can· be distinguished, (Ele), 
(Elo), (P Ie), (P 10), where e(o) signifies that n is even (odd). The 
image group has representations (0)1' (Ob (!It, (~lz. For q > 2, 
n may be restricted to the range O<n <q - 1. The representa
tions of the image group are (0)1, (Ob, (plq), p = 1,2, ... , 
£!(q - 1)] and, in addition, if q is even, (!It, (!b; [a] means the 
integer part of a. 

Formula (1.1) could now be used to construct generat
ing functions for polynomial tensors; however, we can save 
work by recognizing that the image group of q is the point 
group D q' the symmetry group of a regular q-sided polygon, 
including rotations 1T about the symmetry axes in the plane 
of the polygon. The primitive translation a corresponds to 
the rotation 21Tlq and a reflection translation is imaged by 
one of the rotations 1T about an axis in the plane of the poly
gon. 

The desired generating functions are given in Ref. 4. To 
transcribe them into our present notation we must make the 
identifications n~, rl~(O)I' r2~(Ob; for q odd, there is 
also rp+ 2~(plq), l.;;;p«q - 1)/2, and for q even, rr-~(!)I' 
r4~(!b,rp+4~(plq), 1.;;;p<qI2-1. Wefind,forallq>2, 

B(Oh(o)' = (I-A. )-1, B(Oh(o)' = (I-A. 2)-1, 

B(O),(O}z = It (1 _It 2)-1, 

B(Oh(Plq) = [(1 -It 2)(1 - A. q)] -I, 

B(o)'(Plq) = A. q[(1-1t 2)(1 _It q)] -1, 

B(p'lq,Plq) = (A. ' + It q-1[(1 -It 2)(1 - A. q)] -I, (2.Ia) 

and, in addition, for q even, 

B(Oh(1/2h = B(0).(1I2), = (1 -It 2)-1, 

B(1I2h(1I2h = B(1/2)'(1/2)z = It (1 _It 2)-1 , 

B(1I2h(plq) = B(1I2)'(Plq) = A. ql2[(1 -It 2)(1 - A. q)] -I. 

(2.1b) 

TABLE I. Representation matrices for the one-dimensional space group 
pm;q = 3.4 •... ;p = 1.2 •...• [( q - 1)/2];A = exp( - 21Tinp/q);k = p/qcould 
also be irrational. 0 < k < !. 

~ (0). (0), (!). (!lz (p/q) 

(Eln) (- 1)" (-1)" (~ ~ -I) 
(Pin) -I ( _1)" -(-1)" ~-I ~) 
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It is understood in (2.1) that p (but not necessarily p') is 
prime relative to q and that 1.;;;p< [(q - 1 )/2]; p' is given in 
terms of r, p, q by p' = ql2 -I(rp)modq - q121; 
r = 1,2, ... ,[(q - 1)12]. 

To obtain the irrational k case we let q~OC) and set 
It q = 0 (since we may suppose IA.I < 1). Then the last three 
equations of (2.1a) are replaced by 

B(oW) = (1 -A. 2)-1, 

B(k')(k) = It '(1 -It 2)-1, k' =! - Irk - [rk] - ~I ' 
(2.2) 

r = 1,2,3 ... , 0 < k <!, k irrational. 

In (2.1) and (2.2) generating functions which vanish have 
been omitted. 

To see that nothing is lost when k is irrational we use the 
dimensionality check (1.3). It reads 

(1-1t2)-1[1+2'~11t']=(1-1t)-2, (2.3) 

as required. 
The problem of polynomial tensors for the other one

dimensional space group ~ 1 (without reflections) is imaged 
in a similar way by the point group Cq • 

III. THE TWO-DIMENSIONAL GROUP p4m 

The space group p4m (see Ref. 8) is the symmetry group 
of a square lattice, including reflection symmetries. Its oper
ations are pure translations (Eln"ny), rotations followed by 
translations (1T12Inxny), (1Tlnxnz)' (31T12Inxny), and reflec
tions with translations (Pxlnxny), (Pylnxny), (P7T/4Inxny), 
(P37T/4Inxny)' The rotations are about the origin through an
gles 1T12, 1T, 31T/2 and the reflections are in lines through the 
origin making angles 0, 1T 12, 1T 14, 31T I 4 with the x axis; the 
translations n", ny are measured in units of the primitive 
translation a. The Brillouin zone is the square -! < kx <!, 
-! <ky<!; kx' ky are measured in units 21Tla. The order of 
the point group is 8 and the range for kx ,ky as representation 
labels is O<ky <kx q, one eighth of the BZ. 

The representation matrices for given k are found by 
following the algorithms of Refs. 5 and 6. It turns out that at 
k = 0 and at k = (!, !), there are four one-dimensional and 
one two-dimensional IR's; at k = (!,O), there are four two
dimensional IR's; at k = (k,O), (!,k ), and (k,k ), there are two 
four-dimensional IR's; and at an interior generic point 
0< ky < k" <!, there is one eight-dimensional IR. 

The image group for k = 0 is the point group of p4m 
and is isomorphic to the point group D4; when representa
tions at k = H, !) are included the image group is isomorphic 
to D 4 XP (P means inversion). When representations at 
k = (~,O) are added we have the image group of q = 2. It has 
32 (8q2) elements, and 14 each of classes and IR's. 

According to (1.1) we need the eigenvalues of one ma
trix from each class for each IR in order to construct the 
generating functions for polynomial tensors [det( 1 -itA em) 

= II!: 1 (1 - A.S~~), where the s~~ are the eigenvalues for 
class c, IR m]. Their eigenvalues are given in Table II. The 
character may also be read from the table--it is just the sum 
of the eigenvalues. 
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TABLE II. Eigenvalues of representation matrices of p4m at the symmetry points (kx ,ky) = (0,0), (H), (!,O); a superscript indicates the eigenvalue's mUltiplic-

ity. 

order 2 2 

~ 2 3 4 5 6 

1 
2 

(00) 3 
4 
5 12 12 12 12 12 12 

1 1 I 1 1 1 1 
2 1 I 1 1 1 1 

(H) 3 1 1 1 1 1 1 
4 1 1 1 1 1 1 
5 12 12 12 12 12 12 

1 12 ±1 12 12 ±1 12 

2 12 ±1 12 12 ±I 12 
HO) 

3 12 ±I 12 12 ±I 12 

4 12 ±1 12 12 ±1 12 

The translations need be specified only modulo 2; e (or 
0) means that nx (or ny) is even or odd. The classes tum out to 
be 

1: (Elee); 2: (Eleo),(Eloe); 3: (Eloo); 

4: (lTlee); 5: (lTleo),(lTloe); 6: (17100); 

7: (1T/2Iee), (17/2100), (31T/2Iee), (317/2100); 

8: (1T/2Ieo), (1T/210e), (31T/2Ieo), (31T/210e); 

9: (Px lee), (Py lee); 10: (Px leo), (Py loe); 

11: (Px loe), (Py leo); 12: (Px 100), (Py 100); 

13: (p"./4Iee), (P1T14100), (P31T14 Iee), (P31T14 100); 

14: (P1T14 Ieo), (P1T14 10e), (P31T14 Ieo), (P31T1410e) . 

(3.1) 

It happens that there are just seven distinct generating 
functions Dim (A ) when m (and hence I) refer to representa
tions belonging to q = 2 [k = (0,0), (!, !), (!,O)]. We have 
Dim (A ) = (I-A )-1, when I and m are both (00)1; Dim 
= (1 - A 2) - I, when I = (00)1 and m = (00)z,3,4' (Hh,2,3,4; 

Dmm =.1, (1 -A 2)-1, when m = (00)z,3,4' (Hh,2,3,4; Dim 
= [(1 - A 2)(1 - A 4)]-1, when I = (00)1 and m = (00)5' (H)5' 

4 4 2 2 2 2 4 4 

7 8 9 10 11 12 13 14 

±i ±i ±i ±i ±i ±i ±i ±i 
1 1 1 1 1 I 1 1 
1 1 1 1 I 1 1 I 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

±i ±i ±i ±i ±i ±i ±i ±i 
±1 ±i 12 ±1 ±I 12 ±1 ±i 
±I ±i 12 ±1 ±1 12 ±1 ±i 
±i ±I ±I 12 12 ±I ±I ±i 
±i ±I ±I 12 12 ±I ±1 ±i 

(!0h,2,3,4; Dim = A 2[( 1 - A 2)( 1 - A 4)] -I, when I = (OOb and 
m = (00)5' (H)5' (!0h,2,3,4 , when I = (00)4 and m = (00)5' (H)5' 
when 1= (m! and m = (!0h,2, when 1= (H)4 and 
m = (!0h,4; Dim = A 4[(1 - .1,2)(1 - A 4)]-1, when 1= (OOb 
and m = (00)5' (H)5' when 1= (H)5 and m = (!Ob,4, when 
1= (Hb and m = (!0lI,2 ; Dmm = (A + A 3) 
X [( 1 - A 2)( 1 - A 4)] - I, when m = (00)5' (H)5' (!0h,2,3,4; all 
other generating functions vanish. 

We now tum to representations belonging to general 
q~3. The distinct translations (nx,ny) are restricted by 
O<nx,ny <q - 1. The IR's, other than those at k = (0,0), and 
(!d), (!,O) for q even, are (P/q0h,2, (p/qp/q)!,2' and 
(!P/qh,2 for q even, where 1 <p<[(q - 1)12], and 
(Px/q py/q), where 1 <Py <Px <[(q - 1)12]. The eigenvalues 
of the matrices for these IR's are given in Table III. 

The image group of p4m for IR's with denominator q is 
the symmetry group of a four-dimensional figure consisting 
of two regular q-sided polygons centered at the origin, one 
lying in the 1-2 plane (1 a symmetry axis), the other oriented 
similarly in the 3-4 plane. Then the primitive x translation a 
is imaged by a rotation 21T/q of the 1-2 or x polygon. A 
rotation 17/2 of the lattice is imaged by a reflection which 

TABLE III. Eigenvalues of representation matrices of p4m. If two or more ± signs occur in the same expression they may be chosen independently. 
7J = e'-"ip/

q
• 5 = /"'P,.lq, t = /"'pylq. A superscript of 2 or 4 indicates the multiplicity of an eigenValue. The eigenvalues of the representation (kh, where 

k = (pi q,O), ( pi q, pi q), or (!, pi q) are obtained from those of (kh by reversing the sign of the entries in the last four columns. Forirrational points, pi q, p xl q, 

pylq may be replaced by the continuous variables k, k x , kyo 

element 
(E/ab) 

(1T/2Iab) 
(1Tlab) (Px lab) (Pylab) (P,,/4Iab) (P3"./4Iab) IR (31T/2Iab) 

(plqO)1 7J±a,7J±b ± I.±i (± qz ±1.7J±b ± I. 7J±a ± 17±11/21Ia+b l ± 7J±lll2lla- bl 

(plqplqh 
7J±(a+b) , 

± I, ±i (± 1)2 7J ± b ± 17±a 
±I, ±I. 

7J±la-bl 17 ± IQ + bl 17±la-b l 

(!plq) I 

( _ l)a7J ± b. 
± 1.±i (± 1)2 

±I, ±I, ±Z"O+b, ± l"a+b, 

(_ l)b7J±a ( _ l)a7J ±b ( _1)b7J±a X 7J ± 11/2)(a + bl X 7J ± 11I2)(a - bl 

(pJqpylq) 
5 ±at ±b, 

( ± 1)2,( ± 1)2 (± 1)4 
±s ±b, ±s ±a, ± 5 ±11I2Ha+bl ± 5 ±11I2)(a-bl 

5 ± bt ±a ±t ±b ±t ±a xt ±11I2)(a+bl xt ±(112)(a-bl 
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TABLE IV. Generating function B'm(A) with m = (p/qO)'.2' 1 = (OOk,. 
The numerator is tabulated; the denominator. the same for all generating 
functions in the same column. is shown in the bottom row. 

m (p/q Oh, q even 

or (p/qO). 

I+Aq+2 
..1. 2,+2+..1. 3, 

..1. 2 +..1.' 

..1. 2'+..1. 3,+2 
(1 + A 2)(1 + A ')A.' 

(p/qOh. q odd 

1 +..1. 2,+2 +..1. 3, +..1. 3,+2 
A'A,+2+ A 2,+2+ A 4q 

A2+A2'+A3q+A3q+2 
Aq+A,+2+A2q+A4q+2 
(1 +..1. 2)(1 +..1. q)2A q 

(00). 
(OOh 
(OOb 
(00)4 
(00), 
Denom (1 - ..1. 2)(1 - A 4)(1 - A ')(1 _ A 2q) (l - A 2)(1 - A 4)(1 _ A 2")2 

TABLE V. Numerator of B,m. m = (P/qO)"2 qeven.1 = (H).-,. Forq odd 
the generating functions vanish. 

(B).,. 
(Hh.3 
(H), 

q even 

(p/qO)'.2 

A q+A 2q +2 
A q+2 +A. 2q 
(1 +A. 2)(1 +Aq)A.q 

TABLE VIII. Numerators of B,m. m = (p/q Oh, (p'/q 0)"2' 

(p'/qO).,p' even 
or 

(p/qOb,p' odd 
(p'/qO).. odd 

or 
(p'/qQh.P' even 

(p/qOb,qeven 

TABLE IX. Numerator of B,m. m = (p/q Oh. q even, (p/q 0),. 1 = (p/q 
P/q).,2' For m = (p/q Ob, q odd, multiply by 1 + A q. 

(p'/qp'/q). 
(p'/qp'/q), 

(p/qOh, q even. 

or (p/qO). 

(1 +..1. 2)(..1. 2, +..1. q +A. 2q-2, +..1. 2") 
(1 + A 2)(..1. ' + A q+ 2, + A 2q + A 3q - 21 

TABLE X. Numerator of B,m. m = (p/q 0)..2' q even. 1 = (!P/q).,2' For q 
odd the generating functions vanish. 

1537 

q even 

(P/qOh,2 
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TABLE VI. Numerator of B,m. m = (p/qO).. q even. (p/qOh. q/2 even. 
1 = (!0).-4' For (p/ q Oh. q/2 odd. interchange the entries in the two rows; 
for q odd the generating functions vanish. 

(p/qO)., q even 

or (p/ q 0h. q/2 even 

(1 + A 2)(1 + A "]A q/2 
(1 + A 2)(1 + A q)A. 3,/2 

TABLE VII. Numerators of B,m. m = (p/q 0) .. 1 = (P'/qO).,2' 

(p'/qO), 
(p'/qob 

(p/qO), 

(1 +..1. 2)(1 +A. ")(..1.' +..1. q-1 
(1 +..1. 2)(1 +A q)(A'+'+A 2q -1 

(p/q Oh, q odd 

TABLE XI. Numerator of B'm for m = (p/qOb, qeven, or (p/qO).. For 
m = (p/ q 0)" q odd. multiply by 1 + A q. 

(p/qOh qeven or (p/qO). 

(1 + A 2)(1 + A. ')(A. '.+', + A q+ ',- '. 
+ A. q+ rx -,,, + A. 29- 'x- "]1) 
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interchanges 1 and 3 components of a vector together with a 
rotation 1T/2 in the 2-4 plane. The reflection Px is imaged by 
a reflection through the origin in the 2 direction. All other 
operations may be written as products of these generating 
elements; symbolically we may write (a~nx' b~ny) 

(
Ra 0) (RaP 0 ) 

(Elab)~ 0 R
b

' (1Tlab)~ 0 RbP' 

~aP), (3;/ab )~(~ P ~a), 
b (3.2) 

~J, (Py lab )~(~a ~bP) , 
R a ) 

o ' 
Ra means a rotation 21Ta/q, 

_ (COS 21Ta/ q 
Ra - . 

sm 21Ta/q 
- sin 21Ta/q ) 

cos 21Ta/q , 

and P stands for 

a reflection of the second component. It may be verified that 
this realization has the same multiplication table as the space 
group elements. It carries the representation (1/ q OlI. 

There are k(q + 3)(q + 9) classes, or IR's, for q odd, and 
A(q + 6)(q + 12), for q even. The number of elements is 8 q2; 
we do not attempt to sort them into classes, but evaluate the 
sum in (1.1) by summing directly over elements: 

Blm(A) = (8q2)-1 2:. X~l. 
a n(:dl-As~m) 

the element a is (13lnxny), where 13 is one of the eight ele
ments of the point group and O";;;nx ,ny..;;;q - 1. The s~m are 
the eigenvalues of a in the IR m, X al is their sum in the IR I. 

A typical sum, which arises in computing B(oO),( plq Oh ' is 
q-I 

q -I 2:. [(1 - Ae21Tin p/q)( 1 - Ae - 21Tin Plq)] -I 

n=O 
00 00 q-l 

= q-I 2:. 2:. A a + b 2:. e21Tin(a - b Jp/q • 

a=Ob=O n=O 
The n sum vanishes unless a - b = 0 modulo q (we suppose p 
and q are relatively prime), i.e., a = b + cq, c = 0,1,2, ... , or 
b = a + cq, c = 1,2, .... We get . 

00 ~ 00 00 2:. 2:. A 2b+ cq + 2:. 2:. A 2a + cq 

b=Oc=O a=Oc=1 

=(1 +A q)[(I-A 2)(I-A Q)]-I. 

After a great deal of this sort of algebra we arrive at the 
contents of Tables IV-XI. They give all the generating func
tions Blm(A) where m = (p/q 0)1' (p/q Oh, lq,..;;;[(q - 1)1 
2]. The denominator is independent of m and is found in 
Table IV. We have that p' is related to r by 
p' = q/2 - l(rP)modq - q/21, r = 1,2, ... ,[(q - 1)12]. The 
same formula holds withp'-px(Py) and r-rx(ry). It is as
sumed thatp/q (but not necessarily p'/q,Px/q,pylq) is in its 
lowest terms. 
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We have applied the dimension check (1.3) to these gen
erating functions. We have also examined the irrational k 
case, by letting q- 00; the dimension check is still satisfied. 

Generating functions for polynomial tensors based on 
the IR's (p/q P/qh,2' (!P/qh,2' (Px/q py/q) could be found 
by similar methods. 

To construct the polynomial tensors described by the 
generating functions, it is only necessary to construct the 
elements of the integrity basis. They are the denominator 
scalars and numerator tensors. Just assume that the compo
nents are polynomials of the prescribed degree and impose 
that they transform correctly when the components of the 
tensor on which they are based are transformed by each of 
the generating elements. For examples of the procedure (for 
point groups) see Ref. 4. 

IV. CLOSING REMARKS 

The work in this paper was inspired by a seminar given 
in Montreal by J. Birman and by the papers of Jarie and 
Birman,9 in which are given generating functions for polyno
mial scalars based on IR's at special symmetry points of the 
BZ for the three-dimensional space group pm3n. We have 
developed an approach which is simpler to apply and also 
more general (it works for tensors transforming by any IR); 
we have rederived all their results and plan to publish further 
results on pm3n in a future publication. 

It would be advisable to find such generating functions 
for other space groups. They would be useful for attacking 
problems of Landau phase transitions or making renormal
ization group calculations. The results would be analytic and 
valid to all degrees. We have no plans to pursue such a pro
ject at present, however. 

Our results are for polynomial tensors only; they corre
spond to completely symmetric plethysms. To obtain the 
generating function for plethysms of all exchange symme
tries based on an IR m of a space group G it is only necessary 
to embed the corresponding image group of G in SU(f) (fis 
the dimension of the IR m) so that m spans the defining IR of 
SU(f). The generating function for branching rules 
SU(f) :JI, where I is the image group, then enumerates 
plethysms of all symmetries. See Ref. 10 for application of 
this approach to other finite groups. 
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Differential formulas for coefficients in the Laplace-type series of an arbitrary spherical tensor 
fLM (r + R) are given in terms of an operator N applied to the radial part ",(r) offLM(r). Very 
compact and convenient expressions for N in terms of operator Pochhammer symbols are 
established. A special representation of the coefficients of the Laplace-type series, in terms of the 
operator Gauss function 2FI' is given, which, in turn, provides a remarkably short proof of two 
earlier Sack expansions. More general gradient formulas are introduced and numerous particular 
cases of the Laplace-type expansions are considered in detail. 

I. INTRODUCTION 

Expansions of a given function fIr + R) in terms of a 
complete set offunctions tPi(r) (translational transformation 
of the functionf) are frequently used in various physical ap
plications. The Laplace-type series represents the most im
portant example of such expansions. Many particular cases 
of the Laplace-type series have been studied in detail and 
several attempts 1-3 have been made to give a general method 
of obtaining coefficients in such expansions, for the case of 
an arbitrary function! Though none of these attempts has 
resulted, apparently, in a comprehensive and sufficiently 
general method, it was shown,4 however, that the Bayman 
approach3 can be readily reformulated to give relatively sim
ple and transparent formulas for the coefficients. The result
ing expansions bear some general resemblance to those given 
by Dr. Brook Taylor in that the coefficients are represented 
by differential operators which are applicable to any arbi
trary functionf to be expanded. 

Inasmuch as the functionsf(r) encountered in applica
tions have, usually, the form of an irreducible spherical ten
sor (1ST), 

(1) 

where YLM(r) is the spherical function and ~1M(r) = r 
X YLM(r) is the regular solid harmonic, therefore one can 
easily anticipate that a sort of operator Racah algebra should 
be relevant to Laplace-type expansions of an 1ST fLM' 

A typical example is given by the irreducible tensor der
ivative (lTD) of the function (1) (see Ref. 4): 

fl~(r)=[ ~7(V)® fL(r)J"1l 

= [~7 (V(r)) ® ",(r) ~1(r)J"Il' (2) 

where VIr) is the gradient operator; 

~7m(r) = r+ 2n YIM (r) = rn~?m(r); (3) 

and [XI ® fL J "Il is the irreducible tensor product (ITP)4.5 of 
the 1ST's Xlm andfLM' The lTD's (2) occur, for example, in 
the expansion offLM(r + R) in terms of the functions ~7m (r), 

fLM(r + R) = I (_ 1)1 ~/21T().,L)2 -1-2n + 1 

nl" r (/ + ~)n!(1 + ~)n 
X { ~7(R) ® { ~7(V(r)) ® fL(r) J" hM , (4) 

where 1T(a,b,c, ... ) = [(2a + 1)(2b + 1)(2c + 1)-1 ... j1/2 and 
(a)n is the Pochhammer symbol which will be, occasionally, 
referred to as a P symbol or P function of order n. 

It has been shown4 that the ITD (2) has the form of an 
1ST: 

[ ~7(V(r)) ® ",(r) ~1(r)j"1l = <PlnIUI(r)~~Il(r), (5) 

whose radial part is 

<PlnIUI(r) = H(/,L,). )rNn'u(u) ",(r) , (6) 

where the constant H (/,L,). ) is related to the Clebsch-Gor
dan coefficient (/OL 01). 0) by 

H(/,L,).) = (41T)1/21T(/,L,x )(/OL 01). 0) , (7) 

and N(u) is the differential operator 

Nn'U(U) = v!L~+ 112( - /ZXb(U))dW(U) , (8) 

whereu = r 2/2, d (u) = JIJu,L ~(x) is the Laguerre polyno
mial and 

v= n + [ILA] , 

w=n+UL).], 

[abc ... ] = (a + b - c + ... )12. 

(9) 

(10) 

(11) 

The encircled indices in Eq. (8) mark, according to the Mas
lov and Feynmann notations,6 the operator positions. In any 
algebraic transformations the quantities "<!;Pr their functions 
should stand on the left of the expressions depending on 

d(um. For example, ~(U)y = uidi(u), etc. 

Ifn = 0, then Eq. (5) is equivalent to the Bayman gradi
ent formula Eq. (2) in Ref. 3. Equation (8) gives in this case a 
compact analytical expression for the Bayman differential 
operator which is written in Eq. (11) in Ref. 3 as a cumber
some "unidentified" sum. If n #0, then Eqs. (5), (6), and (8) 
give an essential generalization of the Bayman result (which, 
in turn, is a generalization of the well-known Darwin gradi
ent formula), since they allow us to represent, in a uniform 
and compact form, all the tensor derivatives occurring in Eq. 
(4), rather than those ITD's which correspond to n = O. 
Equations (5) and (6) will be called, therefore, the generalized 
gradient formula. 
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We derive here alternative expressions for the operator 
N (u), some of which prove to be simpler compared to Eq. (8) 
and, in many cases, more expedient for calculations and ana
lytical transformations. This leads to convenient expressions 
for coefficients in many physically important Laplace-type 
expansions of functions whose radial part is represented by 
generalized hypergeometric series. 

II. OPERATOR ANALOGS OF THE NEWTON BINOMIAL 
THEOREM 

Expansion of an operator binomial (d (x) + f(xW, 
where d (x) = d I dx, in terms of the operators d i(X), stand
ing-relative to coefficients of the expansion-in the right 
position (operator analog of the binomial theorem), is, gener
ally, applicable to various analytical problems. In particular, 
one of the expansions obtained in this section provides an 
expedient starting point for establishing alternative forms of 
the operator N(u) in Eq. (8). 

Using an operator identity 

q;-l(x)d nIx) q; (x) = (q;-l(x)d (x) q; (x))" , (12) 

and the commutation relation 
d (x) q; (x) = q; (x)d (x) + q; '(x) , (13) 

and expressing q;-lq;' as (In q;)', we have 

(d (x) + ! In q;(X))" = q; -l(x)d nIx) q; (x) . (14) 

Operating with the right-hand side of Eq. (14) on a "test" 
function "'(x), doing the necessary differentiation with the 
help of the Leibniz rule, and converting the resulting expres
sion into an operator form by omitting "'(x), we obtain the 
following operator paraphrase of the binomial theorem: 

( d (x) + ~ In q;(X))n = ± c ~ < q; -ld (n - i)(X) q; )d i(X) , 
dx i~O 

(15) 

where C ~ is the binomial coefficient and the angular brack
ets are used to indicate that the expression inside should be 
interpreted as a function rather than an operator, opposite, 
say, to the right-hand side of Eq. (14). In the case of the 
operator binomial (d + J)", the function q;(x), on the right in 
Eq. (15), should be replaced by 

q;(x) = exp(f J(X)dX). (16) 

In many particular cases the coefficients q; - 1 q;(n - i) in 
Eq. (15) can be given an algebraic form. For example, if rp is a 
weight function for an orthogonal polynomial, then the 
quantities q;-lq;(n -11 can be easily calculated by means of the 
Rodrigues formulas. 7 If rp = exp( - x2/2), then7

(a) 

n 

(d(x)-x)" = I C~(-l)"-iHn_i(x)di(x), (17) 
;=0 

where Hk(x) is the Hermite polynomial.s In the case 
q; = (1 - x)A(l + X)B we get 

(d(x)+~_~)n l+x I-x 
n 

= L C~(_2)"-i(n_i)!(1_x2)-n+i 
i=O 

(18) 
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where p~,/3)(x) is the Jacobi polynomial.7
(b) If q; = xA 

Xexp( - tx), then 

(d(X) + ~ - t)" = ito C~x-n+i(n - i)!L~-n+i(x)di(x), 
(19) 

where L % (x) is the Laguerre polynomial.7
(e). A number of 

"nonclassical" polynomials 7 may be treated in the same 
manner, as well. 

Applying the operators (17)-( 19) to the unit function 
results in differential representations for orthogonal polyno
mials which prove to be useful modifications of the Rodri
gues formulas. Applying these operators to more complicat
ed functions, one would obtain various addition theorems 
and "sum rules." For instance, operating with Eqs. (17)-(19) 
on the corresponding (to H, P, and L polynomials, respec
tively) weight functions and realizing that the weight func
tions' product is, again, a weight function belonging to the 
same class, that is, 

(l-x)A(1 +x)B X (l-xf(l +X)D 

= (l_x)A+C(l +X)B+D, 

etc., then by using Eq. (14) one could easily obtain some 
evident bilinear expansions in terms of polynomials with 
changing weight indices. Note that such polynomials arise in 
some important physical applications.9 

In the following we restrict ourselves to the particular 
version of Eq. (19) corresponding to t = O. Since L ~(O) 
= ( - 1)"( - n - a)nln!, by transforming the resulting sum 
to hypergeometric form we obtain 

(d(x) +A Ix)" = (A - n + l)nx-n 

XcP( - n,A - n + 1; -xd(x)), (20) 
~ 

where cP (a,c;x) is the Kummer function. A similar relation 
results if we put A = 0 in Eq. (18). 

III. ALTERNATIVE EXPRESSIONS FOR THE OPERATOR 
N(u) 

Since 

L~(z) = (a + l)nln! cP( - n,a + 1;Z), (21) 

then, combining Eqs. (20) and (8), we obtain 

NnlU (u) = u'V(d (u) + (A + v + !)/u)"d W(u) . (22) 

Using Eq. (14) we have 

NnIU(U) = U -A-1/2 d'V(u)uA+'V+ 1/2 dW(u). (23) 

Although Eqs. (22) and (23) look, aparently, simpler com
pared to Eq. (8), a further transformation of N(u) such that 
the operators d (u) would be involved inN (u) through P func
tionsoftheargument8(u) = u d(u),exclusively,provestobe 
possible. 

Consider some important elementary properties of the 
operator 8 (u) which plays an important part in formal trans
formations of hypergeometric series. !O(a),(b),(e) By the use of 
the commutation relations 

d (x)xa - xa d (x) = axa - 1 , 

X da(x) - da(x)x = - a da-1(x), 
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the operator identities 

f[o(x)]xQ = xaf[o(x) + a] , 

xQ f[o(x)] = f[o(x) - a]xQ, 

f[o(x)]dQ(x) = da(x)f[o(x) ~ a] , 

da(x)f[o(a)] = f[o(x) + a]da(x) 

(25a) 

(25b) 

(26a) 

(26b) 

are readily verified, which hold for any analytical function 
f(z). Though Eqs. (25) and (26) are rather trivial, they are, 
nevertheless, very expedient in deriving various properties of 
operator functionsf(o). For instance, they immediately lead, 
by induction, to the standard relations 

x"d"=~r = (- 1)"( - o(x))n , 

dnxn::::=(dx)" = (0 (x) + 1) .. , 
cro> 

(27) 

(28) 

which show, in particular, that the product of two operators, 
xn and d", as well as the operator d "x", are functions of one 
operator 0 (see Ref. 11). Note that the right-hand sides of 
Eqs. (27) and (28) can be transformed with the help of the 
well-known identity 

(29) 

Though none of the equations (25)-(28), separately, is novel 
[see, for example, Ref. lO(a)), the system of these equations, 
as a whole, provides a complete set of elementary steps 
which are sufficient to transform a product xad f3xY d W ... to 
any prescribed form. 

For example, transforming the first three multipliers on 
the right of (23) with the help of Eqs. (28) and (25a) we have, 
consecutively, 

u - A - 112 d V(u)uA + v + 112 = U - A - 112(d V(u)UV)uA + 1/2 

= u -A-II2(O (u) + l)vuA + 112 = (0 (u) + A. + ~)v. (30) 

With the aid ofEq. (30), Eq. (23) becomes 

NnlLdu) = (o(u) +,1 +~)vd"'(u), (31) 

or, taking account ofEq. (26b), 

NnlU (u) = d "'(u)(o(u) + L - v + ~)v . (32) 

The connection between Eqs. (8) and (31) is also implied by 
the following curious observation. Writing the Laguerre po
lynomial in Eq. (8) as the Kummer function fIJ, using an 
explicit expression for fIJ as a series in powers of the operator 

- ud (u), and transforming the latter with the aid ofEq. (27), 
QXD 

one can express N(u) as a Gauss function 2FI of the unit 
argument, 

N"IU(U) = (A. + ~)" ~I( - V, - 0 (u);,.t + ~;I)d"'(u), (33) 

This expression can be easily shown to be consistent with Eq. 
(31), if use is made of the Gauss summation theorem.lO(d) 

Expressing d"'(u) in Eq. (31) with the aid ofEq. (27), as 
( - u) - W ( - 0 (u)Jw and pulling the multiplier u - W to the 
left position with the aid ofEq. (25a), we obtain the expres
sion 

N,,1U (u) = ( - u) - W(o(u) + L - v + ~),,( - o(u))", , (34) 

with the operators d (u) being involved throughP functions of 
the argument 0 (u), exclusively. In each of the equations (31), 
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(32), and (34) the sign of the operator 0 (u) in the P symbols' 
arguments can be changed with the aid of the identity (29). 
For example, applying Eq. (29) to the second Psymbol on the 
right-hand side of Eq. (34), we obtain 

N"IU(U) = u -W(o(u) + L - v + ~lv(o(u) -llJ + 1)", . 
(35) 

If the same transformation is applied to the first P symbol, 
then 

N"IU(U) = (-1)"+wu -wI - o(u) - L - !),,( - o(u)Jw. 
(36) 

IV. GENERAL REMARKS 

Equations (35) and (36) serve as a basis for all transfor
mations which are used in the sequel. We shall make here 
some precursory remarks featuring the possible applications 
of these equations. 

The operator N (u) may occur in expressions of two dif
ferent types. The first type expressions are those which in
volve summation over n [see, for example, the right-hand 
side of Eq. (4)]. Since these summations are, as a rule, of 
hypergeometric type, it is expedient to express the operator 
N"IU (u) through P symbols {a)n of order n (with a indepen
dent of n). To this end one should use Eq. (36). Indeed, since 
the variables v and llJ differ from n in additive contributions 
[see Eqs. (9) and (10)], with the aid of 

{a)n+k = (a)k(a + kIn , (37) 

the operator N (u) in Eq. (36) can be easily transformed to the 
necessary form 

N"IU(U) = (- l)IU- [IAL]u-"( - o(u) - [LA.!] - !)n 

x(-o{u)+ [lA.L]),,(-o{u)-L- !hlU] 

x( -O{U))[UL]' 
(38) 

The second type expressions are those in which the operator 
N(u) is to be applied to a hypergeometric series F(rr). In 
term-by-term application of N (u) to the series, the following 
simple properties of the operator 0 (x) should be taken into 
account. First, since 0 (X).xi = ixi, then 

f[O(X)]Xi = f[i]xi . 

Second, if e is a constant, then 

o (ex) = o{x) . 

Third, 

o{x) = x(ln v(x))'o (v(x)) . 

Ifwe put v(x) =~ in Eq. (41), then 

o (xQ) = a- 18(x). 

(39) 

(40) 

(41) 

(42) 

Since u = r 2/2, these equations imply that 0 (u) = 0(r)/2, 
from which we havef[o(u)],ai = f[aiI2],ai, where i is the 
summation index involved in explicit representation of the 
seriesF(rr). Ifa is a rational fraction of the form a = 2S 1M, 
then, expressing i as i = kM + t, where O<;.t < M, we have 

f[O(U)],ai = rStlMf[kS + St 1M ](rs)k . (43) 
If a is a rational fraction of the form a = (2S + 1 )1M, then, 
using the representation i = 2kM + t, where O<;t < 2M, we 
have 
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f[8(u)]r"'i = r2S + 1)'IMf[k(2S + 1) + (2S~ l)t ](r4S+2)k. 

(44) 

Settingf[8(u)] = N(u) and using Eq. (3S), the resulting P 
symbols can be written, with the aid ofEqs. (43) and (44), as 
the products of P symbols of order k, if use is made of the 
Gauss-Legendre mUltiplication theorem 100e) for r (Nk ), 
where N = S or N = 2S + 1. Thus the initial hypergeome
tric series F (1"') splits into a sum of M - 1 hypergeometric 
series, in the case of Eq. (43), and into a sum of 2M - 1 
hypergeometric series, in the case ofEq. (44). Therefore, Eq. 
(35), rather than Eq. (36), should be used in the case of the 
second-type expressions. 

Two examples of the first-type expressions are dis
cussed in Secs. V-VII. Some simple examples of the second
type expressions, corresponding to the cases a = 2 and 
a = 1, are considered in Sec. VIII. 

V. REPRESENTATION OF THE COEFFICIENTS OF THE 
LAPLACE-TYPE EXPANSIONS IN TERMS OF THE 
OPERATOR GAUSS FUNCTIONS 

Substituting Eqs. (S) and (6) in Eq. (4) and using Eq. (38), 
one can easily show that summation over n gives rise to the 
Gauss function 2FI' Taking account of the operator order
ing, we obtain 

fLM(r + R) = L 2rr 3/2 rr(AX)H (I,L,A. ) 
1."- r(l+~) 

X { ~?(R)® ~~(r)}LMr-2[I"-LI 

- £(r 2) + [lAL ];1 + ~;R 2<£- 2) 

X ( - 8(r 2) - L - !)[Ia I( - 8(r 2))[I"-L I qJ(r) . 
(4S) 

In the scalar case L = M = 0 we have A = I. Since 

Yoo = 1/..j4ii andH(/,O,/) = 1/..j4ii, Eq. (4S) converts to 

foo(r + R) = (4rr)-!/2qJ (Ir + RII 

= ~ v'1T r i~ ~) { ~?(R) ® ~?(r)j 00' - 21 

X 2FI ( - 8(r 2) _~, - 8(r 2) + 1;1 + ~;R 2r-2) 
<D <!> a> 

X ( - 8(r 2))IqJ(r) , (46) 

Note that the parameters ofthe series 2FI(a,b;c;z) in Eq. (46) 
are related by the equality c = b - a + 1. This implies that 
the function ~l satisfies, in the scalar case, numerous qua
dratic transformationslO(f] which can be used to give the ar
gument of~! an appropriate analytical form. Some of these 
forms prove to be symmetric in R and r. 

VI. THE SACK EXPANSIONS 

If 

fLM(r) = ~~M(r)=rN ~~M(r), 
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(47) 

thenqJ(r) = r2N. Expansions of~~M(r + R) in terms ofbipo
lar harmonics, in the general (L =1= 0) and in the scalar (L = 0) 
cases, are given, immediately, by Eqs. (4S) and (46), respec
tively, if we put qJ = rN in their right-hand sides and replace, 
formally, 8 (r 2)---+N. Besides that, the ordering indices I and 2 
should be omitted. As a result, we get a remarkably short 
proof of two Sack expansions for the scalar!2 and generaP 
cases. For exact correspondence with Sack's formulas, be
sides correlating with the notations of Refs. I and 12 
[N---+(N -1)/2,etc.],r(1 + 3/2) should be written as adou
ble factorial and all P symbols should be expressed through 
r functions, provided that some of Psymbols are, prelimin
arily, transformed with the aid of Eq. (29). In addition, use 
should be made of the symmetry relations 

( - 1 )"-rr(A )H (/,L,A. ) = ( - 1 )Lrr(L )H (/,A.,L ) 

= ( - 1 )Irr(I)H (L,A.,I) . (48) 

It is worth noting that the expansion of the ~~ (r + R) 
(the scalar case) can be reformulated in terms offour-dimen
sional sphererical harmonics corresponding to hyperbolic ro
tations in four-dimensional pseudo-Euclidean space. Indeed, 
if 8 (r 2)---+N, then the function ~l in Eq. (46) can be written in 
terms of the Gegenbauer polynomiaF(d) 

2FI( -N+/,N-V+~;~:) 
= (N - l)! ( r 2 - R 2 )N - I C I + 1 (r 2 + R 2 ) 

(21 + 2)N _/ r 2 N -I r 2 _ R 2 • 

(49) 

If R < r, then the argument qJ of C ~ in Eq. (49) satisfies ine
quality 1 <qJ < 00, which makes possible the following para
metrization: 

qJ=(R 2 + r 2)/(r 2 - R 2) = cosh r . (SO) 

Then 

2Rr/(r2 -R 2) = sinh r. 

Taking into account that the four-dimensional harmonic, 
corresponding to rotations in four-dimensional Euclidean 
space, is 7(el.13 

Y~lm(E,O, qJ) = (sin E)IC~+_II(COS E)YIm(O, qJ), (SI) 

and using the relations cosh r = cos ir, sinh r = - i sin ir, 
after some minor algebraic transformations, we obtain 

~~(r + R) = 2N! L (2i)Irr(/) 
I (l+l)N+l 

X {YI(R)® p2NY~Wr,o,qJ)loo, (S2) 

where p2 = P'P and P is the four-dimensional vector with 
the components (x,y,z,iR ). Evidently, the case of R < r corre
sponds to the inner points of the cone R = (x2 + y2 + Z2).1/2 
In the case r < R the formal replacement r+±R should be 
made in Eq. (S2). In this latter case the four-dimensional 
harmonics refer to a space whose points are specified by the 
vectors P = (X, Y,Z,ir). 

VII. MORE GENERAL GRADIENT FORMULAS 

Equation (4) gives us the expansion of an 1ST fLM(r + R) 
in terms of the functions ~'/m (R). In the case of more general 
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expansions the ITO (2) in the right-hand side of Eq. (4) is 
replaced by more complicated ITO's. In many cases, how
ever, such ITO's prove to be particular cases of the general 
expression 

{ [
a;t.::1 (r)] c)"o } 

p Fq c ;Y I (V(r)) ® IL (r) AJL ' (53) 

where p Fq is generalized hypergeometric series (GHS)IO(g) in 
powers of the Laplace operator.::1 (r). The sets of parameters 
in p Fq are denoted, for brevity, as 

a = (al> ... ,ap ), c = (c!, ... ,cq ). 

Representing the GHS p Fq in Eq. (53) in explicit 
formlO(g) and taking account ofEqs. (5), (6), and (38), we ob
tain the generalized analog of the gradient formula (5) 

{ [
a;t.::1 (r)] 0 } 

p Fq c '?!Il(V(r)) ® Idr) AJL 

= p 4>~LA)(a,c;t,r)'?!I~JL(r), (54) 

where 

4>(lLA)(ac·tr)=H(IL 1)2[ILX]PNq (ac·tu)m(r) (55) 
p q '" ,YL. ILA'" T' 

'NYu ( ... ;"u) ~ (- 1)'(, '/21- 1M' 1,+, P, [:; - ~ \D ')- lUI] - I, - ~[, ') + luI ];4''£,-'] 

X( - 8(r 2) - L - !)[lLX ]( - 8 (r 2)[lAL ] . (56) 

It is easily verified, by carrying out the summation over n, 
that the right-hand side of Eq. (4) involves, implicitly, the 
gradient operator oF! (/ + 3/2; R 2.::1 (r)/4) '?!I?(V(r)); there
fore, Eqs. (45) and (46) become, on examination, particular 
cases of the general relation (56). 

Evidently, the transformations considered here give an 
example of the "first-type problem" if the use of classifica
tion adopted in Sec. IV is made. 

VIII. EXAMPLES OF THE LAPLACE-TYPE EXPANSIONS 

Now consider some examples of expansions described 
by Eq. (4) which lead to the "second-type problems." 

The radial part of the tensorsILM(r) occurring in appli
cations is representable, for the most interesting physical 
cases, as a product ofGHS p Fq , whose argument is propor
tional to r 2 or r, and a power of distance r. First, consider the 
case 

cp(r) = r f3p Fq [:;vr 2] . (57) 

To calculate the ITO (2) occurring on the right-hand side of 
Eq. (4), we use Eqs. (5) and (6). Denoting 

2 f3 [a;vr 2] % (r) = NnlLA (r /2)r pFq c' (58) 

expressing N(u) with the help of Eq. (35), commuting the 
operator P symbols with the power r f3 with the aid of Eq. 
(25a) and representing the GHS pFq in explicit form,lOlg) by 
term-by-term application of Eq. (39) we obtain 

f3 2 ~ (a); 2 . 
%(r) = 2"'r - '" 4- -( -) PvP",(vr )'/z1, 

I c i 

(59) 

where 

Pv = r (/3 /2 + L + ~ + i)l r (/3 /2 + L + ~ - v + i) , 
(60) 

P", = r ( /3 /2 + 1 + i)/ r ( /3 /2 + 1 - w + i) . (61) 

If /3 is a noninteger, then, expressing P v and P", through P 
symbols of order i, we have 
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I 

N(u) r f3
p
Fq [:;vr 2] 

= 2"'r f3- 2
",( - It+"'( - /3 /2 - L - l/2)v( - /3 /2)", 

[
a, /3 /2 + L + ~, /3 /2 + 1 ;vr 2 ] 

X P + 2 Fq + 2 C, /3 /2 + L + ~ - v, /3 /2 + 1 - w . 

(62) 

In the case of integral /3 denominator parameters in 
p + 1 Fq + 1 in Eq. (62) may assume nonpositive integral val
ues. Therefore, the formal expression for the series p + 2 Fq + 2 

may involve divergent contributions corresponding to zero P 
symbols in denominators. Evidently, we should find such 
transformations of Eqs. (59) and (62) which would prevent 
appearance of divergent terms. Note that the special cases 
are related either to the quantity Pv ' if /3 = 2m, or to the 
quantity P"" if/3 = 2m + 1, with m = 0, ± 1, ± 2, ... in both 
cases. Any of these quantities can be represented as 

R = r (s + i)l r (s - n + i) , 
where 

s = m + 1, n = w, if /3 = 2m; 

s = m + L + 2, n = v, if /3 = 2m + 1 ; 

with n;;;.O and i;;;.O. 

(63) 

On contemplation of Eqs. (59)-(61) and (63), the follow
ing three cases, s;;;.n + 1, l.;;.s.;;.n, and s.;;.O, can be shown to 
arise, each giving a number of subcases for the summation 
variable i. 

If n - s + 1.;;.0, then, for any i;;;'O, the both r functions 
in Eq. (63) are not singular. This allows us to use Eq. (62), 
directly. 

If n -s+ 1;;;.1 and -s+ 1.;;.0, then, for O.;;.i.;;.-s 
+ n, r (s - n + i) is singular; therefore R =0. For 
i;;;.n - s + 1, both r functions in Eq. (63) are regular. In this 
case we replace the summation variable i by i', setting 
i = i' + n - s + 1. With the aid of Eq. (37) all terms in Eq. 
(59) can be written as P symbols of order i' (i' = 0,1,2, ... ). 

If s.;;.O then there are contributions of three different 
types. For O.;;.i.;;. - s both r functions in Eq. (63) have poles, 
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that is, the quantity R becomes indefinite. In this case we use 
the transformation (29) which leads to a nonsingular expres
sionfor R. For -s + l<i<n -swehaveR =0. Finally, for 
i~ - s + n + 1, both of the r's in (63) are regular. In this 
case we introduce, again, the new summation variable i', 
putting i = i' + n - s + 1, and use Eq. (37) in all terms on 
the right-hand side of (59). 

The final results of these transformations are as follows. 
If {3 = 2m and m~O), then 

N (r 2/2)rm p Fq [:;vr 2] = pm+ 2Sq + 2 (a,e;v,r 2) , (64) 

where 

P"'+2 Sq+2 = 2"'r(m-"'l(.4 + 3/2 + m - O»)v( - 1)"'( - mla, 

F [a,m +L + 3/2,m + l;vr 2 ] 
Xp+2 q+2 e,m+L+3/2-v,m+1-0). 

(65) 

If {3 = 2m and O<m < 0), then 

N (r 2/2)rm pFq [:;vr 2] = pm+ 2 Tq + 2 (a,e;v,r 2) , (66) 

where 

X F [a + 0) - m,O) + L + ~,O) + 1;vr 2] 
p + 2 q + 2 e + 0) - m,A + ~,O) + 1 - m ' 

(67) 
where the symbol a + k denotes the set of numbers a l + k, 
a2 + k, ... , ap + k. 

If f3 = 2m and m< - 1, then 

Iff3 = 2m + 1 and m~v - L - 1, then 

N (r 2/2)rm + 1 pFq [:;vr 2] = p",+ 2 Uq + 2 (a,e;v,r 2) , (69) 

where 
m U _ 2"'r2m-2",+ 1 p+2 q+2-

x(m + ~ - 0»)",( -It( - m -L - I)v 

[
a,m + L + 2,m + ~;vr 2 ] 

X +2 F +2 • p q e,m + L + 2 - v,m + ~ - 0) 
(70) 

If {3 = 2m + 1 and - L - 1 <m<v - L - 2, then 

2 .2m+1 [a;vr2] m • 2 N(r 12)r pFq e = p+2 Vq+2(a,e,v,r ), (71) 

where 

m V _2",v-m-L-I -2-<-1 v!(-.4+!).,(a)v_m_L_I F [a+v-m-L-I,v+I,V-L+!;Vr 2
] 

p+2 q+2 - V r p+2 q+2 L 1 L 1 l' (v-m-L-I)!(e)v_m_L_I e+v-m- - ,v-m- ,-/l,+2 

If f3 = 2m +'1 and m < - L - 2, then 

N(r/2)rm+ I pFq [:;vr 2] = pm+ 2 Uq+2 + pm+ 2 Vq+ 2' (73) 

The more complicated case of GHS pFq (vr) can be re
duced to the above equations. To this end, taking account of 
the remarks exposed in Sec. IV, we shall write the series 
pFq(vr) in the following form l4

: 

F [a;vr] = ~ ~ (vr)t F [A(t); Vr 2] (74) 
p q e t~O (e)t t 2p 2q + I C(t) , 

where 

A(t) = {(a+t)/2,(a+t+ I)/2), 
C(t)= {(e+t)/2,(e+t+ I)/2,t+!J, 
V=4 P - Q + I V2 • 

Then, 

N(r2/2)rfJ pFq [:;vr] 

_ 2 fJ [A(O); Vr 2] 
- N (r /2)r 2p F2q + I C(O) 

(a)1 2 f3+i [A(1);Vr
2
] 

+v-N(r 12)r 2pF2q+1 C(I) . 
(e)1 

(75) 

(76) 

(77) 

(78) 

For any integral f3 both even and odd powers of rare 
present on the right-hand side ofEq. (78). Therefore, Eq. (78) 
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(72) 

may assume more special forms compared to the expression 
(58). We shall not present them explicitly here since their 
derivation can be easily performed by the direct use of Eqs. 
(64)-(73). 

Note that in many important particular cases the series 
p + 2 Fq + 2 on the right-hand sides of Eqs. (65), (67), (70), and 
(72) reduce to simpler form. This may take place, for exam
ple, due to cancellation of numerator and denominator pa
rameters. In the particular case m = 0 the series p + 2 Fq + 2 

in Eq. (67) reduces to p + 1 FH 1 which is equivalent to the 
result given in Ref. 4. 

IX. CONCLUSIONS 

It is shown that the operator N (r 2/2) [Eq. (8)] occurring 
in the general gradient formula (6) allows simpler expres
sions in terms of the Pochhammer symbols depending on 
operators 8 (r 2). This result seems to be important for the 
"hypergeometric" form of N (r 2/2) proves to be consistent 
with those structures which have to be dealt with, usually, in 
physical and quantum chemical applications. Two kinds of 
problems have been found to be the most typical, the opera
tors N being either involved with summation of the hyper
geometric type or applied to a certain hypergeometric sum. 
In both these cases the operator N is easily transformed in 
such a way that explicit algebraic expressions follow imme
diately for each of these two cases. 
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In particular, this gives a very compact expression for 
the Laplace-type series coefficients through the operator 
Gauss functions 2FI [see Eq. (45)]. In turn, remarkably short 
proofs of two important Sack's expansions I. 12 are implied by 
this observation. 

Another important corollary is that the gradient for
mula (5), involving '??17m ((r)), can be readily generalized for 
the case of the more complicated operator p Fq(t.:i (r)) 
X '??17m (V(r)) [see Eq. (54)] which one may expect to be in
volved in a more complicated Laplace-type series compared 
to that in Eq. (4). 

Explicit expressions for N (r 2/2) <p (r) have been ob
tained for the two cases: <p(r) = rfl p Fq (vr 2) and <p(r) = rfl 
Xp Fq (vr). With due respect to Eqs. (4H6), these formulas 
give the Laplace-type expansions for a wide class of spherical 
tensorsfLM(r + R) whose radial part is represented by gener
alized hypergeometric series. 

One may easily anticipate the possibility of generalizing 
the approach for the case of an 1ST depending on N vector 
arguments. In the case N = 2 this should give, apparently, 
an alternative (differential) representation for the Talmi
Smirnov coefficients. 15 

One should realize that convergence properties are to 
be investigated prior to (or, at least, posterior to) using the 
gradient formulas. Only terminating series have to be dealt 
with, however, in a number of physically important cases. 
The direct use of the "gradient" expressions for coefficients 
is, therefore, possible, the convergence problem being, evi
dently, eliminated for these cases. 

Note also that the Laplace-type series, which are im
plied by the formulas given in Sec. VIII, have a formal char
acter in case of a negative power exponent {3. Indeed, addi
tional generalized function terms should be incorporated in 
the right-hand parts of the corresponding expansions, by an
alogy with the case of '??17m (r + R) (see Ref. 16), provided 
that{3';;; - 3. 

Note added in proof: An interesting and suggestive ac
count of connections between expansion theorems and non
classical integrals of Bessel functions, interpreted as deriva
tives of generalized functions, has been given by S. N. Stuart 
[J. Austral. Math. Soc., Ser. B 22,968 (1981)]. He also pre
sented an ancillary theorem which expresses the gradient 
'??17m (V) of an ISTfLM(r) in a form that separates angular and 
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radial variables. The gradient formulas given in our paper 
seem to provide more flexible alternatives to Stuart's result, 
and these also seem to be more suitable for generalizations 
(see Secs. V-VIII). These remarks are likely to hold true with 
respect to several interesting differential formulas obtained 
by E. J. Weniger and E. O. Steinborn [J. Math. Phys. 24, 
2533 (1983)]. 
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On the polynomial solutions of ordinary differential equations of the fourth 
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The density of zeros of polynomial solutions of ordinary differential equations of the fourth order 
with coefficients depending only on the independent variable is analyzed. The first four moments 
of such a density are given directly in terms of the coefficients which characterize the differential 
operator. Application to the nonclassical orthogonal polynomials corresponding to the names 
Krall-Legendre, Krall-Laguerre, and Krall-Jacobi is done. Global asymptotic properties of the 
zeros of these polynomials are also obtained. 

I. INTRODUCTION 

The determination of the distribution of zeros of (or
thogonal) polynomials is a very relevant problem in theoreti
cal physics. One reason is that often the Hamiltonian of a 
physical system may be transformed by means of a Lanczos
like method l ,2 into a Jacobi matrix (i.e., a real, symmetric 
tridiagonal matrix). The characteristic polynomials of the 
principal submatrices of a Jacobi matrix form3 a system of 
orthogonal polynomials which satisfy a three-term recursion 
relation whose coefficients are the entries of the matrix. 
Then the calculation of the eigenvalue density of the physical 
Hamiltonian reduces to the problem of determining the den
sity of zeros of such polynomials starting from the coeffi
cients of the above-mentioned recurrent relation. This prob
lem has been solved by Dyson4 and Dean,5 and by Dehesa6 

and NevaC using very different methods.s 

Another reason is that in a large number of physical 
problems the eigenfunctions of ordinary differential opera
tors (e.g., Schrodinger operators) turn out to be orthogonal 
polynomials once one has separated out their behavior at the 
infinite and at singular points. Then the determination of the 
nodes ofthe eigenfunctions reduces to the problem of calcu
lating the zeros of certain polynomials. Here we are interest
ed in knowing the density of the zeros of these polynomials 
starting from the coefficients which characterize the corre
sponding differential equation. 

Recently, Case9 has found by very elementary means a 
method to obtain sum rules for the powers of the zeros of 
polynomials satisfying ordinary differential equations and 
subject to the two following conditions: (a) the zeros are sim
ple and (b) the coefficient to the ith derivative is itself a polyn
omial of degree not greater than i. These restrictions are 
fulfilled by a large class of families of polynomials which 
play an important role in physics, e.g., the classical orthogo
nal polynomials. 

Here we will use Case's method to investigate the distri
bution of zeros of all the systems of orthogonal polynomials, 
except the classical ones, which are solutions of an ordinary 
differential operator of the fourth order and with the above
mentioned restrictions. We consider the normalized density 
distribution function of zeros P N(X) = (1/ N )~;; = 1 <5(x - xn) 
of the polynomial PN(x). The moments about the origin of 
this function are 

I N 1 
fl; = - ~>~=-Yr' 

Ni=1 N 
Our purpose is the evaluation of the first few moments 

(j.t;; r = 0,1,2,3,4) in terms ofthe coefficients characterizing 
the differential equation fulfilled by the polynomials. It is 
known that these quantities give the behavior of the density 
around the mean and often allow a good approximate de
scription of this function all over the interval of definition by 
means of one of the various available parametrizations 10-12 
(see Charlier, Weibull, etc.). 

The structure of the paper is as follows: In Sec. II we 
briefly summarize the main result, appropriately corrected, 
of Ref. 9 for the case where the differential equation is ofthe 
fourth order. Other nontrivial results not found by Case but 
obtained with this method are given since they are needed 
later on. For the sake of clarity the proofs of these new results 
are postponed to the Appendices. The remaining sections are 
devoted to applying the previous results to the nonclassical 
orthogonal polynomials l3,14 identified with the names 
Krall-Legendre, Krall-Laguerre, and Krall-Jacobi. These 
polynomials, which are closely connected with the Le
gendre, Laguerre, and Jacobi polynomials, are orthogo
nal14,15 with respect to Stieltjes weight functions, which are 
absolutely continuous on [- 1,1], [0,00], and [0,1], respec
tively, but which have jumps at some of the intervals' ends. 
Apart from the classical orthogonal polynomials which sa
tisfy the square of their second-order equation, these polyno
mials are l6 the only Chebyshev sets which fulfill a fourth
order differential equation of the type (1). Finally some 
concluding remarks are given. Case's notation is used 
throughout the paper. 

II. METHOD 

Let us assume that our polynomials PN(x) satisfy the 
differential equation 

4 

Lgi(X)P~(x) = 0, 
;=0 

where 
i 

gi(X) = L a),'x j
, i = 0,1,2,3,4, 

j=O 

(1) 

(2) 

with constant coefficients a),'. It is important to point out 
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that all the coefficients aJ''. except a~), are independent of N. 
Assuming further that all the zeros of PN(x) are simple, 

then the following basic relation has been shown9
: 

4 i 
~ i ~ a(IIJ(i) . = - a(1)y _ afl)y 
£.. £.. } r+} ° r 1 r+ 1> 

(3) 
i~2 j=O 

(6b) 

i-I 

J~" =YI II(N - t), (6c) 
,=1 

for r = 0,1,2, ... , and 

xr 
(i)_~ II 

[
i-I ][( . 1) i-I] J~i~ 1 = II}N - t) N - I ~ Y2 + -2-Y~ , 

J - £.. ' r -J. (XI - XI )(XI - XI )",(xi - XI ) 
-r- 1 2 I 3 J i 

(4) 

where ~¥- means to sum over alII's subject to none of them 
being equal. Here we avoid the erroneous factorial 11 of Eq. 
(5) of Ref. 9. In spite of this error the sum rules of zeros of 
classical orthogonal polynomials calculated by Case9 are 
correct since such polynomials satisfy a differential equation 
of order i = 2. 

(6d) 

and that for r">i, J~1 depends only on theys for s<,r + 1 - i. 
The dependence of Y r + 1 _ i is linear. 

With these data in mind and following the lines of that 
reference, we have proved that for i = 3 (see Appendix A) 

J~)=(N2-rN+ r(r~I))Yr_2 
r- 2 

+ L (N - t)Y,_1 Yr_I_,(1 - 8r.3 ) (7) 
,=2 

It can be shown that the quantities J~) can be expressed 
in terms of the Ys' Thus, ultimately, Eq. (3) is a recurrence 
relation which permits us to evaluate the Ys' hence the mo
ments J.L; of the density distribution of zeros of the polyno
mial PN(X), We remark that abO) is the only coefficient which 
does not play any role for the calculation of the moments. 

1 r-2s-2 
+ 3" S~3 ,~/r-I-s Ys-I-, y,(l- 8r.3)(1 - 8r,4)' 

valid for r = 3,4,5, .... In particular one has 

Therefore the first step here is to calculate the J~I, at 
least for i = 2,3,4 according to Eq. (3), in terms of the Ys' In 
Ref. 9 some results relevant for our purpose were found. 
They are as follows: 

J~) = (N 2 - 5N + 20/3)Y3 + (2N - 5)Y2YI + jYi, (8a) 

J~) = (N 2 - 6N + lO)Y4 + (2N - 6)Y3YI 

+(N-3)y~ +Y2y~. (8b) 

(2) _ (N r ) 1 r~:? J r - -- Yr-I +-2 £.. Yr-l-sYs' 
2 s=1 

(5) (Here we give only the explicit expressions of the J~) not 
given by Ref. 9 but needed here later on.) 

J~1 = 0, O<,r<J - 2, (6a) Also, in Appendix B it is proved that for i = 4, 

1 { r- 2 
J~4) = - [(4N 3 

- 6rN 2 + (4[(r - l)(r - 2) + 2] + 6(r - 2)N - r(r - l)(r - 2)] Yr- 3 + L [6N 2 - 6(2t - I)N 
4 ,=3 

r-2 '-2 
+ (4t(t - 1) + 3(t - 1)(r - t)] Yr-I-tY,-2(1 - 8r.4) + L L (4N - 6s')Yr-I-,Y,-I-sYS-I (1 - 8r.4)(1 - 8r.5 ) 

,=4s=2 

+ :t: :t: :t: Yr-I - t Yt- I-s Ys-I - u Yu(l- 8r,4)(1 - 8r.5 )(1 - 8r.6 )}, 

valid for r = 4,5,6, .... In particular one has 

J~4) = (N - 3)(N 2 - 6N + lO)Y3 + 3(N 2 - 6N + 9)Y2YI + (N - 3)yi, 

J~4) = ![2(2N -7)(N 2 -7N + 15)Y4 + 4(3N 2 - 2IN + 38)Y3YI + 3(2N2 - I4N + 25)y~ + 6(2N -7)Y2Y~ + yn. 

(Again, here we write the needed J~4) not found in Ref. 9.) 

III. THE KRALL-LEGENDRE ORTHOGONAL POLYNOMIALS 

These polynomials satisfy the following fourth-order equation 13. 14: 

(X2 - WP~(x) + 8X(X2 - I)P~(x) + (4a + 12)(x2 - I)P~(x) + 8axPjy(x) 

- [8aN + (4a + 12)N(N - 1) + (8 + (N - 3))N(N - I)(N - 2)]PN (x) = 0, 

which is a differential equation of the type (1) and (2) with coefficients 

a\l) = 8a, abl)=O, 

a~) = 4a + 12, a\2) = 0, a(2)-° - - (4a + 12), 

a~3) = 8, a~)=O, a(3) -
1 - -8, a~)=O, 

a~4) = 1, a~4) = 0, a(4)-
2 - -2, a\4) = 0, ab4) = 1. 
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The Krall-Legendre polynomials are orthogonal l 4-15 

on [ - 1, + 1] with respect to the Stieltjes weight function 

w(x) = !(8(x - 1) + 8(x + 1)) + a/2. 

Taking the values (12) to Eq. (3) one obtains 

Yr+ I 

which for r= 0,1,2, ... allows us to calculate the moments 
P; = y.lN of the density of zeros of the polynomial PN(x) 
directly in terms of Nand a. 

Indeed, with r = ° this equation reduces as follows: 

_ a + 3 J12) 3 T13) 1 T14) YI- --- 2 --oJ 3 --J
2a 

4' 
a a 

where the property (6a) was already used. Further, the prop
erty (6c) says that J~/ is proportional to YI' hence it is clear 
that 

pi =yIIN=O. 

This should not surprise us since the Krall-Legendre 
polynomials are either odd or even. Therefore any moment 
of odd order vanishes. With r = 1, Eq. (13) gives 

Y2 = [(a + 3)/a ](J\2) - J~2)) + (3Ia)(J~) - J~)) 

+ (1I2a)(2J~4) _J~4)). 

By means ofEq. (6b) one knows that 

J\2) = N(N - 1)12, 

J~) = N(N - l)(N - 2)/3, 

J~4) = N(N - l)(N - 2)(N - 3)/4, 

and from Eq. (6d) 

J~2) = (N - ~)Y2 + yil2, 

J~) = (N - 2)[(N - 2)Y2 + yi], 

J~4) = (N - 2)(N - 3)[(N - ~)Y2 + 3yi/2]. 

IV. THE KRALL-LAGUERRE POLYNOMIALS 

With this help, it is trivial to find that 

,_ 1 _ N 3 -2N2+(2a+5)N-(2a+4) 
P2 - N Y2 - 2N 3 _ 3N 2 + (4a + 1)N - 2a . 

(14) 

To calculate p~, we work in a similar way. Now, the 
value r = 2 in Eq. (13) allows us to obtain the following: 

Y4 = [(a + 3)/a](J~2)- J~)) + (3Ia)(J~)- J~)) 

- (1I2a)(J~4) _ 2J~4) + J~4)). 
Taking into account that J~2) = (N -~) Y4 + yV2 due 

to Eq. (5) and the values (Sb) and (lOb) for J~) and J~4), one 
has after regrouping terms that 

p~ =N- IY4=A(N,a)/B(N,a), (15) 

where 

A (N.a) 
= -!IN 3 - 6N 2 + lIN - 6) 

+ 2N 3 
- 9N 2 + (19 + 2a)N 

- (15 + 3a)p2 - BN 3 
- ~N2 + (.I} + a)N ]P22

, 

B (N,a) = N 3 
- ~N2 + (1/ + 2a)N - Pt + 3a). 

For very large N, Eqs. (14) and (15) say that P2 
= ~ + 0 (N -I) and p~ = i + 0 (N -I). respectively. Fur

thermore it is possible to prove17 by means of the Nevai
Dehesa theorem. 7 which starts from the three-term recur
rence relation on the polynomials, that 

, 1 (2k) _I 
P2k = 22k k + O(N ), 

for k = 1,2,3, .... Of course P2k _ I = 0. This indicates that 
the asymptotic (N- 00) density of zeros of the Krall-Le
gendre polynomials is an inverted semicircular function on 
[ - 1, + 1]. 

These polynomials are defined by a differential equation of the form (1) and (2) with the following coefficients l6: 

a~) = - [(2R + 2)N + N(N - 1)], 

a\l) = 2R + 2, a~1) = - 2R, 

a~) = 1, a\2) = - 2R - 6, a~) = 0, 

~=~ ~=-~ ~=~ ~=~ 
a~4) = 0, a~4) = 0, a~4) = 1, a\4) = 0, a~) = 0. 

The Krall-Laguerre polynomials are orthogonal16 on [0,00) with respect to the following Stieltjes weight function: 

w(x) = (lIR )8(x) + e- x
• 

(16) 

Now, we want to calculate the moments of the density of zeros of the Krall polynomial of Laguerre type of degree N as a 
function of R. First of all, we take the values (16) of the coefficients aj" to Eq. (3). For r = 0,1,2, ... , the result is the following re
cursion relation: 

(2R + 2)Yr+ 1= 2RYr + 2[(2R + 6).1?L -J~2~d - 6(2J?L -J?~2) - 4J~4~2. 

With r = 0, this equation reduces as follows: 

(2R + 2) YI = 2RN + 2 [(2R + 6).1\2) - J~)] + 6J~), 

(17) 

where we have already used the fact that Yo = Nand J \3) = ° and J~) = ° due to Eq. (6a). Since the values of the other J's are 
known, one obtains 

1549 J. Math. Phys., Vol. 26, No.7, July 1985 Dehesa, Buendia, and Sanchez-Buendia 1549 



                                                                                                                                    

PI = (N 2 + RN - 1)1(N + R ). (IS) 

Hence, P; = N + 0 (N°) for large values of N. 
Now, Eq. (17) with r = 1 gives 

(2R + 2)Y2 = 2RYI + 2[(2R + 6)J~) - J~)] - 6(2 J~) - J~)) - 4J~4). 

Operating here with the known values of J's, we obtain 

- (N 3 - 2N2 - N + 2) + [6N 2 + (4R - 6)N - 2R ]p; - Np;2 

pi = 2(N + R ) - 1 
(19) 

We remark that pi = 2N 2 + 0 (N) for large values of N. 
With r = 2, Eq. (17) gives 

(2R + 2)Y3 = 2RY2 + 2[(2R + 6)J~2) - J~)] - 6(2J~) - J~)) - 4J~4), 

which, with the value (IS) for Y2 and taking into account the relations (6b)-(6d), reduces as follows: 

P3 = [-Np;pi + [3N 2 +(2R -6)N-2R+3]pi +N(3N+R-3)p;2-(2N3-6N2+4N)P;](N+R-I)-I, (20) 

which allows us to evaluate pi in terms of Nand R since P; and pi are already given in Eqs. (IS) and (19), respectively. From 
this equation and the asymptotic values of P; and pi, it is possible to obtain the relation P3 = 5N 3 + 0 (N 2) when N is very 
large. 

In a similar way but with r = 3 in Eq. (17) and the help of the relation (Sa), we obtain the following recurrence relation for 
II' • 
1'"'4 • 

P4 = D (N,R )/[2(N + R ) - 3], 

with 

D (N,R ) = - N pi2 
- 2Np;P3 + (6N 2 + (4R - IS)N + 16 - 6R )P3 

+ (12N + 4R - IS)Np; pi - (4N 3 - ISN 2 + 26N - 12)pi + 2N2p;3 - (6N 2 - ISN + 12)N p;2 

which produces the resultp4 = 14N4 + 0 (N 3) for very large N. In general it can be proved l7 that 

P; = r ~ 1 (2~)Nr + 0 (Nr- I). 

v. THE KRALL-JACOBI POLYNOMIALS 

These polynomials l6 verify the differential equation (I) and (2) with the coefficients 

(21) 

~) = - [(a + 2)(2a + 2 + 2M)N + (a2 + 9a + 14 + 2M)N(N - 1) + 2(a + 4)N(N - I)(N - 2) + N(N - I)(N - 2)(N - 3)], 

a\l) = (a + 2)(2a + 2 + 2M), ag) = - 2M, 

a&2)=a2+9a+ 14+ 2M, a\2) = -6a-12-2M, 

a~)=2a+S, a~)= -2a-12, 

a~)=O, 

a\3) = 4, a~)=O, 

a~4) = I, a~4) = - 2, a&4) = I, a\4) = 0, ab4) = O. 

The Krall-Jacobi polynomials are orthogonal 16 on [0, I] with respect to the Stieltjes weight function 

w(x) = lIM8(x)+(I-xt;a>-1. 

(22) 

Our purpose is to calculate the first four moments of the density of zeros of the Krall-Jacobi polynomial of degree N 
directly in terms of the two parameters a and M which characterize it. As in the previous two sections we will use Eq. (3), 
which for this case reduces as follows: 

2(a+2)(a+M+ I)Yr+1 =2MYr +2[(6a+ 12+2M)J~2L -(a2 +9+ 14+2M)J~2~2] 

- 3 [4J~3~ 1 - (2a + 12)J?~ 2 + (2a + S)J~3~ 3] - 4 [J~4~ 2 - 2J~4~ 3 + J~4~ 4]' (23) 

for r = 0,1,2, .... With r = 0 and the relations (6a)-(6d), this equation gives the moment about the origin of the first order 

P; = [N 3 + aN 2 + (M - I)N - a]/[2N3 + 3aN2 + (a2 + 2M)N + aM]. (24) 

With r = 1 and the same relations (6a)-(6d), Eq. (23) reduces to the following recurrence relation for the second moment: 

pi =F(a,M,N)lG(a,M,N), (25) 

with 

1550 

F(a,M,N) = - (N 3 - 2N2 -N + 2) + [SN 3 + (6a - 12)N2 + (4 - 6a + 4M)N - 2M]p; 

- N [6N 2 + (6a - 6)N + 2 - 3a + a 2 + 2M ]p;2, 

G(a,M,N) = 4N 3 + 6(a - I)N 2 + (6 - 6a + 2a2 + 4M)N + (2aM - 2M - a 2 + 3a - 2). 
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Putting r = 2 and r = 3 in Eq. (23), we obtain the expressions of the third and fourth moments, respectively, as functions of N, 
a, and M. Their evaluation is straightforward but a bit more involved and cumbersome since we have to play also with the 
values (Sa) and (Sb) for the quantitiesJ~) and J~), respectively, and (lOa) and (lOb) for J~) and J~4), also respectively. For this 
reason, we give only the recurrence expressions for these moments. The third moment is given as follows: 

P3 =P(a,M,N)lQ(a,M,N), (26) 
with 

P(a,M,N) = - [4N 3 -12N 2 + SN]pi + [12N2 + (00 - 24)N + 12 - 00 + 2M]Np? 

+ [SN 3 + (00 - 24)N2 + (2S - 12a + 4M)N - 12 + 00 - 4M ]pi 

- [12N 2 + (12a - 24)N + 16 - 12a + 2a2 + 4M ]Npipi - [4N + 2a - 4 ]N 2pi3, 

Q(a,M,N) = 4N 3 + 6(a - 2)N 2 + (20 - 2a2 - 12a + 4M)N + 12 - 2a2 + lOa + 2aM - 4M, 

and the fourth moment is expressed by 

P4 = R (a,M,N)/S(a,M,N), 

with 
R(a,M,N) 

= - [6N 2-1SN+ 12]NPi2- [4N 3 -1SN 2+26N-12]pi + [SN+2a-12]N 2p?+ [24N 2+(12a 

- 72)N + 60 - lSa + 4M]N pipi - [12N + 6a - lS]N 2p?pi + [SN 3 + (00 - 36)N 2 + (6S - lSa 

+ 4M)N - 4S + 100 - 6M] P3 - [12N 2 + (12a - 36)N + 36 - lSa + 2a2 + 4M]N PiP3 - [6N 2 + (00 

- lS)N + 17 - 9a + a 2 + 2M]N pi2 
- N 3pi\ 

S(a,M,N) = 4N 3 + 6(a - 3)N 2 + (42 - lSa + 2a2 + 4M)N - (36 - 21a + 3a2 
- 2aM + 6M). 

From Eqs. (24)-(27) we can obtain the values of the first 
four moments for very large values of N in a straightforward 
manner. They are as follows: 

pi =!+O(N-I), pi =i+O(N-I), 

P3 = ~ + O(N-I), P4 = m + O(N-I). 

These values seem to indicate that 

, 1 (2r) -I Pr =? r + O(N ); r = 1,2,3, ... , 

which are the moments of an inverted semicircular density. 
The comparison of these values with the corresponding 

asymptotic quantities of other orthogonal polynomials per
mits us to make some interesting observations. 

(a) The first two moments of the zeros of the Krall
Jacobi polynomials are the same as the first two even mo
ments ofthe zeros of the Krall-Legendre polynomials. 

(b) The first four moments of the zeros of the Krall
Jacobi polynomials are equal to the first four even moments 
ofthe zeros ofthe classical Jacobi polynomials. 

It can be shown that these two statements are verified 
by moments of arbitrary order. 17 Then it is natural to think 
that there must be deeper relations between the asymptotical 
distribution of zeros of the various Krall polynomials and 
the corresponding quantity of the classical orthogonal poly
nomials. 

VI. CONCLUSION 

There have been found explicit expressions for the first 
four moments of the normalized density of zeros of polyno
mials satisfying a fourth-order differential equation. Also, 
the results have been applied to all the orthogonal polynomi
als, except the classical ones, verifying such a differential 
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I 
equation. To the best of our information, this is the first time 
that any property of the zeros of these polynomials is found. 

Especially stricking are the moments of the density of 
zeros of the Krall-Jacobi polynomials and their relation 
with the corresponding quantities of the Krall-Legendre 
polynomials and of the classical Jacobi polynomials. 
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APPENDIX A: DERIVATION OF J}3) 

Here we want to prove Eq. (7). Equation (4) gives the 
definition 

which, according to Ref. 9, can be transformed into 

Here the symboll:,.. is a sum over ii, i2, and i3 such that 
all of them are different among each other. Using the simple 
relations 
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X S X S ~ L 12 = ~ L 12 - 13 

12#1, X I2 - XI3 2 12#/3 X I2 - XI3 

one obtains after some manipulations the relation 
1 r-Is-I 

J (3)=_ '" '" '" xr-I-sxs-I-,x' 
r 3'::'-'::'-'::'- II 12 13 

s~1 ,~o # 

(AI) 

I r-Is-I 

=- L L 03(r-l-s,s-I-I,I), (A2) 
3 s~1 ,~O 

where we have used the notation 

O ( ) '" 'I '2 '3 3 11,lz,13 = .::.- X/IXlzXI3 
# 

(A3) 

to write the last equality. Now we calculate the 0 3 quantity 
by expanding the triple sum. Taking into account the defini
tionYr = l:f~ I x~ and making some straightforward algebra
ic operations, we obtain 

3 3 

03(II,tz,t3) = 2yu - L Y'iYu-'i + L Y'i' 
;=1 ;=1 

where u = II + I z + 13 , The use of this in Eq. (A2) leads to 
I r-Is-I 

J~3)=_ L L [Yr-l-sYs-I-,Y, 
3 s~1 ,~O 

-3Yr-l-sYs-1 +2Yr_2]' 

Simple operations here produce the wanted value of J ~3) 
given in Eq. (7). 

APPENDIX B: DERIVATION OF J,.4) 
Now let us prove Eq. (9). From Eq. (4) we have the 

definition 

Xr 
J~4) = L ______ .:../1 ____ _ 

# (XII - Xlz)(X/I - XI3 )(X/I - XI.) 

It is shown in Ref. 9 that 

Xr xr 
J(4) = L II - Iz 

r # (XII - Xlz)(X /I - XI3 )(X/I - XI.) 

Here the symboll:# denotes a sum over II' Iz, 13 , and 14 
such that none ofthem are mutually equal. From here and by 
means of Eq. (28) and the following relation 

we can easily show that 
I r-Is-I '-I 

J(4)=_ '" '" '" '" xr-I-sxs-I-'x,-I-uxu 
r 4'::'-'::'-'::'-'::'- II Iz 13 14 

s=Z'~1 u~o # 

I r-Is-I'-I 

=- L L L °k-l-s,s-l-I,I-I-u,u). 
4 s=2'~lu~O 

(Bl) 
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To write the last equality we have used the notation 

O ( ) '" 'I 'z '3 '4 411,IZ,13,14 = .::.- XII X lz Xl3X /4 ' 
# 

expanding completely this quadruple summation, regroup
ing terms, and bearing in mind the definition ofYr produces 
the following results: 

4 

04(tl ,lz,13,14) = - 6yu + 2 L Yt Yu-, 
;= 1 I I 

3 

+ L Y"+'i+IYU-"-'i+1 
i~ I 

4 4 

- LY'iY'jYU-'i-'j + II Y'i' 
j>i i= 1 

with u = tl + I z + 13 + t4 • The use of this result in Eq. (31) 
allows us to write 

I r-Is-I ,-1 

J~4)=_ L L L [Yr-l-sYs-l-tY,-I-UYU 
4 s~2'=1 U=O 

-6Yr-l-sYr-I-,Y,-1 +8Yr-I_,Y,_2 

+3Yr-2-sYs-1 -6Yr-d· 

A long series of straightforward but tedious manipula
tions transforms this equation into the wanted expression (9) 
for J~4). 
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This article investigates a nonlinear system of partial differential equations describing multigroup 
neutron-flux reaction-diffusion inside a nuclear fission reactor. The neutrons are divided into n 
energy groups, with fission and scattering rates dependent on temperature, which gives rise to the 
(n + 1 )th equation. Cases concerning directly coupled and down scattering, when group transfers 
only occur from higher to lower energy groups, are considered. Quantitative conditions on the 
various fission and scattering rates are found for eventual "blowup" and "decay" of neutron 
concentrations. Finally, a system with fission and scattering rates dependent on neutron density is 
also investigated. Sufficient conditions for positive nontrivial steady state are found. 

I. INTRODUCTION: NONLINEAR TEMPERATURE· 
DEPENDENT MODELS FOR NEUTRON FISSION 

This paper studies the steady states of multigroup diffu
sion equations, describing neutron-flux reaction-diffusion 
inside a nuclear fission reactor. The reactor core is represent
ed by a bounded domain gin R d, d>2. The functions uj(x), 
i = 1, ... ,n, x = (x 1,,,,,Xd )Eg are the neutron flux of the ith 
energy group. The T (x) is the core temperature above coolant 
temperature. The following system of nonlinear temperature 
feedback multigroup elliptic diffusion equations will be con
sidered in Sec. II: 

n 

.Ju j + L Hij(x,T)uj = 0, i = 1, ... ,n, 
j=1 

n 

.J T - c(x)T + L Gj(x,T)uj = 0, in g. 
j=1 

(Ll) 

Here.J == ~1 = 1 (J2 
/ Jx~), c(x) > ° in g closure represents the 

cooling function. The functions determining interaction 
rates, Hij(x,T) and Gj(x,T), are assumed to be functions of 
space and temperature. In more conventional notations of 
nuclear engineering, 

Hll = 0'1-I[V1.If. -.IR ], Hlj =O'I-IVj .Ifj' for j>2, 

Hi; ==O'i- l.IS .. ' for i> 1, j = 1, ... ,i - l,i + 1, ... ,n, 
, J' 

Hii = - O'i- l.I
aj

, for i> 1, Gi = OJ .Iii' 

Here,.Iii is the fission "macroscopic cross section" of group 
i. Also, .IRis the removal cross section, .Is is the group-

J' 

transfer cross section from group j to i, and.I aj is the absorp-
tion cross section of group i. The 0'0 Vi' and OJ are diffusion, 
neutron release, and energy release parameters, respectively. 
Detailed descriptions of such symbols can be found in Ref. 1, 
p.288. 

Linear models, neglecting T and the last equation (1.1), 
had been extensively studied analytically and numerically 
(see, e.g., Refs. 1-3). The limitations of such linear models 
had been mentioned in Ref. 4. The advisability of a tempera
ture-dependent feedback model had been proposed and 

studied in Refs. 5-7. Power levels of reactors are adjusted by 
moving the control rods, causing changes in temperature 
and neutron flux in the core. However, the atomic concen
trations of materials in the core depend sensitively on tem
perature. As temperature changes, they may contract, ex
pand, or change phase, eventually causing a change in the 
macroscopic cross section. 

In Ref. 7, temperature feedback models are only investi
gated for two-group neutron flux where the group-transfer 
scattering effect is quite simple. In practice, the multigroup 
equations are commonly applied in cases of four or more 
groups. The scattering effect is more involved, and we will 
consider the situations of directly coupled and down scatter
ing in n groups. Moreover, the coefficients or cross sections 
Hij are now dependent on space x, while in Ref. 7 they are 
independent of x and can only be applied to homogeneous 
reactors. 

In the case of down scattering, one assumes group 
transfer only from higher to lower energy groups (i.e., from 
group j to group i, i > j). On the other hand, fissions from 
each group produce neutrons in the first group. Therefore, 
we assume 

H 1j > 0, j = 2, ... ,n. (1.2) 

(del) 

For i> 1: Hij>O, if j<i, Hii = -Aj(x,T)<O, 

and Hij =0, if j> i. (1.3) 

All inequalities are true for XE~, T>O. In the first row, 
i = 1, only Hll is not assumed positive because of the remo
val term -.I R which can be adjusted by control rods. 

We now clarify our notations, conventions, and as
sumptions in this article. Here, g is a bounded domain in 
R d, d>2, whose boundary {jg is C 2 smooth [i.e., can be 
locally represented asxj = tP (x) for some i, tP with continuous 
second derivatives and independent of Xj ]; ~ denotes g 
closure. The fUEctions Hij' Go iJ = 1, ... ,n are continuo~s 
functions OfXEg, T>O; c(x) is continuous and positive in g. 
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For convenience, let 

hij = inf{Hij(x,T)lxE~, 1'>0), 

hij = sup!Hij(x,T)lxE~, 1'>0), 

for i,j = 1, ... ,n. For i# 1,0,; = inf{A;(x,T)lxE~,1'>OJ, aj 
= sup!Aj(x,T)lxE~,1'>OJ, and similarly we definegog; to 

be the corresponding inf and sup of Gj> i = 1, ... ,n. We as
sume that 

- 00 <hll<hll < 00, O<hij<hij < 00, 

for i= l,j= 2, ... ,n, and for i> l,j<i, 

(1.4) 

o <o'j<aj < 00, i = 2, ... ,n, 
o <gj<gj < 00, i=I, ... ,n. 

[Note that (1.3) implies that for i> 1, hijhij = 0 ifj> i.] These 
are very reasonable and general assumptions for the reactor 
model. 

Let AI> 0 denote the first eigenvalue of the eigenvalue 
problem: .dw + AW = 0 in iiJ, W = 0 in 8iiJ, where mIx) 
is the corresponding normalized eigenfunction with 
max! mIx) IXE~ J = 1. For positive integers r, C '(iiJ) and 
C'(~) denote r times continuously differentiable functions 
in iiJ and ~, respectively. 

In Sec. II, we consider Eqs. (1.1) in iiJ with non-nega
tive or zero Dirichlet boundary conditions on 8iiJ. Theorem 
2.1 finds a very simple criterion when nontrivial non-nega
tive solutions cannot exist (for the corresponding time-de
pendent parabolic problem, solutions with non-negative ini
tial data would "blow up" as t-+ + 00). Theorem 2.2 
considers the case of directly coupled scattering (a special 
case of down scattering); it finds some sufficient conditions 
for "blow up" when the criterion in Theorem 2.1 is violated. 
Theorem 2.3 extends Theorem 2.2 to the general down scat
tering situation. Theorem 2.4 finds "decay" conditions for 
the nonexistence of nontrivial non-negative solutions; such 
conditions for the corresponding time-dependent parabolic 
problem would imply solutions tending to zero as t-+ + 00. 

Corollary 2.5 gives a simple diagonally dominant criterion 
for an application of Theorem 2.4. 

In Sec. III, a simpler version of temperature feedback is 
considered. We assume that fissions and other cross sections 
are promptly affected by the neutron flux, eliminating the 
last equation in (1.1). Theorems 3.1 and 3.2 find sufficient 
conditions for the existence of nontrivial non-negative equi
libria for the cases of directly coupled and down scattering, 
respectively. 

II. BLOWUP AND DECAY CRITERIA 

In this section, hypotheses (1.2)-(1.4) are always as
sumed in every theorem, unless otherwise stated. 

When the fission cross section of the first group is large 
compared with the removal cross section, one expects the 
reactor to blow up. Theorem 2.1 gives a simple quantitative 
criterion for this to happen, and nontrivial non-negative 
steady state cannot exist. 

Theorem 2.1: Suppose that 

hll = inf!HII(x,s)lxE~,S;;'OJ ;;,A 1• (2.1) 
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Then Eq. (1.1) with boundary conditions 

u;(x) = u?(x);;.O, i = 1, ... ,n, T(x) = TD(X);;'O, 

for xE8iiJ [here u~ (x), ... ,u~ (x), TD(X) are given functions on 
8iiJ], has no solution (u I(X), ... ,un (x), T(x)) with the following 
properties: 

(i) Each component is in C 2(iiJ)nC l(~). 
(ii) uj(x);;.O, i = 1, ... ,n, T(x);;.O in~. 
(iii) u1(x)¢0 in ~. 

Proof Assume that (u1(x), ... ,un(x),T(x)) exists as de
scribed with properties (i)-(iii). We will construct a family of 
lower bounds for the function U 1 (x), parametrized by 8> O. 
As 8-+ 00, the lower bound will tend to 00. For each 8> 0, 

li - • define U 1 (x) = 8m(x) for xEiiJ. For all uj(x);;.O, 1= 2, ... ,n, 
T(x);;.O, we have 

n 

.du1(x) + HII(x, T(x))u1 (x) + L H1j(x,T(x))uj(x) 
j=2 

(2.2) 

in iiJ. From properties (i)-(iii), we now deduce that 
U 1 (x) > u1 (x) for xEiiJ and 8> ° sufficiently small. Let 
C> Ihlll; we have 

.du1(x) - Cul(x) = - [HII(x,T(x)) + C]ul(x) 

- i HIj(x,T(x))uj(x)<O, 
j=2 

in iiJ, UI;;.O in~. Maximum principle implies that ul(x) > ° 
in iiJ. Moreover, applying the maximum principle at the 
boundary, we find that outward normal derivatives au l /a7] 
must be negative at those boundary points where U I = 0. 
Consequently the set .Y - {s>0Iu l(x»u1(x) for all 
0<8<s, xEiiJ J is nonempty. 

Suppose .Y has an upper bound; let its lub be 8. There 
must be a point in iiJ where U I = uf. Otherwise, we consider 
for C> Ihlll that 

.d (u l - u~) - C(u l - u~) 

= {.dUI + HII(x,T)u1 + jt2 HIj(x,T)uj } 

- {.duf + HII(x,T)uf + .i HIj(X,T)Uj } 
}=2 

A _ 

- {HII(x,T) + C j(U I - u1)<0, (2.3) 

in iiJ. [The last inequality is true because T(x);;.O, u.(x);;.O, 
} -

j = 2, ... ,n, and inequality (2.2) can be applied with 8 = 8.] 
Together with ul - u~;;.O in ~, this implies that 
au II a7] < auf I a7] at those points at the boundary where 
U I = u~. Consequently, for sufficiently small E> 0, uf + E 

< U I for all xEiiJ. This violates the definition of 8, and we 
conclude that there must be a point xEiiJ where u~ (x) 
=ul(x). 

Now, inequality (2.3) and maximum principle again im
ply that uf(x) -ul(x) in ~. Therefore, we have for xEiiJ 

A n A 

0= .dU I + HII(x,T)u + L Hlj(x,T)uj 
j=2 

= .duf + HII(x,T)uf + i HIj(x,T)uj 
j= 2 

;;.[ -AI + hll ]8m + i Hlj(x,T)uj • 

j=2 
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Hypotheses (2.1) and (ii) and inequality (2.4) imply that uj(x) 
= ° in ~ forj = 2, ... ,n. Referring to the second equation in 

(1.1) (i.e., i = 2), one obtains H 21uI = 0, and by (1.3) one is 
led to the conclusion that ul(x) =0 in?J. This contradicts 
hypothesis (iii). 

The last two paragraphs show that the set Y is un
bounded. However, as 8- + 00, uf (x)- + 00 for XE~, and 
this contradicts the existence of(ul(x), ... ,un(x), T(x)) satisfy
ing (i). 

Remark: In Theorem 2.1, if it is further assumed that 
u?(x) = ° on 8~, i = 2, ... ,n, then we can apply maximum 
principle to the ith equation successively, i = 2, ... ,n in (1.1) to 
conclude that the only solution with properties (i) and (ii) is 

A A. A A. 

(O, ... ,O,T(x)), where ..::iT(x) - c(x)T(x) = ° in ~, T(x) 
= TO(x);;;.O on 8~. 

When (2.1) is violated, which arises when the fission 
cross section of group 1 is small compared with removal 
cross section, it is still possible for blowup situations to oc
cur. In order to make the conditions more readily understan
dable, we temporarily consider the simpler situation of "di
rectly coupled scattering." In nuclear theory terms, this 
means that neutrons in a given energy group i only scatter 
into the next lower energy group i + 1. More precisely, hy
potheses ( 1.3) and ( 1.4) are modified to the following two sets 
of conditions: 

Fori> 1: H;,;_I>O, Hii= -A;(x,T)<O, 

Hij =0, ifj> i, orj d - 1. (2.5) 

All inequalities are true for XE?J, 1>0 

- 00 <hll</ill < 00, ° < hij</iij < 00, 

for i = 1, j = 2, ... ,n, and for i> 1, j = i-I, 
(2.6) 

O<a;<a;<oo, i=2, ... ,n, 

° <g; <g; < 00, i = 1, ... ,n. 

[Note that (2.5) implies that for i> 1, hij = /iij = ° ifj> i or 
jd - 1.] 

Theorem 2.2 gives sufficient conditions that neutron 
formations in the first m groups are fast enough to blow up. 
Consequently, no finite steady state can exist. 

Theorem 2.2 (directly coupled scattering): Suppose that 

hll = inf{HII(x,s)lxE?J ,s;;;'0} <AI> 

and there exist positive constants 82, ... ,8m , 2<m<n, with 
1:7'= I 8; = 1, so that 

h21 hl2 > (AI + (2)(A I - hll )82, (2.7) 

15k _ I hk,k_1 hlk >(A I + ak)hl,k_1 • 15k, k = 3, ... ,m. 

(2.8) 

Then Eq. (1.1) [under hypothesis (1.2), with (2.5) and (2.6) 
replacing (1.3) and (1.4)] with prescribed boundary condi
tions 

u;(x) = u?(x);;;.O, i = 1, ... ,n, T(x) = TO(x);;;'O, 
"'-

has no solution (ul(x),,,,,un (x),T(x)) with properties (i)-(iii) as 
described in Theorem 2.1. 

Remark: Suppose m = 2; then (2.7) is supposed to be 
valid for 82 = 1 and inequalities (2.8) will all be absent. Equa-
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tion (2.8) involves (m - 2) inequalities, which are more readi
ly satisfied by choosing 15k smaller for increasing k. 

Proof: Assume that (ul(x), ... ,un(x),T(x)) exists with 
properties (i)-(iii). We will construct a family of lower 
bounds for the solution as in Theorem 2.1, and will eventual
ly lead to a contradiction. Let h 11 < h 11 so that (2.7) is still 
valid with h 11 replaced by h 11; for each 8> 0, define uf (x) 

Ii" .... -1 =. ~ 
= Dcu(x), udx) = 8; h Ii (AI - hll)Dcu, I = 2, ... ,m, uj(x) 
= O,j = m + 1, ... ,n, and TIi(x) = 0, for XE?J. For all Uk(X) 
;;;.u~(x), k = 2, ... ,n, T(x);;;'TIi(X), we have 

n 

..::iuf(x) + HII(x,T(x))uf(x) + L Hlj(x,T(x))uj 
j=2 

;;;.[ -AI +hll]Dcu(X) 

+ i hlj 8j h ij I(AI - hll)Dcu > 0, (2.9) 
j=2 

in~. For all u I (x);;;' uf (x), T(x);;;'TIi(X), we have 

..::iu~(x) + HzI(x,T(x))ul(x) -A2(X,T(x))u~(x) 

;;;.8w(x)[ h i;182( - AI)(A I - hI) 

+ h21 - a2 h i;182(A I - hll )] >0, (2.10) 

in ~. [The last inequality is valid due to (2.7) and the choice 
of hll'] For each i = 3, ... ,m, all udx);;;.u~(x), k =/=i, 
T(x);;;'TIi(X), we have 

..::iu~(x) + H;,; _ I (x,T(x))u; _ I (x) - A;(x,T(x))u~(x) 
== .... 1 - -

;;;'8w(X)(AI - hllH( - AI)8; h II + h;,;_18;_1 h i:i~ I 

-a;8;h ll
l ]>0, (2.11) 

in ~. The last inequality is due to (2.8). 
We now show that properties (i)-(iii) imply that u;(x) > ° 

for XE~, i = 1, ... ,m. The case for i = 1 is the same as in 
Theorem 2.1. For 2<i<m, let P>max{a;li=2, ... m}; we 
have 

..::iu; -PU; = -H;,;_ tlx,T)U;_1 - [P-A;(x,T)) 

u;<O, in~, U;;;;.O, in?J. 

Maximum principle implies that u; > ° in ~ or u; = ° in?J. 
However, (iii) implies successively that the trivial function is 
not a solution of the ith equation in (1.1), i = 2, ... ,m. Hence 
u;(x) > ° in ~. Moreover, maximum principle at the bound
ary indicates that outward normal derivatives Ju;lJ7], 
i = 1, ... ,m, are negative at those boundary points where the 
corresponding function is 0. 

From the above paragraph, we see that the set 
Y = {s>Olu;(x» M(x),; = 1, ... ,m, for all 0<8 <S,XE~J is 
nonempty. Suppose Y has an upper bound; let its lub be 8. If 
there is a point at the boundary where uf = U;. some 
i = I, ... ,m, we deduce a contradiction to the definition of;5 
by using maximum principle at the boundary, with the in
equalities as in (2.3) and 

..::i (u; - uf) -A;(x,T(x))(u; - uf) 
"'- "'-

= {..::iu; + H;,;_ tlx,T)u;_1 -A;(x,T)u; J 

- {..::iuf+H;,;_I(x,T)u;_1 -A;(x,T)ufJ <0, 

(2.12) 

in ~, i = 2, ... ,m. On the other hand, suppose that there is a 
point XE~ where uf(x) = u;(x), some i = 1, ... ,m. Inequal-
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ities (2.3) and (2.12) and maximum principle imply that uf(x) 
= ui(x) in l}. If i = 1, we consider 

° = ~UI + Hll(x,T)u l + ± Hlj(x,T)uj 
j=2 

=~u~ + Hll(X,T)u~ + ± Hlj(x,T)uj >0, 
j=2 

which is a contradiction. The last inequality is true by letting 
D =;5 in (2.9). If i = 2, ... ,m, we consider ° = ~Ui 
+H.._I(x,T)u'_ 1 -A.(x,T)u. =~u;s 

1,1 /'.. I I A!.. I 

+Hi.i_I(X,T)Ui_1 -Ai(x,T)uf>o by (2.10) and (2.11), 
and again arrive at a contradiction. 

The set Y is consequently unbounded. However, uf(x) 
-+ + 00 as 8-+ + 00, i = I, ... ,m. This proves the nonexis
tence of(ul(x), ... ,un(x),T(x)). 

The following theorem returns to the general down 
scattering condition. A more involved blowup condition is 
found. Neutrons in groups k l ,k2, ... ,kp are formed too quick
ly so that steady state cannot occur. 

Theorem 2.3: Suppose that 

hll = inf[Hll(x,s)lxEl},S;;;'O} <AI' 

and there exist integers 1 < kl < k2 < ... < kp <n, with corre
sponding positive constants Dkl, ... ,Dkp with l:; = I Dki = 1, so 
that 

hk,1 hlk' > (AI + tik, )(AI - hll)Dk, hlki 

X [hkl + i~1 Dk hkk h Ik I(AI - hll )] 
I £.. S 1$ S 

s= 1 

Then Eq. (1.1) with prescribed boundary conditions: 

ui(x) = u?(x);;;.O, i = 1, ... ,n, T(x) = TO(x);;;.O 

has no solution (uI(x)",.,un (x),T(x)) with properties (i)-(iii) as 
described in Theorem 2.l. 

The proof is exactly analogous to that of Theorem 2.2, 
using the family of lower solutions u~ (x) = DlU(X),Ut 

= Dkih Ik/(A I - hll)DlU(X) for i = 1, ... ,p,uJ(x) = ° for j=l=ki : 
all i. The details will be omitted. 

The remaining parts of this section discuss conditions 
when the neutron density of each group will decay to zero for 
the time-dependent parabolic model. This means that the 
only non-negative steady state is the trivial one. 

Theorem 2.4: Suppose that 

hll = sup!Hll(x,s)lxEg?"S;;;'O} <AI' (2.13) 

and there exist positive constants Ci > 0, i = I, ... ,n such that 

and 

n 

L cj hlj +CI( -AI +hll)<O 
j=2 

n 

(2.14) 

L cj hij +ci ( -AI-ai)<O, for i=2, ... ,n. (2.15) 
j=1 

Then Eq. (1.1) with boundary conditions 

ui(x) = 0, i = I, ... ,n, T(x) = 0, for xEbg?" 

has the solution (0, ... ,0) as the only solution with the proper-
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ties that each component is in C 2(g?")nC I(l}) and non-nega
tive in l}. 

Proof' We will consider a parabolic system related to 
(1.1) 

au. n_ 

-a' = ~Ui + L Hij(x,T)uj , i = 1, ... ,n, 
t j=1 

(2.16) 
aT _ _ n _ 

-=~T-c(x)T+ L Gj(x,T)uj , at j= I 
for (x,t )Eg?" X (0, 00 ), with boundary conditions 

ui(x,t) =0, i= I, ... ,n, T(x,t) =0, (2.17) 

for (x,t )EDg?" X (0, 00). Here Ui> i = 1, ... ,n, Tare functions in 
l} X [0, 00 ). We will prove that all solutions of (2.16) and 
(2.17) with components in C 2(g?" X (0, 00 ))nC I(l} X [0, 00)) 
and initial conditions which are non-negative for all xEl} , 
t = 0, will tend to zero at t-+ + 00. Consequently, the equi
librium solution as stated in the theorem can only be the 
trivial one. 

Define VI = V2 = ... = Vn + I =0. Let k> ° be a con
stant such that kCilU(X);;;'Ui(x,O), i = I, ... ,n for each xEl} (ci 
are those stated in the theorem). Let d = min! c(x) IXEl} } 
and 0' be a small enough constant with ° < 0' < d so that in
equalities (2.14) and (2.15) i = 2, ... ,n are all valid with 
( - Al + hll) and (- Al - iiJ, respectively, replaced by 
( - A I + h 11 + 0') and ( - A I - iii + 0'). Choose C n + I > ° so 
that 

Cn + I> max {max T(x,O),(d - 0')-1 ± gi kCi }. 
XE9J i= 1 

Finally, define Wi = kCi lU(X)e - ut, i = 1, ... ,n and Wn + I 
= Cn + Ie - ur. Consider the set 

J = ! (x,t,z I, ... ,zn + I ) I (x,t )Eg?" X (0, 00 ), 

vi(x,t )<Zi <wi(x,t), each i = I, ... ,n + I}. 
Clearly, we have for each i = 1, ... ,n 

n av. 
~Vi + L Hij(x,zn + l)zj + Hii(X,Zn + I )Vi --' 

j= I at 
j#i 

n 

= L Hij(x,zn+ I )zj;;;'O, 
j=1 
j#i 

n 

(2.18) 

= L Gj(x'Zn + I )zj;;;'O, (2.19) 
j= I 

for all (x, t, ZI"'" Zn + I) E J. On the other hand, for all 
(x, t, ZI"'" zn+ I) EJ 

n aw 
~WI + Hll(x,zn + dWI + L Hlj(x,zn + l)zj - __ I 

j=2 at 
<klU(x)e-ur {( -AI + hll + O')cI + jt2 cj hij} <0, 

(2.20) 
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n 

<w(x)e - ut L cj hij + ( - A I - iii + O')Ci 1 < 0, 
j= I 
j#i 

i=2, ... ,n, 

A ~ aWn + 1 
~Wn + I - C(X)Wn + I + ~ Gj(X,zn + I )zj - ---

j= I at 

(2.21) 

<e - ut {( - d + O')Cn + I + ± gj kCj max W(X)} < 0, 
j= I xefP 

(2.22) 

because of the choice of cj,j = 1, ... ,n + 1, and 0'. Moreover, 
wehavexE9J 

Vi (x,O)<Ui (x,O) <Wi (x,O), i = 1, ... ,n 

and 

Vn+ I (x,O)<T(x,O)<wn+ I (x,O), 

and for (x,t )85i» X [0,00 ), 

Vi (x,t )<Ui(X,t )<Wi(X,t), i = 1, ... ,n 

and 

Vn + I (x,t)< T(x,t )<Wn + I (x,t). 

(2.23) 

(2.24) 

Therefore, if such a solution (ul(x,t ), ... ,un(x,t ),T(x,t)) exists 
in 9J X [0, 00 ), it will satisfy (2.24) for all (x,t )E9J X [0, 00 ), by 
inequalities (2.18)-(2.24) above. (See, e.g., Lemma 2.1 in Ref. 
8 or Ref. 9 for a variant of the comparison principles used 
here.) 

A 

Let (ul(x), ... ,un(x),T(x)) be a solution of the boundary 
value problem described in the statement of the theorem, 
with properties as stated. It will be a solution of (2.16) and 
(2.17) with the appropriate smoothness and non-negative 
condition at t = 0. Letting (ul(x,t ), ... ,un(x,t ),T(x,t)) A _ 

= (uI(x)"",Un (x),T(x)) for (x,t )Ei» X [0, 00), inequality (2.24) 
for (x,t )E9J X [0, 00 ) implies that 

O<ui(x)<kci w(x)e - ut, i = 1, ... ,n, 0< T(x)<cn + Ie - ut, 

for (x,t )E9J X [0,00). Consequently (ul, ... ,un,T) == (0, ... ,0). 
We now observe a few very direct consequences of 

Theorem 2.4. Note that 
(det) 

hii == SUp{Hii(X,T)lxE9J, 1>01 = - iii' i = 2, ... ,n. 

Define l/> and f1 to be n X n constant matrices 

l/> = [hij], whose (i,11th entry is hij, l<i,j<n, 

(2.25) 

f1 = l/> - Al I, where I is the identity matrix. 

If (2.13) is satisfied, the matrix f1 has all its diagonal entries 
negative and all other entries positive. Suppose further that 
f1 is strictly "diagonally dominant," i.e., 

n 

Ihl1 -All> L hij, 
j=1 
j#i 

then (2.14) and (2.15) are satisfied by choosing c i = C2 

= ... = Cn = 1. Consequently the next corollary is true. 
Corollary 2. 5: Suppose that the n X n constant matrix f1 

in (2.25) is strictly "diagonally dominant"; then the bound
ary value problem in Theorem 2.4 has the solution (0, ... ,0) as 
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the only solution with the properties that each component is 
in C 2(i») n C I(9J) and non-negative in 9J. 

Remark: Suppose that (2.13) is true and n = 2 in (1.1). If 

h21 h12 < (ii2 + AI)(A I - h l1 ) 

is satisfied, choose CI ,C2 to be positive constants so that 
(ii2 + AI)h 21'1 > CIC2-

1 > hdAI - h l1 )-I; then (2.14) and 
(2.15) are satisfied and Theorem 2.4 can be applied. 

III. POSITIVE EQUILIBRIA FOR PROMPT FEEDBACK 
MULTIGROUP EQUATIONS 

Conditions for the existence of positive steady states 
were not found for the general model (1.1) in the previous 
section, under zero Dirichlet boundary condition. To make 
the analysis more tractable, we consider a slightly simpler 
model. We now assume that the reaction coefficients (i.e., 
cross sections) are functions of the neutron fluxes U i directly. 
That is, the feedback is prompt, and does not have to be 
regulated through the change in Tindirectly through the last 
equation in (Ll). More precisely, we have 

n 

~Ui + L Hij(uI,· .. ,un )uj = 0, in i», i = 1, ... ,n, (3.1) 
j=1 

Ui(x) = 0, x85i», i = 1, ... ,n. (3.2) 

As in (2.5), we first restrict ourselves to the directly coupled 
scattering case 

Hlj(ul, ... ,Un) >0, j = 2, ... ,n. 

For i> 1: Hi.i_I(UI,,,,,Un»O, 
(det) 

Hii = -Ai(UI, .. ·,un)<O, 

Hi,j =0 if j>i or j<i - 1. 

(3.3) 

All formulas are valid for Uk >0, each k = 1, ... ,n. Define 

hij =inf{Hij(ul, ... ,un)luk>O,k= 1, ... ,nl, 

h;; = sup{Hij(ul, ... ,un)luk >O,k = 1, ... ,n J, 
i,j = 1, ... ,n. The functions uj Hij(uI, ... ,un), i,j = 1, ... ,n are 
assumed to belong to the class ca in the set {(ul, .. ,un)luk >0, 
k = 1, ... ,n I, i.e., they are locally Holder continuous in 
(ul, ... ,un) with HOlder exponent a, O<a < 1. Let C2+a(9J) 
denote the Banach space of real-valued functions in 9J, with 
first and second derivatives also continuous in 9J, with finite 
value for the usual norm I U I ~ + a) • We assume the boundary 
8i» belongs to class C 2 +a (see, e.g., Ref. 10 for details of 
these symbols). The following three conditions will be as
sumed. 

(PI) - 00 <h il <h i'l < 00, O<h ij<h ii < 00, 

for j = 2, ... ,n; 

O<h ;'i-I <h ;:i-I < 00, for i = 2, ... ,n; 
(det) (del) 

a; = - h ;; > 0, a;; = - h :i < 00 for i = 2, ... ,n 

(det) 

(P2) H l1 (O, ... ,O»AI • In the set M = {(uw .. ,un)luk 
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>0, k = 1, ... ,n 1, Hll(uj, ... ,un ) is continuously differentiable 
with respectto Uz, ... ,Un , and IJHlI/Jujl <K for all (uj, ... ,un) 
EM,j = 2, ... ,n, where K is some positive constant. 

(P3) There exist positiveconstantsp and u* such that 

H ll (u j, ... ,un )<, - p, for all (uj, ... ,un)EM 

with u1>U*. 

We have the following existence theorem for positive steady 
state, in the directly coupled scattering case. 

Theorem 3.1 (directly coupled scattering): Suppose 
there exist positive constants pj > 0, i 2, ... ,n with ~7 ~ 2 pj 
<,1 such that 

(3.4) 

Then the boundary value problem (3.1)-(3.3) under the con
ditions (Pl)-(P3) has a solution (uj(x), ... ,un(x)) with compo
nents in C2+ a(.9) and uj(x) > ° in fiJ, i = 1, ... ,n. [Here, the 
numbersp and u* satisfy (P3) together with (3.4).] 

Proof: We will construct upper and lower solutions for 
(3.1)-(3.3) and apply a theorem in Ref. 11 to conclude the 
existence of a positive solution. By (P2), there is a small con
stant k>O so that Hll(u,O, ... ,O»A j for O<,u<k. Choose ° <E <min! k, K -jh i2"'" K -jh in j, 0<02 <Eh;j [AI 
+a2]-I, and O<Oj<Oj_Ih;.j_dAI+a;']-I, for 

i = 3, ... ,n. Define lower solutions as 

for XE.9. Define upper solutions as 

wI(x) = U*, Wj(x) Pj pU*/h i~, i = 2, ... ,n, 
for XE.9. We now check the appropriate inequalities for the 
Vi> Wi> i = 1, ... ,n. We have 

n 

.JvI + H II(V I,U2"",Un )VI + L H\j(vI,uz"",un )uj 
j=2 

n 

> EW(X)[ -AI +HIl(EW(X),Uz,""un)] + L h ij uj , 
j=2 

for uj >O,j = 2, ... ,n, XEfiJ. However, [ - A j 
+ HIl(EW,O, ... ,O)] > ° in fiJ, and F(s,x,u2, ... ,un) 
(del) = EW(X}[ - Aj + H Il{EW(X),sU2""'SUn )] + ~;= 2 h ij SUj is 

an increasing function of s>O, for fixed uj >0, j = 2, ... ,n, 
each xEfiJ (by the choice of €). Consequently, we have 

.Jvl(x) + HII(VI(x),U2"",Un )VI 
n 

+ L H 1j (vI(x),UZ"",un )uj > 0, 
j=Z 

for all uj>O,j = 2, ... ,n, xEfiJ. For vz(x), we have 

.Jvz(x) + H21(UI,VZ(X),U3"",Un)UI 

- Az(Uj,vZ(X),U3,;··,Un )vz(x) 

>ozw(x) [ - Al - a2] + h ~I U I 

(3.5) 

> Eh 21 w(x) + h 21 EW(X) = 0, (3.6) 

for vj(x)<,uj <,wj (x),j:;;62, xEfiJ. For v,(x), i = 3, ... ,n, we have 
the inequalities 
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.JVj(X) + Hi,' _ I (u 1,. .. ,U j _ I ,v,(x),Uj + \ '''''Un lUi I 

- A,(uw .. ,vj(x), ... ,un )vj(x) 

>o,w(x)[ -AI-a;'] +h;" I Uj _ 1 

> - OJ_1 h ;,j_\w(x) + h ;,j 10j_\w(x) = 0, (3.7) 

for vj(x)<,uj,wj(x),f:;t:i, xEfiJ (by the choice of OJ)' For the 
upper solutions, we have 

.Jwl(x) + Hjj{wj(x),uz,""un)wj(x) 
n 

+ L H\j(Wl(X),Uz,,,,,un)uj 
j=2 

n 

<, - pU* + L h ij Pj pU*(h ij)-I,O, 
j~2 

(3.8) 

for Vj (X) <, uj <,wj(x),j = 2, ... ,n, xEfiJ (since~; 2 Pj <, 1), and 

.Jwj(x) + Hj,i-I (UI"",Uj_I,Wj(X),UI+ 1,,,,,Un)uj_ 1 

- A,(u 1"",Wj(x), ... ,un )Wj(x) 

(3.9) 

for each i = 2, ... ,n, vj(x)<,uj<,wj(x),floi, XEfiJ [by the prop
erties of Pi> i = 2, ... ,n in (3.4)]. By Ref. 11, (3.5)-(3.9) imply 
that there exists a solution (u1(x),,,,,un (x)) as described in the 
statement of the theorem with v,(x)<,uj(x)<,wj(x), i = 1, ... ,n, 
xE.9. Consequently uj(x) > ° in fiJ, i = 1, ... ,n. 

Remark: A simple situation with which conditions in 
(3.4) are all satisfied is 

h;1 h i'z <02 p/(n - 1), 

h ;:j _ 1 h i'j < a; h ;:j _ p i = 3, ... ,n. 
This corresponds to having pj = (n _1)-1, i= 2, ... ,n in 
(3.4). Theorem 3.1 is then applicable. 

We now return to the more general case of down scat
tering. Properties (3.3) will be replaced by 

Hlj(u 1'''''Un ) > 0, j = 2, ... ,n; 

for i> 1: Hij(u1"",un»0, if j<i, 

(del) 
(3.3') 

Hij =0, if j>i. 

All formulas are valid for Uk >0, each k = I, ... ,n. 
Hypothesis (PI) will be modified accordingly to (PIa) 

- 00 < h ; I < h ;'1 < 00, 0< h ij < h Ii < 00, 

for j = 2, ... ,n; 

O<hij<hij<oo, 

for j < i, i = 2, ... ,n; 
(del) (del) 

a; = - h ;: > 0, a;' = - h :i < 00, 

for i 2, ... ,n. 
The following is a more involved existence theorem for posi
tive steady state. 

Theorem 3.2: Suppose there exist positive constants 
pj > 0, i = 2, ... ,n with ~7~ z pj <, 1 such that 

h i', [h;; + 'f Pj h ij p(h ij )-1] <Pj a; p, i = 3, ... ,n. 
J=Z 
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Then the boundary value problem (3.1), (3.2), and (3.3') un
der the conditions (PIa), (P2), and (P3) has a solution 
(u1(x), ... ,un(x)) with components in C 2 

+ a(~) anduj(x) > 0 in 
!iJ, i = 1, ... ,n. 

The proof is exactly analogous to that of Theorem 3.1. 
Details are therefore omitted. 
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We show that additive separation of variables for linear homogeneous equations of all orders is 
characterized by differential-Stiickel matrices, generalizations of the classical Stiickel matrices 
used for multiplicative separation of (second-order) Schrodinger equations and additive 
separation of Hamilton-lac obi equations. We work out the principal properties of these matrices 
and demonstrate that even for second-order Laplace equations additive separation may occur 
when multiplicative separation does not. 

I. INTRODUCTION 

Our motivation for this study of additive separation of 
variables for linear differential equations was the following 
example in Ref. 1: 

(XI + xz)(allu + azzu) - 2(alu + azul = E. 

This equation admits a five-parameter separable solution in 
the coordinates XI' X z: 

u = (ax~ + f3xi + YXI - ~ Ex l) 

+ ( - ax~ + f3x~ - YX2 + 8). 
The mechanism of separation was puzzling to us until we 
realized that the appropriate separation equations are 

alu +E/2 - Y - 2f3xl - 3axi = 0, 

allu - 2f3 - 6ax l = 0, 

azu + y - 2f3X2 + 3ax~ = 0, 

azzu - 2f3 + 6ax2 = o. 
The associated "Stiickel matrix" responsible for the separa
tion is 

[~ 
-1 

o 

o 

-2x1 

-2 
- 2xz 
-2 

-3~] -6x1 

3x~ . 

6x2 
This is not a true Stiickel matrix since more than one row 
depends on a given variable X I (Refs. 2 and 3). Moreover, the 
second and fourth rows are the derivatives of the first and 
third rows, respectively. It is a nontrivial example of a differ
ential-Stiickel matrix. 

In this paper we show that the above example is not 
isolated. All additive separation of nth-order linear differen
tial equations L = E or L = 0 is associated with differential
Stiickel matrices. In Sec. II we derive, in the form of a cou
pled system of nonlinear partial differential equations, 
necessary and sufficient conditions that a linear differential 
equation admits additive separation in a given coordinate 
system. In Sec. III we develop the principal properties of the 
matrices inverse to differential-Stiickel matrices, and in Sec. 
IV we find all solutions of the separability conditions and 
show that they correspond to differential-Stiickel matrices. 
Our method is an extension of Eisenhart's study of true 
Stiickel matrices. 3 In Sec. V we comment on the relation 

between multiplicative separation and additive separation 
for Laplace equations on Riemannian manifolds, and we 
give an example to show that additive separation may occur 
for a Laplace equation in a given coordinate system even 
when multiplicative separation is absent. 

All functions appearing in this paper are assumed to be 
locally real analytic. 

II. ADDITIVE SEPARABILITY FOR LINEAR 
DIFFERENTIAL EQUATIONS 

In Ref. 1 the authors introduced a general definition of 
additive separation of variables for a partial differential 
equation 

(2.1) 

in the coordinates X I"",x N' Here u is the dependent variable, 
u I = ax/u, uIJ = ax/ axJu, etc., and E is a parameter. A sep
arable solution of (2.1) is a solution of the form 
u = ~/j~ IS1J)(xJ,E). We briefly review this definition (a 
generalization of that of Levi-Civita4 and its simple conse
quences. (See Ref. 5 for a discussion of other definitions of 
separability. ) 

For convenience we suppose H is a polynomial in the 
derivatives U I'U IJ , .... Furthermore, there is no loss of gener
ality in setting all mixed partial derivatives identically equal 
to zero (since U IJ = 0 for I i=J if u is a separable solution) and 
writing (2.1) in the form 

H(XI,U,UI,UII'~") = E. (2.2) 

We introduce the new notation ul,l = U I , 

UI,i+ I = aXIUI,i' i = 1,2, .. " and define nI to be the largest 
number! such that au I,zH = HulI=O. To avoid discussion of 
degenerate cases we require nI > 0 for I = 1, ... ,N. 

Let the truncated differentiation operator DI be defined 
by 

DI = ax/ + UI,I au + ... + UI,n/ aUi.nl_I' 

In Ref. 1 we showed that every separable solution u of (2.2) 
satisfies the integrability conditions 

HUi.n/HUJ)DIDJH) + HUI,nIUJ.n)DIH)(DJH) 
A A A A 

-Hu (DIH)(DJHu )-Hu (DJH)(DIHu ) 
J'''J 1''''1 I,nl J.nJ 

(2.3) 
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If (2.3) is an identity in the dependent variables U,UK,k then 
we say that {x I J is a regular separable coordinate system. In 
this case the separable solutions involve ~/J = In J + 1 inde
pendent parameters; that is, at a fixed point Xo the separable 
solutions are uniquely determined by prescribing u(XO) and 
the 1:7= I nJ derivatives UI,i(XO), l<J<.N, 1 <.i<.nI . If the inte
grability conditions (2.3) do not hold identically then the 
separation is nonregular; separable solutions may exist but 
they will involve (strictly) fewer parameters than the regular 
case. In the following when we speak of variable separation 
we mean regular separation. [Note that multiplicative sepa
ration can easily be treated by the preceding definition since 
v = 07= I T(JI(xJ) is multiplicatively separable if and only if 
U = In v is additively separable.] 

For Laplacelike equations 

H(xI,u,UI,UII , ... ) = 0, (2.4) 

there is a minor modification ofthe integrability conditions. 
Denoting by FlJ the left-hand side ofEqs. (2.3) we can state 
the integrability conditions for (2.4) in the form 

FlJ = Pl,JH, 1<.1 <J <N, (2.5) 

wherePl,J(xK,u,uK,k) are polynomials in UK,k' If(2.5) is satis
fied identically in the dependent variables U,UJ,j we say that 
{XK J is a regular separable coordinate system. In this case 
the separable solutions depend on 1:7= I nJ independent pa
rameters. For nonregular separation the separable solutions 
depend on fewer parameters. 

Now we will apply these criteria to determine additive 
separability conditions for the linear equations 

L=E 

and 

L=O, 

where 
N nJ 

(2.6) 

(2.7) 

L = L L H(J,J)(x)uJ,j' H(J,nJI #0. (2.8) 
J= Ij= I 

Introducing the abbreviation HJ==ll(J,nJI we can write the 
integrability conditions (2.3) for L = E in the form 

A A A A 

DIDJL -DILaJ In HI -DJLaI InHJ =0, I#J, 
(2.9) 

where aI = av Equating to zero the coefficients of the de
rivatives UJ,j on the left-hand side of (2.9) we obtain the fol
lowing necessary and sufficient conditions for regular sepa
ration: 

alJHIP,PI - aIHIP,pi aJ In HI - aJHIP, pi aI In H J = 0, 

P #1, J, p = 1, ... ,np, 

alJH(J,J' - aIH(J,J' aJ In HI - aJH(J,J' aIlnHJ 

=H1J,j_11 aI InHJ -aIH1J,j_IP 

j = 1, ... ,nJ • 

(2.1Oa) 

(2.1Ob) 

Here I #J, H1J,Ol =0. In terms of the linear operators 

BlJ = - aI + aI InHJ, I #J, 

these conditions can be written as 
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(2.11) 

AlJHIP'PI =0, P #1, J, 

(2.12) 
AlJH1J,J' = BlJHIJ,j_II,HIJ,OI = 0, I #J. 

[The possibility that L, Eq. (2.8), has an additive term ofthe 
form H (x)u can be treated as a special case of our consider
ations. Formally Eqs. (2.10) are still the separation condi
tions for L = E where now H1J,Ol = H, H 1J, _ II = 0, 
J = 1, ... ,N, and the indexj takes the values O,l, ... ,nJ .] 

Similarly, the integrability conditions (2.5) for the ho-
mogeneous equation L = 0 take the form 

AlJH1P,pi = QlJ(x)HIP,PI' P #I,J, 

AlJH1J,J' = BlJH1J,j_11 + QlJ(x)H(J,JI' 

H(J,OI = 0, I #J, 

(2.13) 

where QlJ is a function of the independent variables XK 
alone. 

The two sets of integrability conditions are closely relat-
ed. 

Lemma 1: If the functions {H(I", J satisfy (2.12) andR (x) 
is nonzero then the functions {H '(1,,) = RH(I", J satisfy 
(2.13). Indeed 

- QlJ = 2aI In RaJ InR 

+ aI InR aJ In HI + aJ InRaI InHJ. 

Suppose the functions {H(I,il J, 1= 1, ... ,N, i = 1, ... ,nI 
are not all zero and set HI,O = O. Then there must exist some 
H(K,k I # 0 such that H(K,k _ II = O. Let H '(1", = H(I", / H(K,k I' 

Lemma 2: The functions {H(I", J satisfy conditions 
(2.13) if and only ifthe functions {H'(I", J satisfy (2.12), i.e., 

alJH'IP,PI -aJ InH;aIH'IP,PI -a/ InH'JaJH'IP,PI =0, 

P #1, J, (2.14) 

alJH'(J,J' - aJ InH'IaIH'(J,J, - aI In H ~ aJH'(J,J) 

=H'(J,j_11 aI InH'J -aIH'(J,j_IP 

for I#J. 
It follows from these lemmas that all sets of functions 

{H(I,,) J satisfying conditions (2.13) are of the form 
H(I", = RH '(I,il' where the {H '(l,!, J satisfy conditions (2.12). 
In the next section we will show how to find all solutions of 
Eqs. (2.12). 

III. D-STACKEL MATRICES 

Consider a coordinate set XI , ... ,xN and let nl , ... ,nN be 
positive integers with n = 1:~= I n/. Let S = (S(I,il,/(xI )) be an 
n X n matrix with the properties following. 

d i - I 

(1) S(I",,/(xI ) = -d i-I S(I,II,/(XI )' 
XI 

i = 1,2, ... ,nI . (3.1) 

[Here, the rows of S are designated by the index (I, i), where 
1= 1, ... ,N, i = 1, ... ,nI . The columns of S are designated by 
the index 1 = 1,2, ... ,n. Thus row (I,i) depends only on the 
variable X/ and is the i-I derivative of row (x,l).] 

(2) detS #0. 
(3) TI,(J,J'#O, J = 1, ... ,N, h = 1, ... ,nJ, where T= S-I, 

i.e., 
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n 

"" S (x )Tl,(J,J) - {jIJ,J) £.i 11,,),1 I - II,,), (3.2) 
1=1 

We say that a matrix S satisfying properties (I H 3) is a 
differential-Stacke1 matrix (D-Stackel matrix). If 
n l = ... = nN = 1 then S is simply the usual Stackel ma
triX.2

,3 In order to obtain results about D-Stackel matrices 
that are useful for separation of variables we need to charac
terize the inverse matrix T. For this we generalize Eisen
hart's study ofStackel matrices.3.6 

Differentiating (3.2) with respect to XI' we obtain 

"" S (x )T1,IJ,J) + "" s a T1,IJ,jl 0 £.i II,; + 11,1 I £.i 11,,),1 "I =, 
1 1 

(3.3) 

where we adoptthe convention SII,nl + 11,1 = O. Since S is non
singular it follows that 

a T1,IJ,J) =fIJ,J) T1,II.n /l _ T1.IJ.j-II{jJ 
~ I I' (3.4) 

where fif· J) is a function and we adopt the convention 
Tl,(J·ol = O. 

Now set 

T 1,IJ.J) 1 H I 1 (35) 
= PIJ.J) IJ.J)' PIJ,J) = . . 

In particular, TI.IJ.J) =HIJ.J). We will characterize Tin 

terms of the "roots" piJ./) and the H IJ•J). Substituting (3.5) in 
(3.4) we obtain 

aIPiJ.J)HIJ.J) + piJ.J) aIHIJ.J) 

-fIJ.J) 1 H 1 H {jJ 
- I 'PII.n/l II.n/l - PIJ,j - II IJ.j - II I' (3.6) 

where piJ,ol = H IJ.OI = O. For I = I, Eq. (3.6) reduces to 

a H -fIJ·J)H H f:J 
I IJ.J) - I II. nIl - IJ.j-II U /> (3.7) 

in view of (3.5). Solving this expression for fif·J)HII.n/l and 
substituting into (3.6) we obtain the desired characterization 

(3.8) 

I, J = I, ... ,N, h = 1, ... ,nJ • 

At this point we have shown that if S is a D-Stackel 
matrix then the system of equations 

aIPIJ.J) = (PII.n/l -PIJ.J))aI InHIJ.]) 

(3.9) 

I,J = I, ... ,N, h = 1, ... ,nJ , where HIJ,J) = T I.IJ.J) admits a full 
linearly independent set of n vector-valued solutions 
f piJ.J) ),f = I, ... ,n. 

Conversely, suppose we are given a set of n nonzero 
functions f H IJ•J)) such that the system (3.9) admits a full 
linearly independent set of n vector-valued solutions 
f p[J.J))' Since PIJ.J1 =1, all J,j, is a solution, without loss of 
generality we can include it in our basis set and assume 
Plj,]1 = 1. It follows that the n X n matrix T defined by (3.5) is 
invertible. Let S = T -I, i.e., 

n r SII.;I.I T1.IJ.J1 = {jlfl 
1=1 

It follows from (3.9) and (3.5) that (3.4) holds with 

fif·]1 = H lI.n~1 (aIHIJ.J1 + H IJ.j _ I){jf)· 
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(3.10) 

Differentiating both sides of (3.10) with respect to X K and 
using (3.4), we find 

~ a S T1.IJ.J) - {jJ {jIJ.j-l) _fIJ.J){jIK.nKI (3.11) 
£.i K 11.;1,1 - K 11./1 K II,,) • 

1= I 

It follows that aKSII,,),1 = 0 if K =/=1 and aISII,,),1 = SII.;+ 11,/ 

for i = 1, ... ,n I - 1. Thus S is a D-Stackel matrix. 
Theorem 1: Let {HIJ'J)) (J = I, ... ,N, j = 1, ... n J , 

~ J n J = n) be a set of n nonzero functions of the N variables 
x I' There exists an n X n D-Stackel matrix S = (SII.,).I (XI)) 

with inverse T = (T1.IJ,J)) such that HIJ,J) = T I.IJ,J) if and only 
if {HJ•

J
)) satisfies Eqs. (2. lOa) and (2. lOb). 

Proof: It is straightforward to verify that (2.lOa) and 
(2. lOb) are simply the integrability conditions 
aK(aI PIJ,J1) = aI(aK PIJ.J1),K =/=1, for the system (3.9). Thus if 
{HIJ.])) satisfies the integrability conditions then (3.9) has n 
independent vector-valued solutions and we can construct a 
D-Stackel matrix S such that H IJ.J) = T I.IJ.J). 

Conversely, ifHIJ.J) = T I.IJ.J1 and T- I = S forsomeD
Stackel matrix S then the system (3.9) admits n independent 
vector-valued solutions and the integrability conditions 
(2.10) must be satisfied. 

We now have a partial answer to the problems posed in 
Sec. II. Consider the equation L = E in N independent varia
bles XI' where 

N nJ 

L = r r HIJ.J)(x)uJ.j, 
J= Ij= I 

and suppose each of the H IJ.
J
) is nonzero. This equation ad

mits (regular) additively separable solutions provided the 
conditions (2.10) are satisfied. These conditions imply the 
existence of a D-Stackel matrix S such that H IJ•J) = T I,IJ.J). 

The separation equations are evident 
n 

uJ.j + r SIJ.J).t!xJ)A.I = 0, 
1= I 

1 <J<N, 1<J<nJ , AI = - E. 

(3.12) 

Here there are n separation parameters A I' The separable 
solutions U are obtained by integrating the N first-order ordi
nary differential equations 

n 

uJ.I + r SIJ.I).l(XJ)A.I = O. 
1=1 

(3.13) 

The remaining n - N equations are redundant since they are 
obtained by differentiating the basic set (3.13). The number 
of parameters in the solution U is n + ~JnJ + 1, in agree
ment with the prediction in Sec. II. Multiplying the separa
tion equation (3.12) for uJ • j by T I.IJ.J) and summing over the 
index (J, j) we once again obtain L = E for E = - A I' 

The treatment for the equation L = 0 is similar. Sup-
pose 

N nJ 

L = r r H'IJ.J)(x)uJ•j , 
J= Ij= I 

where none of the H 'IJ.J) is zero and suppose these functions 
satisfy the separability conditions (2.14). Then there is a non
zero function R (x) such that H'IJ.J) = RHIJ•J), where the 
H IJ,J1 satisfy conditions (2.10) and, thus, determine a D
Stackel matrix S. The separation equations are (3.12) with 
A I = O. There are n - 1 separation parameters and a sepa-
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rated solution contains n = ~JnJ parameters. Multiplying 
the separation equation (3.12) for UJ,j by RT I,(J,]) and sum
ming over the index (J,;), we rederive L = 0, since A.I = 0. 

IV. ANALYSIS OF THE SEPARATION EQUATIONS 

We do not as yet have a complete solution of the inte
grability conditions characterizing regular separation for the 
linear equation L = E 

AlJH(p,p) = 0, P =l-I,J, 

(4.1) 
AlJH(J,]) = BlJH(J,j_IP H(J,o) = 0, I =l=J, 

where 

AlJ =alJ -aJ InHlal-allnHJaJ' 

BlJ = - al + al In H J, H J = H(J,nA =1=0, (4.2) 

If H(K,k) is known then we can construct H(K,k _ I) from (4.3) 
by quadrature. 

Lemma 5: Suppose the N nonzero functions H p satisfy 
A lJH p = ° for P =1=1, J, I =l=J and suppose the function 
H(K,k) (fixedK,k )satisfiesAlJH(K,k) = O,K =l=1,J,l =l=J. Then 
the N - 1 equations (4.3) are compatible and have the gen
eral solution 

H H- I(k-I)()H (K,k-I) = (K,k-I) + XK K' (4.4) 

where H(K,k _ I) is a particular solution andJ<k - I) is an arbi
trary function of x K' The solution satisfies 

AlJH(K,k_l) = 0, K =l=1,J, I =l=J. (4.5) 

Proof: The compatibility requirement 
aAaI(H(K,k_I)IHK)) = aI(aJ(H(K,k_I)IHK)), I,J =l=K and 
(4.5) are straightforward consequences of(4.3) and the condi
tions A lJH p = 0, A lJH(K,k) = 0. 

It follows from Lemma 5 that for each K we can always 
construct functions H(K,k _ I) through a step-by-step proce
dure using the second ofEqs. (4.1), such that the first of Eqs. 
(4.1) is automatically satisfied. At each step the solution 
H(K,k-l) is arbitrary up to the additive term/(k-I)(xK)HK 
and we simply choose one of these solutions. Thus we gener
ate an infinite sequence !H(K,k) = H~)J, 1= 0,1,2, ... , where 
nK _ / = k (but nK is unknown) 

AIKH~)=BIKH<I.+I), I=I=K, HK=H~). (4.6) 

The following properties of the operators A IK ,B IK will prove 
useful: 

BIKF(x) = 0, for all I =l=K 

¢}F(x) =/(xK)HK' (4.7) 

A1K(f(XK)H<I.)) = BIK(jH~+ I) - /,H<I.)), (4.8) 

where/, = aJ, 
Suppose there is a smallest finite positive integer m K for 

which functions .1(') (x K ) exist such that 
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1 <.J<.N, 1 <J<.nJ , r nJ = n. 
J 

In order that Theorem 1 can be applied to obtain a D-Stackel 
matrix we must have all H(J,J) =1=0. However, we are assum
ing only that H J =1=0. Furthermore, it is easy to construct 
examples of separable systems where at least one of the H(J,J) 
vanishes. 

A more detailed analysis of the structure of Eqs. (4.1) 
will resolve the difficulty. Suppose we are given N nonzero 
functionsHJsatisfyingAlJHp = OforP =l-1,J,l =l=J.Ourtask 
will be to construct a finite set of functions H(J,J) with 
H(J,nJ) = H J such that Eqs. (4.1) are satisfied. (We do not 
require that the H(J,J) are all nonzero.) Initially we will not 
know the values of the integers nJ • 

The construction process is based on the second equa
tion of (4.1), which we can write in the form 

(4.3) 

(4.9) 

Lemma 6: Each H ~K + S), S = 0,1,2, ... , is a linear condition of 
the finite set !H~):l = O, ... ,mK -1] with coefficients that 
are functions of x K • 

Proof: The proof is by induction on s. The statement is 
clearly true for s = 0. We assume it holds for s = t 

Now 

(
mK-I ) 

B H (mK+t-I)_A H(mK+t)_A ~ H(i) 
IK K - IK K - IK ~ g(i) K 

o 

Hence, by (4.7) there is a function g(x K ) such that 
mK- t 

H (mK+t+I)_ ~ h (x )H(i) 
K - ~ (i) K K' 

i=O 

Q.E.D. 

Let ! ~l) J, ! h~) J, I = 0,1,2, ... , be two sequences construct
ed by the procedure (4.6). 

Lemma 7: There is a sequence of functions 
gl(XK),g2(XK), ... , and expressions L i,j(gI,g2, ... ,gi-j-l) with 
LiQ = 0, Li,i-I = 0, and L i + I,j = Li,j_1 + g;_j - L ;,j 
such that 

;-1 

~~ = h~ + r (gi _ j(xK) - Li)XK ))h~\ 
j=O 

i = 0,1,2,... . (4.10) 
Any such sequence !g/(xK) J together with ! h~)J determines 
a new sequence of solutions ! ~~ J of (4.6). The induction 
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proof of this result is similar to that of the preceding lemma. 
Now let [H~)l be the solution sequence treated in 

Lemma 6 and consider the relation (4.9). Set h~ = H~ in 
(4.10) and choose g 1, ... ,gmK _ I recursively such that 

-fU1 =gmK-j -LmK,j' j=O,I,oo.,mK -1. 

Then ~;K) = O. We see that there is a solution sequence 

[ cW'k) I with cW'~l,oo.,~;K - I) nonzero and all further terms 
zero. According to Lemma 7 all other solution sequences are 
linear combinations of these m K nonzero terms. 

Lemma 8: The integer mK, ifit exists, is unique. 
In general, there is no finite integer mK for which (4.9) 

holds. [An example is N = 2, HI = 1, H2 = exp(x lx 2). Here 
ml = 1, but m2 does not exist.] However, if the H(J.}1 satisfy 
equations (4.1), i.e., if they correspond to a regular separable 
system for the equation L = E then the integers m J always 
exist and 1 .;;; m J .;;; n J' Thus there is a set of I f = I m J functions 
{h(J,}11, 1 <J.;;;mJ satisfying (4.1) such that H J = h(J,mJl and 
each h(J,}l is nonzero. Using Lemma 7 we can express the 
equation L = E in terms of the new functions h(J.}l' 

Lemma 9: 

where 

UK,duk,/,XK) = uK,nK- mK+ k 

nK-mK+ k-I 

+ L (gnK-mK-s+dxK) 
s=1 

In particular, 

JKUK,k = UK,k+ 1> l.;;;k.;;;mK - 1. 

It follows from this result and Theorem 1 that when 
L = E is separable then there exists a set of m = ~ f = 1 m J 

nonzero functions h(J,}l and an associated m X m D-Stackel 
matrix S such that h(J,}l = T 1,(J,}l, where T = S -I and the 
separation equations for L = E take the form 

m 

UK,k + L S(K,k),tlXKJA[ = 0, K = l,oo.,N, (4.11) 
[=1 

I.;;;K.;;;N, l.;;;k.;;;mK.;;;nK, Al = -E. 

There are m separation parameters A/. The separable solu
tions U are determined by solving the N ordinary differential 
equations 

m 

UK,I + L S(K,I),[(XKJA[ = O. (4.12) 
[=1 

The remaining m - N equations (4.11) are redundant, since 
they are obtained by differentiating the basic set (4.12). The 
highest derivative term in UK I is UK n _ m + I so each equa-

• • K K 

tion (4.12) is of order nK - mK + 1. The number of par am
eters in the solution U is m + ~K(nK - mK) + 1 = n + 1. 
We now have the complete solution of the separation of Eqs. 
(2.10). 

V. SEPARATION OF LAPLACE EQUATIONS 

Suppose.d N is the Laplace-Beltrami operator on a local 
pseudo-Riemannian manifold V N. In local orthogonal co
ordinates x/ we have 
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(5.1) 

where 
N 

ds2 = L H /- I dx;, h 2 = IIH/- I
. 

1=1 I 

It is of interest to determine the relationships between the 
well-developed theory of multiplicative R separation for the 
Laplace equation .dNu = 0 (Refs. 7-9) and additive separa
tion. Recall that multiplicative R separation in the orthogo
nal coordinates x I leads to solutions for the Laplace equation 
oftheform 

N 

U = eR 
(x) II U(/)(X I)' 

1=1 

(5.2) 

where the fixed function R is independent of the separation 
parameters. Similarly we can introduce additive R separa
tion 

(5.3) 

The following is a straightforward consequence of the prin
cipal results of this paper. 

Theorem 2: If the Laplace equation .d N U = 0 is multi
plicatively R separable in the orthogonal coordinates x/then 
it is additively R separable in these same coordinates if and 
only if e-R.dNeR = CHI'! = l,oo.,N, where c is a constant. 

In each of these cases a true Stackel matrix determines 
the separation; no nontrivial D-Stackel matrices appear. 
Note that true multiplicative separation (R = 1) always leads 
to additive separation. 

On the other hand, Laplace equations may admit addi
tive separation in an orthogonal coordinate system for which 
no multiplicative R separation is possible. For example, con
sider the three-dimensional manifold with metric coeffi
cients 

HI = H2 = (XI + X2)5, H3 = (XI + xzt (5.4) 

Then 

.d 3 = (XI + X2)4[(XI + X2)(J)) + Jzzl- 2(JI + J2) + J33 ], 

(5.5) 

and since (5.4) is not conformal to a Stackel form metric, no 
multiplicative R separation is possible. However, since 

(x) + X4)-4.d 3u = (XI + X2)(U12 + U22 ) 

- 2(u I•I + U 2•1 ) + U 3,2 = 0, (5.6) 

we have 

H 11,1) = H 12,1) = - 2, 

which satisfies Eqs. (2.10) [or (2.14)] with n) = n2 = 2, 
n3 = 1. Thus the Laplace equation admits additive separa
tion in these coordinates corresponding to a 5 X 5 D-Stackel 
matrix. 
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Asymptotic solutions of the nonlinear ordinary differential equation d 20 1 dZ 2 + a dO 1 dZ 
+ 1(0) = 0 for large a are obtained by the singular perturbation method of multiple scales 

analysis. TheyareintheformofO(Z) = A (Z la) + B(Z la)exp( - aZ).lnitialandboundaryvalue 
problems are discussed. The special case of/(O) = r + cos 20 (r < 1), encountered in shearing 
nematic liquid crystal soliton problems and other physical systems, is solved in detail. Previously 
obtained analytic solutions are recovered and justified. Our results are applicable to the unsteady 
shearing nematic problem. 

I. INTRODUCTION 

The nonlinear ordinary differential equation 

d 20 a dO +/(0) = 0 
dZ 2 + dZ ' 

(1.1) 

where a is a constant and/(O ) is a nonlinear function of 0 (Z ), 
describes the damped nonlinear motion of a single particle. 
It appears frequently in mechanics and many physical prob
lems. For example, in the discussion of solitons in steady 
shearing nematic liquid crystals such an equation was de
rived by Lin et al. 1 with 

I(O)=r+cos20, r<1. (1.2) 

Equation (1.1) is also studied in the traveling wave solutions 
of biological heredity models and chemical reaction-diffu
sion equations.2 

In the specific problem studied in Refs. 1 and 3 (in 
which a is represented by 1/) two approximate analytic solu
tions, the so-called A and B solitons, are derived under the 
condition a> 1. In each of these solutions 1.3 there is only one 
constant of integration. However, since (1.1) is an ordinary 
differential equation of second order, two constants of inte
gration in the general solution are expected (in order to sa
tisfy arbitrary given initial or boundary conditions). This pa
per is partly motivated by the desire to clarify this issue. It 
turns out that the solutions given in Refs. 1 and 3 are special 
solutions (being solitons) of(1.1) and (1.2) and are fully justi
fied (see Sec. IV). 

Also, (1.1) appears in our study of unsteady shearing 
nematics.4 An understanding of the asymptotic solutions of 
(1.1) is thus needed. 

Equation (1.1) may be rewritten as 

EO +8 +/(0)=0, (1.3) 

where 

-2 z· dO 
E==a , 1'EiE. , 0 =-. 

a dT 
(1.4) 

Alternatively, (1.3) is equivalent to 

8=z, EZ= -z-/(O). (1.5) 

-) Correspondence address. 

Equation (1.5), and hence (1.1) or (1.3), is obviously a special 
case of the more general nonlinear ordinary differential 
equation 

8 = g(O,z), EZ = h (O,z). (1.6) 

The initial value problem of (1.6) has been discussed by 
O'Malley.5 Under specific assumptions, asymptotic solu
tions have been constructed. There are also discussions on 
the properties of solutions of (1.6) under certain condi
tions.6-8 

In this paper, multiple scales analysis9 is applied to (1.1). 
An asymptotic solution for a-,oo(E-D) is constructed. 
Boundary and initial value problems are discussed, respec
tively (Sec. II). The general solutions obtained in Sec. II are 
specified to the case of (1.2) in Sec. III, in which the analytic 
solutions of A and B solitons of Ref. 3 are recovered. In Sec. 
IV, the mechanical interpretation of our solutions is present
ed. The expansion method used in Refs. I and 3 is discussed 
and justified. 

II. PERTURBATIONAL EXPANSION 

In (1.3) 1(0) is assumed to be differentiable an infinite 
number of times. In this section, the asymptotic expansion of 
the solution of (1.3) with E-D will be derived using the singu
lar perturbation method of multiple scales analysis.9 Let 

U==T, v g(T)/E, (2.1) 

where the functional form of g(T) remains to be specified [see 
(2.18)]. For our purpose, 

g'(T)= dg > 0 (2.2) 
dT 

is assumed. We then assume that O(T) = o (u,v) can be ex
panded in powers of E (when E-D): 

o = 0 (0) + EO (I) + cO (2) + ... , (2.3) 

where 0 (0), 0 (I), ... are functions of T through their depen
dence on U(T) and V(T). 

Let 

g,=dg ,,_d2g 
- , g =d~' dT r 

a av=-' av (2.4) 
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By (2.1), 

iJ_ dO - (a + -I , a )0 - dr - u E g v , 

.. _d 20 -2 ,2 
0= dr = [auu + E g avv (2.5) (2.5) 

+ E- I(2g' au +g")av ]0. 

Whenf(O) is expanded in a Taylor series, one obtains 

flO) =f(O(O») + f'(0 (0»)0 (I)E + [f'(0(0»)0(2) 

+ !f"(0 (0»)] C + .... (2.6) 

When (2.5) and (2.6) are substituted into (1.3) and the coeffi
cient of each order of E is equated to zero we obtain 

g'(g' avv + av)O(n) = Cn' n = 0,1,2, ... , (2.7) 

with 

Co=O, 

CI = - (2g' auv + g" av + au)O (0) - f(O (0»), 

c2 = - (2g' auv + g" av + au)o (1) - auu 0 (0) - f'(0 (OW (1), 

(2.8) 

C3 = - (2g' auv + g" av + aulo (2) - auu 0 (I) - f'(0 (0»)0 (2) 

- ~f" (0 (0»)(0 (1»)2, 

Equation (2.7) is a second-order linear ordinary differ
ential equation of 0 (n) with respect to v. For n = 0, (2.7) can 
be integrated giving 

0(0) = Ao(u) + Bo(u)exp( - vIg'). (2.9) 
Putting (2.9) into (2.8) one has 
CI = - ([A ~ + f(O(O»)] + e-v/g'[ - (B ~ - (g"lg')Bo) 

- (g" BoI(g')2)v 1}, (2.10) 

where 

A ,=dAo B,=dBo (2.11) 
0- du' 0- du . 

Substituting 0 (0) of (2.9) into f(O (0») and expanding with re
spect to Ao we have 

f(O (0») = f(Ao) + f'(Ao)Bo exp(-vlg') + '" . (2.12) 

Putting (2.10) into (2.7) and using (2.12), Eq. (2.7) may be 
integrated for n = 1 to give 

0(1) =AI(u) + BI(u)exp( - vlg') + ST + NST, (2.13) 

where the term NST comes from those in C I containing the 
factor exp( - nvlg') (n>2) and ST from C1 containing the 
factor exp( - nvlg') with n = 0 and 1. 

It can be shown easily that the ST terms violate the 
following condition for the expansion of (2.3) to hold, i.e., 

Consequently, ST are secular terms. To eliminate these secu
lar terms and to determine the functions Ao(u) and Bo(u) in 
(2.9) we set these secular terms to zero resulting in 

1567 

A ~ + f(Ao) = 0, 

B ~ - (g" Ig')Bo - f'(Ao)Bo = 0, 

g"Bo = O. 
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(2.15) 

(2.16) 

(2.17) 

In general Bo#O. By (2.17) one has 

g"(u) = 0 or g' = const. 

Without loss of generality one may choose 

(2.18a) 

g' = 1. (2.18b) 

Integrating (2.15) and (2.16) with the use of (2.18) we have 

f dAo 
u - Uo + f(Ao) = 0, (2.19) 

Bo = bolf(Ao), (2.20) 

where Uo and bo are constants (independent of u and v). 
By (2.8), (2.9), (2.13), and (2.18b) one has 

C3 = - [A; +A~' + f'(AolAd 

+ exp( - v) [ B; - B ~' 

- f'(Ao)BI - f"(AolAIB01 + NST. (2.21) 

Similarly, the elimination of the secular terms gives rise to 

A ; + A b' + f'(AolA I = 0, (2.22) 

B; - B~' - f'(Ao)B1 - f"(AolAIBo = O. (2.23) 

By integration, 

Al = [a l + Inlf(Ao)I]f(Ao), (2.24) 

BI = - Bof'(Ao)[a l - 1 + Inl f(Ao) I] + bllf(Ao), (2.25) 

where AI> B I , and Ao are functions of u and a l and bl are 
constants of integration. 

Correction terms of higher order can be calculated sim
ilarly. Therefore, the asymptotic expansion of the solution of 
(1-.1) when a-oo assumes the following form: 

0= [Ao(u) + EAI(u) + ... ] 
+ exp( - v)[Bo(u) + EBI(u) + ... ] + NST, (2.26) 

where Ao(u) is given by (2.19) and AI' Bo, BI are expressed as 
functions of Ao through (2.24), (2.20), and (2.25), respective
ly, and E = a- 2 

u=r=Zla, v=rIE=aZ. (2.27) 

The NST are nonsecular terms. They are the sum of terms 
containing the factor exp( - nv) (n>2) and do not involve 
any constants of integration. Moreover, they are of order E 

and decay faster than the rest of the terms in (2.26) when 
V-oo. 

For (1.1), let us assume that initial conditions 

o (Z = 0) = D (E) (2.28a) 

and 

dO I = E (E) (2.28b) 
dZ z=o a 

are given such that D (E) and E (E) can be expanded in powers 
ofE 

00 00 

D (E) = L DjEj, E (E) = L EjEj. (2.29) 
j=O j=O 

Note that 

dO (0) = l...[A ~(Z) 
dZ a a 

+ B ~(~)e -aZ + ( - a2 )Bo( ~)e-az ]. (2.30) 
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The last term in (2.30) cannot satisfy the initial conditions of 
(2.28) and hence in (2.20) one should take 

bo=O, 

resulting in 

Bo(Zla) =0. 

(2.31) 

(2.32) 

Therefore, the zeroth-order initial conditions should be sat
isfied by requiring 

o (O)(Z = 0) = Ao(O) = Do (2.33a) 

and 

dO (0) I 
- =Eo +BI(O) =Ao(O). 
dZ z=o 

(2.33b) 

From (2.33a) one may determine the constant of integration 
Zo=ucfl. The constant bl in B I is determined by (2.33b). The 
initial conditions for orders ofi~ 1 are satisfied by taking 

OV1(Z = 0) = Aj(O) + Bj(O) = Dj' 

dO vl I - =AW)+B~(O)=E. -B· I' dZ z=o } } }}-

(2.34a) 

(2.34b) 

From these equations the different constants of integration 
in (2.3) may be determined. In the above calculations, for 
simplicity, the NST terms for j~ 1 have not been included. 
These terms contain the factor exp( - jaZ ) but no constants 
of integration. Although in principle these terms should be 
included, their contributions in establishing the constants a i 

and bi (i~ 1) are very small for j large. 
If instead of the initial conditions of (2.28), the bound

ary conditions 

o (Z = O) = F (E) 

and 

O(Z = a) = G(E) 

are given for (Ll) such that 

then 

00 00 

F(E} = LFjEj, G(E} = L GjEj, 
j=O j=O 

o(n'lz=o =An(O} + Bn(O) =Fn, 

o(n'lz=a =An(l) + Bn(l)exp( _a2) 

~An(1) = Gn· 

(2.35a) 

(2.35b) 

(2.36) 

(2.37a) 

(2.37b) 

From (2.37) the constants of integration Zo' ai' and bi (i~ 1) 
can then be determined. 

III. SPECIAL CASE OF f((}) = r + cos 2(} 

The asymptotic solution of (Ll) obtained in Sec. II is 
expressed in terms of AI> Bo, B I , ... , which are in tum ex
pressed through the function Ao = Ao(u - uo). In the special 
case of (1.2) we have 

Bo(u} = bol(r + cos 2Ao), (3.1) 

AI(u) = (r + cos 2Ao)(al + lnlr + cos 2Aol), (3.2) 

BI(u) = bl/(r + cos 2Ao) 

+ Bo(u)2 sin 2Ao(al - 1 + lnlr + cos 2Aol}. (3.3) 

To find Ao we put (1.2) into (2.19). 
(a) For r + cos 2Ao > 0 and - Oo.;;;;Ao';;;;0o, we obtain 
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Ao = - tan-I! Wtanh[(1 - r)I/2(u - uo)]], 

where 

W==[(1 + r)/(1 - rW 12, 0o=tan- I W. 

(3.4) 

(3.5) 

(b) For r + cos 2Ao < 0 and Oo';;;;Ao';;;; 11' - 00 , we obtain 

Ao = - cot-I! W- I tanh[(1 - r)I12(u - uo)]J. (3.6) 

The specific forms of AI' Bo, BI> ... , if needed (see Sec. IV), 
may be obtained from the formulas of Sec. II. 

IV. DISCUSSION 

From Sec. II the asymptotic solution of (1.1) may be 
written as 

0= A (U,E) + B (u,E)exp( - v), 

where 

A (U,E) = Ao(u) + EAI(u) + "', 
B (U,E) = Bo(u} + EBI(u} + "', 

(4.1) 

(4.2) 

(4.3) 

andA (U,E) is the so-called outer expansion.5
,9 It formally sat

isfies (Ll). However, A (U,E) contains only one constant of 
integration of zeroth order while (1.1), being a differential 
equation of second order, requires two constants of integra
tion (of zeroth order) to satisfy a general initial or boundary 
condition (see Sec. II). That is why the second term 
B (u,E)exp(-v) is important. It is called the boundary layer 
correction.s Note that because of the exponential factor this 
second term tends to zero when E-D (a~oo) for any finite Z 
(remembering v = aZ). In other words, in a mechanical ana
log, this term represents the rapidly decaying motion with 
respect to the "time" Z and is significant in the short "time" 
period (O,1/a) as far as the solution for 0 is concerned. In 
contrast, the outer expansion A (U,E) represents the long-time 
behavior (Z large) of O. 

Note that the second term in (4.1) diverges at ~ - 00. 

For a solution which is finite for ~ ± 00 (or Z~ ± 00), as is 
the case of the soliton solutions considered in Refs. 1 and 3, 
one must take B (U,E) = O. This is achieved by taking 
bo = bl = ." = O. One then has 

o =A (U,E) =Ao(u) + EAI(u) +.... (4.4) 

In Refs. 1 and 3, the A - and B-soliton solutions are ob
tained by a straightforward expansion of (Ll) or (1.3). By 
comparing (3.4) and (3.6) with the results of Refs. 1 and 3, we 
see that the zeroth-order solution obtained in the latter [Eq. 
(4) of Ref. 1, or Eqs. (15) and (18) of Ref. 3]10 are exactly the 
Ao(u) (u = Z la) obtained here. It is also easily shown that to 
order E, our result of (4.4) agrees with those in Eqs. (13) and 
(16) of Ref. 3. \0 In contrast, the multiple scales analysis em
ployed in this paper enables one to obtain the solution (soli
ton solutions in particular) of (1. 1) in a systematic way and to 
any order of E desired. 

Application of our results in Sec. II to the unsteady 
shearing nematic problem will be published elsewhere.4 
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Generalized integral moments are defined for a general class of saturating functions [frO) = Po' 
f( 00) = 0]. They are useful as independent variables for describing surface properties or 
macroscopic dynamics of finite systems. Applied especially to functions ofthe Fermi type, 
analytic solutions are given in terms of a semiconverging, and of a numerically semiunstable 
expansion, respectively, suitable for numerical evaluation. Results are compared to the 
semidivergent expansion as given by Aberg, of which some properties are exhibited here, and with 
the exact numerical solutions known for this special example. 

I. MOMENTS OF SATURATING FUNCTIONS 

Saturating distributions (limf(X) = Po, lim fIx) = 0) 
x---+O X-oo 

occur in physics in many different fields, such as the density 
of electrons in a piece of metal, of nucleons in a nucleus, and 
the distribution of thermal kinetic energies of particles in a 
quantum gas. We restrict ourselves here to one-dimensional 
problems. 

To describe their macroscopic properties as well as sur
face properties one needs independent global dynamic varia
bles, which may be defined by some measures of the saturat
ing distribution. 

Especially for the subclass off unctions with known sat
uration value prO), Sussmann 1 defined the "surficial mo
ments" to use as macroscopic variables, which were sugges
tively named as "surface-position," "-thickness," "flair," 
etc. 

A different approach was given by Myers and Swia
tecki2 for the subclass of functions that can be written as a 
folding of a step function with a function localized to the 
surface. 

A more general way was described by Ford and Wills, 3 

defining moments by the integrals 

(Rk)k: = [(k + 3)13] (~+2)/(r), (1) 

with (~): = S dr ~p(r). 
Much experimental information, such as form factors 

of scattering experiments to probe the properties of the satu
rating function, comes in terms of these Ford-Wills mo
ments. Thus there is no direct experimental information on 
prO). Macroscopic variables, suitable to describe macroscop
ic dynamics as well as being good for physical intuition, have 
yet to be defined. They should be calculable using experi
mentally accessible information only such as the observed 
form factors. Thus we propose here to start with a series of 
surface moments directly derived from the Ford-Wills mo
ments, 

S;:): = (akrR k, (2) 
which might be approximated by difference expressions for 
integer k. 

To gain quantities best for physical intuition we aim 

alNow at Fachbereich Physik, Universitiit Oldenburg, D-2900 Oldenburg, 
Carlv. Ossietskystrasse, Federal Republic of Germany. 

finally at definitions using the S;:) only but such that [for 
assumed to be known prO)] they approach the surficial mo
ments of Sussman-at least for sufficiently leptodermous 
distributions-and thus serve as their generalization. For 
this purpose we study the special example of a Fermi-type 
function allowing for an asymmetric falloff off(x) at the sur
face, 

p(x)=p(O) (f(x)+a d~l (f(X1))lx.=x). (3) 

Forf(x) = (1 + exp((x - c)la))-lithasbeenshown4 thatthe 
surface position c, the surface thickness a, and the flair a can 
be inferred from the surface moments Sp for a sufficiently 
thin surface to first order in (11k) by 

so: = So = C, Sl = (6/1r)SI/So = (aicf, 

S2 = -! S2/S1 = ale. (4) 
Generally, thesp : = Sp ISp _ 1 are proposed as macroscopic 
variables. 

We note that 
S 

s = /! (5) 
p II~:: SV 

They are surface moments of saturating functions of which 
only some Ford-Wills moments are assumed to be experi
mentally known. One may attach names in alliteration to the 

Sussmann moments, So is the surface position, ,Ji; is the rela
tive surface thickness, and S2 is the relative flair. The k de
pendence of the surface moments s;:) is a next-order effect 
and of interest if Ford-Wills moments for many different k 
are experimentally known. 

This k dependence results in 
slt) = st) = R k , (6a) 

sIt) = S(lk)ISt) 

= [(~+2In(r) -In((st))k)lk 

+ 1I(k + 3)]Ik, 

S~k) = S~)IS\k) 

= [(~+2In(r)(1-1I(k.sllk))) 

+ (~+2(ln(rW)/s\k) 
-In(s~k))(1 - 2/(k'S\k)))/k - 1 + 1I(k + 3) 

(6b) 

- (2k + 3)1(sllk).(k 2 + 3k )2) ]Ik. (6c) 

In the remainder ofthe paper we shall study the gener-
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alized surface moments SI' for the special class of Fermi 
functions, to gain experience for the inverse problem of de
termining the bounds to the saturating function from the 
knowledge of a finite number of their moments. Mainly, this 
means to develop as a tool analytical solutions of the loga
rithmic moment occurring in Eqs. (6b) and (6c). 

Different methods for the numerical solution of inte
grals of that kind-which have to be evaluated with respect 
to a parameter-dependent ansatz for p(r)-and their validity 
in different regions of the parameter space have already been 
discussed. 5 

In the following section we shall develop further an ear
lier-in this case--semidivergent6 expansion by Aberg7

; 

whereas in Sec. III we shall work out a semiconvergent series 
expansion as well as a semi unstable one, which seems to be 
more suitable for explicit analytical considerations. 

The results of the semidivergent and the semiconver
gent methods are presented and checked with the exact re
sults for several sets of given parameters in Sec. IV. 

We want to mention the paper of Griif and Pabst,8 who 
elegantly identified the moments of the Fermi-Dirac distri
bution with a contour integral and thus obtained a 
MacLaurin series expansion, suitable for numerical compu
tation. 

The mathematical tools used and developed here may 
be useful to other related problems as well; they are especial
ly applicable to the problem of analytical evaluation of sl' in 
general if the density is known, while for experimentally 
known form factors the generalized moments are given di
rectly by Eqs. (1), (2), and (5). 

II. THE ABERG METHOD 

The method presented in Ref. 7 is defined by starting 
from an integration by parts 

Ik = 1'''' dr f(rloV(r) 

= [F(rloV(r)];' + 100 

dr F(r)P(r), (7) 

where-for our purpose-we consider only the special case 
v = 1, f(r) = ~ In(r), and p(r) being the Fermi function 
(1 + exp((r - c)/a))-I. Thus P(r) = - dr p(r). 

Since the boundary term vanishes we first have to evalu-
ate 

F(r) = ~+ l/(k + 1)(ln(r) - 1/(k + 1)) at r = c. (8) 

Its Taylor expansion contains nth derivatives 

d~(~lnr) = ito e) (d~~)(d~-ilnr) 
= ~-n In! nil (~) (- l)n-i+ l~(k - i) 

i=O I n-I 

k' } + k . (lnr)e(k-n) , 
( -n)! 

(9) 

using the well-known step function e. 
Therefore, 
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d~F(r) = Uk + 1)!/(k + 1 - n)!]r-nF(r)e(k + 1 - n) 

n! + ~ + 1 - n n - 1 (k + 1) 
+ k + 1 i~O i 

X( _1)"-.i+ 1 elk + 1- i), 
n -I 

and the series for F(r) reads 

c
k

+ 1 i: f~) (~ _ l)m, 
k+lm=o c 

with 

f~) = [( - 1 )me ~) + (k ~ 1) 

X(lnc- k~Je(k+l-m)], 
defining the shorthand 

(to) 

(11) 

e~) = mi 1 (k ~ 1) (- l)i~(k + 1 - i). (12) 
i=O I l-m 

Substituting s: = (r - c)/a and a: = - cia, we get 

c
k 

+1 i"" "" ~e' Ik(lal,ck 
+ 1) = -- ds L f~) lal- m 

2' 
k+l a m=O (1+e') 

(13) 

In Ref. 7 the lower integration limit a was approximated by 
- 00, then the sum and the integral were exchanged to ease 

the calculation. 
However, in this special case, that last operation is a 

sensitive one because this series expansion ofF (r) is not abso
lutely convergent in the whole integration interval. Instead 
F (r) is represented by a semidivergent series; a cutoff in the m 
summation is necessary. An analysis of the choice of this new 
parameter should yield an optimal value mo beyond which 
the series will start to diverge. 

Thus 
k+ 1 mo 

Ik(lal,ck+ 1) = _C_ L f~)lal- m 

k+lm=O 

f oo Sme' 
X ds +q(mO) 

- 00 (1 + e'f 
(14) 

with a new term q(mo) resulting both from the cutoff and also 
from the exchange of the lower integration limit. 

The integral 

foo ~e' 
Jm = ds , 

_ "" (1 + e)2 
(15) 

as already discussed by Aberg7 as J m,v (here in the special 
case of v = 1 in his notation), is known to be related to the 
beta function, being the mth derivative of a function g(y) at 
y=O, where 

f
"" e(Y+ l)s 

g(y) = _ "" ds (1 + e)2; (16) 

g(y) is the integral representation of a special Euler integral 
of the first kind which can be evaluated to 

g(y) = 171'/sin 171'. (17) 

Using its series expansion we finally arrive at 
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{[ 
00 2(221'-1 1)IB I ]} 

Jm = d'; I + I -, 21' (1ry)2p. , 
1'=1 (lp). y_o 

(18) 

with the Bernoulli numbers B 21' • 

Obviously only the constant term of the mth derivative 
does not vanish as y-<l. Thus 

{

I, for m = 0, 

Jm = 2(2m- 1 - 1)IBm I~, for even m, 

o for odd m. 

(19) 

The resulting final expression for the k th (logarithmic) mo
ment Ik reads 

k+1 [ M 
Idlal,ck+ I) = -kc 

1 2 I f~kj., lal- 2m'(22m'-1 - 1) 
+ m'=1 

xIB2m,Ir
m

' + (Inc- k: Je(k+ 1)] 

+o1M), (20) 

with m' = m12. 

III. A SEMICONVERGENT METHOD 

In the last section we elaborated on the Aberg-Som
merfeld method, where, not knowing o1m), the optimal mo 
could be determined only empirically by comparison with 
the to-be-known exact result. Here we develop a different 
and, we think, profitable method which allows to estimate 
the integral with a negligible residual term. The methods 
used and developed here are useful also for analogous prob
lems. 

The kth logarithmic moment Ik(lal,c), as given by (7) 
and (8), after substituting z: = ria, can easily be transformed 
to 

Ik = ak+ 1(ln aA Ik) + B Ik)), (21) 

where, after substitutingy: = I-zllal andy: = - 1 +zl 
lal, respectively, the integrals A andB (the second is further 
transformed, using a functional relation for the logarithm) 
are given by 

A Ik) 

-----
lal k+ 1 k+l 

= t dy (I +y)k_(I_y)k 

Jo 1 + e1a1y 
+ (00 dy (1 + y)k 

JI 1 + elalY 

=; AI!lal,k) +A2(lal,k) (22) 

and 

~ _ In lal-lI(k+ 1) 
lalk+ 1 k+ 1 

= In lal(AI +A2) 

+ t dy (1 + y)kln(1 + y) - (1- y)k In(1 - y) 

Jo 1 + elalY 

+ (00 dy (1 + y)k In(I + y) 

JI 1 + e1aly 

= :In lal(AI +A2) +BI(lal,k) +B2(lal,k). (23) 

Thus we gain for the k th logarithmic moments the more 
tractable form 
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I k{ial,ck+ I)=ck+ I [[lnc-lI(k+ 1)]I(k+ 1) 

+ In c(AI(lal,k) +A2(lal,k)) 

+ BI!lal,k) + B2{ial,k )}. (24) 

The four integrals in Eq. (24) have to be considered separate
ly. We divide them into two groups, depending on whether 
they contain a logarithmic term or not. 

(1) We first concentrate on B2 as defined in Eq. (23). 
Sincey E [1,00) and lal at least greater than unity we are able 
to evaluate the denominator in terms of a geometric series. 
Therefore 

B2 = "to ( - lr 100 
dy (1 + y)k In(l + y) e- Iall"+ ltv. 

(25) 

Now substituting successively z: = y + 1 and then 
x: = (v + I)lalz, we obtain the more convenient form 

B - ~ (_I)"eaVa-lk+I)[[a SIX)} -Ina Slk)] 
2 - ~ v x a y x = k v a y 

,,=0 
(26) 

with 

and 

a,,: = lal(v + 1). 

Now Slk) can be straightforwardly integrated (a,,: = 2a,,) , a v 

e-ava~ {I + p.tl k(k-I)X···X(k-ll+ I)a,,-p.}, 

(27) 

whereas-on the other hand-it is a representation of the 
Whittaker function Wk 12.lk + 1)12 multiplied by a~ 12e - avo 

For calculation of a S Ix) we apply an asymptotic for-
mula for Wx/2.IX+ 1)/2' sin~;~discusslk(lal,ck+ I ) especial
Iy in the case lal> I, 

ax [a~e - aV(1 + D (x,lal,v))] , 

with the abbreviation 

I I 
~ rr~= I [mIx + 1) - m2] 

D (x, a ,v): = ~ . . 
j=1 j1a;, 

Therefore [a xS~: ] x = k reads 

a~e-av{lna,,(1 +D(k,lal,v)) 

+ [ax(I +D(x,lal,v))]x=k}' 

Our next step is to evaluate D and axD, respectively. 
We notice that both reduce to finite sums 

D (k,lal,v) = ± rr~ = I [m(k ~ 1) - m
2
] 

j= I Jl al
" 

and 

(28) 

(29) 

(30) 

(31) 

k 1 j m 
[axD (x,lal,v)]x= k = .I ~::::i I [ (k I) _ 2] 

J = I J.U"" m = I m + m 
j 

X II [I(k + I) _12]. (32) 
1=1 
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Finally we get for the last integral in Eq. (24) 

B2~ vto(-lte-av{~: [ln2+1navD(k,la l,v) 

-In a v Iltl k (k - I)X "'X(k - J.l + l)a v-
ll ] 

+ [axD(x,lal,v)]X=k}' (33) 

(2) We now concentrate on the solution of the third inte
gral in Eq. (24) 

B 
-lid (l+y)kln(l+y)-(I-y)kln(l-y) 

1- y . 
o 1 + elaly 

(34) 

Our aim is to do this integral by expansion of the numerator. 
We first expand the polynomial terms 

(1 + y)k In(1 + y) _ (1 _ y)k In(1 - y) 

ito (~) (In(l + y) - ( - l)i In(l - y)). (35) 

Now, since 

"" k 
In(l+y)= L (_l)k+IL 

k=O k 

is absolutely convergent for - 1 <y< 1, we get 

(36) 

for - 1 <y< 1. 
We add both infinite sums componentwise for y E [0,1) 

and exchange the resulting infinite sum with the finite (po
lynomial) sum: 

"" k (k) . yll+i 
1l~1 i~O i (( - I)' - (- lY') -J.l-. (37) 

We note that this sum takes aty = 1 the value 2k In(2). Since 
the numerator in Eq. (34) takes at y = 1 the same value, we 
can say that Eq. (37) is a sum representation for this term, 
being absolutely convergent in [0,1) and continuous at y = 1. 

Defining a new sum index y = J.l + i such that we get 
groups of constant power iny, Eq. (37) reads 

(38) 

where 

Cy := f (k )((_l)Y-Il_(_1Y')~ (39) 
y=I+A~1 Y-J.l J.l 

vanishes for even y, changing sign with J.l. Here we introduce 
A~) = (y - k - l)e(y - k - 2) as a shift parameter assur
ing finiteness of i. 

So 

1573 

Therefore, 

C = y 

for even y, 

for odd y. 

(40) 

m t 
BI(lal,k)= y~O cy, Jo dyyY'(1 +exp(laly))-1 

+ R (Ial,k;m), (41) 
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with the definition Y2: = 2y + 1, and a remainder 

R (laJ,k;m): = f dy {[(I + y)kln(1 + y) 

_ (1 - y)k In(1 - y)] 

m 

- L cy, yY'J(1 + exp(laly))-1 (47) 
y=o 

due to the cutoff in the summation (numerical calculations 
show that this last term vanishes as m goes to infinity). 

The integral in Eq. (41) is done by us through geometric 
series expansion, exchange of sum and integral, and straight
forward evaluation of the remaining integral: 

m 

L cy,la l-(Y2+ I)Y2!Z(Y2 + 1) 
y=o 

The result is a difference between two infinite sums; the first 
one is a representation of the Z function, 

"" Z(Y2 + 1) = L (- W- IV-(Y2+ I), (44) 
v=1 

the second one is abbreviated through 

F (Jail: = ~ (- W- I exp( - viall . 
Il v~1 vll+ I 

(45) 

(3) Let us now concentrate on the two remaining inte
grals in Eq. (24): 

A1(lal,k)= t dy (1 +y)k_(I_y)k 
Jo 1 + elaly 

(46) 

and 

1"" (1 + y)k 
A2(lal,k) = dy I I . 

I l+e ay 
(47) 

Applying to A 2( la I ,k ) the same transformations as given in 
part 1 of this section we reach 

(48) 

In A I (Ia I ,k ) we first expand the binomials and then use Eq. 
(43), simply replacing 

m 

L CZy + 1 
y=o 

therefore 

I(k-I)IZI ( k ) 
by 2 i~O 2i + 1 ; 

2[(k - I)/ZJ + I [(k - 1)/2J (k) 
-2 L L. lal-!!l+I) 

1l=0 i= [1l12J '2 
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ltd 

~ 

\ ,.,., ~~-~ 
10.1.0: 6 

10.1"' 7 

10.1,. 8 

lal .. 9 

10-8~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ 

5 10 15 20 m 

FIG_ L The relative deviation LI of our semiconvergent expansion of the 
Fermi moment I 2( laD to the exact result for increasing leptodermicity of the 
saturating function (1 + exp(y - lal))-'-

IV. RESULTS 

Testing the new method to evaluate the integrals 
ik(lal,ck

+ 1) (Sec_ III), and summing up to about m = 20 
(depending on the choice of the other parameters) the inte
gral expansion appears to be semiconvergent. Beyond this 

IAI 

10-3 la 1.6 

lal.o:5 

10-5 
10. I. 7 

lalll 8 

1 a 1.9 

10-7 

lal .. 10 

1O-9L-1 ___ ~ ___ .l...-___ .l...-_....J 

5 10 15 m 

FIG_ 2_ Same as Fig_ 1 but for the third moment k = 3_ 
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5 10 15 m 

FIG_ 3_ Same as Fig_ 2 but for the semidivergent expansion of Ref_ 7_ 

the results start to be numerically unstable, because the ex
pansion given for Bl [see Eq_ (43)] consists of a converging 
difference between two divergent sums_ We will call this be
havior semiunstable_ 

An alternative way of evaluating B 1 is now to identify it 
with an integral representation of the incompleter function: 

IAI 

10 3 

10' 

10-' 

5 10 15 m 

FIG_ 4_ Same as Fig_ 3 but for the semidivergent expansion of Ref. 7_ 
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[K.3] , 
(-1) 2 .. xli -6 

m 

________ ~ __________________ I~~KI ____ ___ 

o 
FIG. 5. The asymptotic behavior of the relative deviation ~ of our semicon
vergent expansion of Ik(lal). For all k and a a finite, small, but nonzero 
asymptotic limit is reached. 

i: e 2y +1 {_1_ i (_I)"e- aV 

y=o 2r+2v=o 

+ i~1 {C~) [l~(-d~)-e(d~-I)] 

+ C~~ + ,,=~_) e(d~ -l)} (-1)" 

1 i a" exp( - avli) } 
X .II------

2r+2+lj=1 (2r+j+ 1)!/(2r+ I)! ' 
(43') 

with d~: = [illal -!], (see Ref. 9) where we factorized the 
powers in la I and the faculties, splitting the sum over v near 
the maximum of the sum kernel in order to assure numerical 
stability for explicit calculation. 

This new method for calculation of B I defines our sec
ond, semiconvergent version, which is numerically stable, 
but more tedious. Since the results of both methods are near
ly identical over the usual range of use the user may choose 

10'8 L-__ ~ __ ~:--__ ~ __ ~ ____ ~.....J 
5 0 7 8 9 10 

lal 
FIG. 6. The absolute deviation 6 of the full semiconvergent series of the 
Fermi moments Idlal) shows the efficient approximation of the exact re
sult. 
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the semiconvergent, but semiunstable version as given in 
Sec. III for fast numerical calculations and analytical con
siderations. 

This last point is very important, because all expansions 
are there given in well-ordered powers in lal and e lal . 

On the other hand, one may prefer the much more slow, 
semiconvergent but numerically stable version by substitut
ing Eq. (43') for Eq. (43). 

We calculated Ik (Ia I ,ek + I ) in the case e = 1 for k = 2,3 
and lal varying between 5 and 10. 

The function .::1dlal,m) represents the relative, the 
function 8 k (I a I ,m) the absolute deviation from the exact val
ue of/k(lal,ek+ I). 

Figs. 1 and 2 show the results of the calculation with our 
semiconvergent, stable method and Figs. 3 and 4 the corre
sponding ones using the Aberg method.7 

As sketched in Fig. 5 the term .::1 k (Ia I ,m) depends on k 
in a characteristic way. It changes sign if k is an odd integer 
and reaches a specific non vanishing value as m goes to infin
ity. That is what characterizes our second method as only 
semiconvergent, which is simply due to the substitution of 
WkI2.(k + 1)/2 by an asymptotic (ial~oo) approximation. 

As Fig. 6 shows, the absolute deviation8k (Ial,m~oo lis 
a monotonic decreasing function of lal, falling off almost 
exponentially [the absolute instead of the relative deviation 
is more advisable here because Ik = 3 (Ial,e = 1) passes 
through zero for lal = 5.961 to ... ; this is the reason as well 
for the "anomalous" shift of.::1 k = 3 (Ial = 6,m) in Figs. 2 and 
4]. 

The mathematical results given here are needed in the 
inverse problem of evaluating properties of the underlying 
saturating function if only some surface moments are experi
mentally known. The method of general surface moments 
and the result of a semiconvergent series for Fermi-type 
functions may prove useful in many fields of physics where 
saturating distributions occur, such as the density of elec
trons at a surface, the fermi distribution in momentum 
space, the occupation distribution in superconductors, etc. 
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Let A and B be random operators on a Hilbert space, and let ( ) denote averages (expectations). 
We prove the inequality II (A * B ) II < II (A * A ) 111/211 (B * B ) 111/2. A generalized Holder inequality 
involving traces is also proved. 

I. SCHWARZ INEQUALITY 

In this paper we prove two inequalities, one of which 
was announced and extensively used before. I Despite the 
simple proof, the inequalities seem not to have been pub
lished elsewhere; only a special case of the Schwarz-type ine
quality for commuting operators has appeared.2 

A random operator A is an operator-valued function 
A (.) on some space n, with a given probability measure,u on 
n. Averages or expectations are denoted interchangeably by 
( ) or E. Thus 

(A )=EA: = LA (w)d,u(w). 

We have to be a little bit more precise. Let JY' be a 
separable Hilbert space and B ($) the set of all bounded op
erators on JY'. Let ~ be the u algebra of sets in n on which,u 
is defined. We assume that the complex-valued function (tp, 
A H¢') is ~ measurable for all tp, ¢' E JY'. Thus, a random 
operator is a weakly measurable B ($)-valued function. A 
typical example is a random matrix. 

It may happen that the expectation or average E (tp, 
A H¢') exists for all tp, ¢' E JY'; ifin addition there is a bounded 
operator, denoted by EA or (A ), such that 

(tp,EA¢') = E (tp, A H¢'), 

we say that the expectation of A exists (in the Pettis sense) 
andisgivenbyEA,or (A ).Clearly, (A) existsif(IIA II) does, 
and then II (A )II«IIA II). 

Theorem 1: Let A and B be random operators on a Hil
bert space JY'. Then 

II (A *B )II<II(A *A )1I1/211(B *B )11 1/2, (1.1) 

where the existence of the right-hand side (rhs) implies the 
existence of the left-hand side (lhs) and where 11·11 is the usual 
operator norm on B ($). 

The consequences are analogous to those of Schwarz's 
inequality and are proved in a similar way. 

Corollary J: For a random operator A we define 

IIA II,.: = II (A *A )11 1/2
, 

if the rhs exists. Then 

IIA + B II,. < IIA II,. + liB II,. (triangle inequality), 

IliA II,. -liB II,. I<IIA - B II,., 

II (A *A -O*B ) II <{IIA II,. + liB II,.}IIA -B II,.. 

If IIA II,. = 0, then A = 0 with probability 1. Thus 11·11,. is a 

a) Address until October 1985. 

norm on (equivalence classes of) random variables. 
Proof of Theorem J: We use the ordinary Schwarz ine

quality, first for the d,u intergral (i.e., for expectations) and 
then for the scalar product in JY'. Let the rhs of Eq. (1.1) 
exist. Then 

(IIAtp 112) = E (tp,A *Atp) = II (A *A ) 1/2tp 112 (1.2) 

and similarly for B. The two Schwarz inequalities now give 

(11Atp 112)1/2(IIB¢,112)1/2;>(IIAtp IIIIB¢,II) 

;> IE (tp,A *A¢,)I, (1.3) 

with existence implied. We now take the sup over tp and ¢' 
with Iltpll = II¢'II = 1. This shows that the rhs of Eq. (1.3) 
defines a bounded operator (A * B ). Since 
II (A *A )1/2112 = II(A *A )1I,itsnormisboundedbytherhsof 
Eq. (1.1). Q.E.D. 

Using the existence statement of Theorem 1, the follow
ing analog of an inequality of Lieb and Ruskai3 is an easy 
consequence. 

Corollary 2: Let (A * A ) and (B * B ) exist. Then for any 
E>O 

(A * B ) { (B * B ) + d - 1 (B * A ) < (A * A ). (1.4) 

As a consequence 

(A *B )(B *A )<II(B *B )II(A *A ). (1.5) 
Proof:LetQ: = {(B *B) + E]-I(B *A ), which is a non

random operator. Then one has 

O«A - OQ )*(A - BQ ) + EQ *Q. 

Expanding and taking expectation gives Eq. (1.4). From 

II(B *B) + EII-\ <{(B *B) + d- I
, 

one then obtains Eq. (1.5). Both also follow directly from Eq. 
(1.3). Q.E.D. 

An alternative proof of Theorem 1 was proposed to me, 
which is based on the observation that 

(A*A 
\n*A 

A*B) 
B*B ;>0. 

Sandwiching this with <P =(:~ ) from both sides and then 

taking expectations and the sup over tp, ¢' yields Eq. (1.1). In 
a similar way Corollary 2 can be derived directly, with B * B 
replaced by B * B + E. 

We remark in passing that for dim JY' < 00 the normed 
space {A;II(A *A )1I1/2=IIA II,. < oo} is complete, and the 
norms IIA II,. and IIA *11,. are equivalent. For dim JY' = 00 

this is in general not true, and II (A * A ) II < 00 does not imply 
II(AA *)11 < 00. 
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II. HOLDER INEQUALITY 

Defining IA IP: = (A *A )1'12, Eq. (Ll) can be written as 

II (A *B )II<II(IA 12)1I1/211(IB 12)11 1/2. 

The corresponding Holder-type inequality for p =I 2 does not 
hold in general if dim &":>2. This can be shown by counter
examples. For trace norms, however, one has the following. 

Theorem 2: Let A and B be random operators on a Hil
bert space &". Then, for r:> 1 and 1/p + 1/q = 1/r, p, q> 0, 

{Trl(A *B )lr}l/r<Tr{(IA *B J)'}lIr 

<{Tr(IA IP)}lIP{Tr(IB Iq)}lIq, (2.1) 

where existence of the rhs implies existence ofthe rest. Here 
A * may be replaced by A in the middle and the lhs. 

Similarly as before, we use HOlder's inequality for inte
grals and then for trace norms. But first we note a simple 
fact. 

Lemma 1: On positive random operators, trace and ex
pectations commute, 

ETrlA I =TrEIA I, (2.2) 

and existence of either side implies that of the other. In this 
case A is trace class almost surely, EA exists and is trace 
class, and 

TrEA =ETrA. (2.3) 

Proof Let {ffJ n ] be an orthonormal basis in Pf'. Then 

EllA II<ETrIA I = 2:E (ffJn,IA iffJn)' 
n 

by positivity. Hence, if the rhs is finite then E IA I and EA 
exist as bounded operators and the rhs equaIs Tr E IA I.Equa
tion (2.3) then follows from Lebesgue's bounded convergen
~ QRU 

Proof of Theorem: By Holder's inequality, 4 first for inte
grals and then for trace norms, we have 

{E TriA IP}lIp{E TrlB Iq}lIq 

:> {E [(TriA IP)lIP(Tr IB Iq)lIq] 'J IIr 
:>{ETrIA *B ir}l/r. (2.4) 

By Lemma 1, this proves the second part ofEq. (2.1), togeth
er with existence. The remainder follows from Lemma 2. 

Lemma 2: Let A be a random operator and let p:> 1. 
Then 

(2.5) 
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where existence of the rhs implies that of the Ihs. 
Proot Let the rhs exist. By Lemma 1, IA IP is trace class 

almost surely. Since IIA IIP<TriA IP one has 

EllA II<{EIIA liP} lip < 00. 

Hence EA exists as a bounded operator. 
Now let Xbe any nonrandom operator with IX Iq trace 

class, S 1/p + 1/ q = 1. Then, by the second half of Eq. (2.1), 
E IXA I exists and is trace class. Thus, by Lemma 1, 
EXA = XEA is also trace class. By duality one now hass 

{TrIEA IP}lIP = sup ITr XEA I 
TrlXl q = 1 

<E sup ITr XA I 
Tr IXl q = 1 

= E{TrIA IP}lIP 

<{ETrIA IP}IIP. (2.6) 
Q.E.D. 

It was pointed out to me that the argument in Eq. (2.4) 
can be replaced by an equivalent linear version of HOlder's 
inequality, i.e., 

r- 1 TriA *B 1'<p-l,VTrIA IP + q- 1..-l -qTriB Iq, 

for all ..-l > O. Taking expectation and using Lemma 1 also 
gives the second part of Eq. (2.1). 

Remark: Finiteness of the measure p has only entered 
in the proof of Lemma 2. For nonfinite p, Theorem 1, 
Theorem 2 with r = 1, and Lemma 2 with p = 1 still hold, as 
does the second inequality of Theorem 2 for any r:> 1. 
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A functorial correspondence between the category of graded manifolds and the category of vector 
bundles is given. Given a graded manifold (X.A ), a vector bundle G over X is given as a subset of the 
product X xA 0, where A 0 is the dual coalgebra of A. This bundle has an obvious coalgebra 
structure on each fiber. The correspondence is achieved by showing that the sheaf A is isomorphic 
as a sheaf of algebras to the sheaf of sections of the vector bundle G ' dual to G. 

J. INTRODUCTION 

Graded manifolds are introduced in Refs. 1 and 2 to 
provide an analog of "graded Lie group" to recapture expli
citly the geometry implicit in the algebraic structure of Lie 
superalgebras. In Ref. 3, graded manifolds are classified by 
isomorphism classes of vector bundles. The purpose of this 
paper is to strengthen that result, giving a completely differ
ent proof. The new result is that there are functors between 
the category of graded manifolds and the category of vector 
bundles which establish an equivalence of categories. 

There are three advantages to the new proof. First, the 
proof is constructive and canonical. Second, the existence of 
an equivalence between the two categories should allow one 
to exploit the machinery developed for vector bundles. Fin
ally, the proof illustrates the potential of coalgebra theory, 
an underemployed technique in this field. The vector bundle 
in question is constructed from a subset of the dual coalgebra 
using a natural topology on the dual coalgebra. 

Basic definitions and notation are given in Sec. II. Sec
tion III summarizes results about coalgebras and dual coal
gebras which are needed. Section IV develops the main 
tool-the construction of vector bundles from the dual coal
gebra. The main result is proved in Sec. V. 

II. NOTATION AND BASIC DEFINITIONS 

Vector spaces: All algebras and vector spaces are alge
bras and vector spaces over the real numbers. The vector 
space spanned by elements VI'""Vk will often be denoted 
(v1,,,,,Vk ). 

Manifolds: All manifolds considered are smooth para
compact connected Hausdorff manifolds. 

Sheaves: If A is a sheaf of vector spaces over a manifold 
X, A restricts to a sheaf A I u over an open subset U in A. 
Usually A I u will simply be written asA. If B is another sheaf 
over X, a map of sheaves u:A-+B is a collection of maps 
oi U):A (U)-+B (U)foreachopenset UinXsuch that the maps 
oi U) commute with restriction to subsets. Often the map 
oi U) will simply be written u. 

Dual spaces: If V is a vector space its dual space will be 
denoted by V'. Ifv is in Vand 5' is in V', evaluation ofv at 5' 
will be denoted by (v,g). 

Exterior algebras: If V is a vector space the exterior 
algebra on V, denoted A V, is the graded commutative alge
bra freely generated by V contained in (A V) I' If V has a basis 
{vl"",vn J, A V has a basis 

{Vr' t\ . .. t\ V~n:jjE{ 0, 1] }. 

In fact A V is a Z graded commutative algebra, with A Vk 

spanned by basis elements vr' t\ . .. t\ v~n, ~jj = k. 
Graded manifolds: A graded manifold is a pair (X.A ), 

where X is a manifold and A is a sheaf of Z2 graded commuta
tive algebras such that we have the following. 

(i) There is a surjective map of sheaves 

€:A-+COO, 

where COO is the sheaf of smooth real valued functions on X. 
(ii) There is an open cover { Ua J of X and isomorphisms 

of sheaves of Z2 graded commutative algebras 

7'a :A I u-+C oo ®AR 51 u' 

The maps 7' a are called trivializations, and A is said to be 
trivial over the sets Ua . 

Lemma 2.1: If(X.A) is a graded manifold, the sheaf A is 
a fine sheaf over x. That is. for any open set U with an open 
subset V, with Vequal to the interior of its closure in V, the 
restriction map 

p(V,U):A (U)-+A (V) 

is onto. 
Proof' Let { Ua J be an open cover of U with trivializa

tions 7' a' and suppose that Ua is the interior of its closure in 
U for each a. Also, since X is a nice manifold, the collection 
{ Ua J can be indexed by the positive integers. Write 

~ = VUUIUU2U .. ·uUj • 

Now let ao be inA (V). The trivialization 7'1 provides a com
mutative square 

T, 

A (U1)-COO(U)®AR5 

~ T, ! 
A (UlnVJ--C OO(U1nV) ®AR 5. 

Since the sheaf COO is fine and both rows are isomorphisms, 
ao restricted to Uln V is the restriction of some bl in A (Utl. 
Now { V,Ud is an open cover of VI. and bl = ao on UlnV. 
Thus there existsal inA (VI) withal = bon UI,a l = aoon V. 

Proceed inductively to find elements aj inA (Vj) a j = aj 

on Vjn~. Thus there exists a inA (u~) with a = ao on V, as 
desired. 

III. DUALCOALGEBRAS 
The dual coalgebras: Let A be an algebra. Define 

A 0 = {aEA ' :ker a > 1,1 an ideal, dim A /1< 00 J. 
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The vector space A ° has the following properties. 
(i) A ° is a coalgebra with comultiplication 

.:1:A°---+-Ao®Ao 

induced by multiplication in A. 
(ii) If A and B are algebras, (A ® B)O = A ° ® B 0. 

(iii) If f:A---+-B is a map of algebras, f induces a map 
f°:A o---+-B ° of coalgebras. 

The coalgebra A ° is called the dual coalgebra. See 
Sweedler4 for the basic properties of the dual coalgebra. 

Examples: (i) The exterior algebra A V. Suppose V is a 
vector space of dimension s. Then A V is itself finite dimen
sionaland(AV)O = (A V)' = (A V'). Let {5i J be a basis for V'. 
Let b = (h1, ... ,hs ), k = (k1, ... ,ks ). Comultiplication is given 
by the formula 

.:15 {. A ... As;' 
= L a(b,k)5~1 A·· .A5~'®5~· A·· .A5~' 

where hi + k i = ji and a(b,k) is defined by 

5~1 A·· .A5~ = a(b,k)5~' A·· '5~'5~' A·· .A5~'. 
(ii) The algebra of smooth functions: Let U be an open 

set in Rr. Then 

and comultiplication is given by the generalized Leibnitz 
rule 

.:1 a ~i; I _ c(b,k)a ~ki ~hi ----. -L k ® h' 

a~·· . . ax~' u ax~" . . ax/ ax~" . ·ax/ 

hi + k i = jj> c(b,k) = G)· . {~J . 
(iii) Coo (U) ® ARS 

: This is the example that will be most 
usefulfor analyzing graded manifolds. Using property (ii) of 
the dual coalgebra, 

-UEU, jiE{O,1j, k i = 0,1,2, ... ). 

For a discussion of these facts, see Kostant. 1 

The following proposition concerning A VO will be need
ed in Sec. IV. 

Proposition: Let (7:11 VO ---+-.1 VO be a map of coalgebras 
which is the identity on V'. Then (7 is the identity. 

Proof' The coalgebra map (7 induces an endomorphism 
of algebras 

(7' :(.1 VOl' ---+-(.1 VOl'. 

There is a canonical isomorphism identifying (A VOl' with 
A V. The statement that (7 is the identity on V' implies that (7' 

is the identity on V. Thus (7' must be the identity, and hence (7 

must be the identity. 
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IV. VECTOR BUNDLES CONTAINED IN THE DUAL 
COALGEBRA 

Let (X,A ) be a graded manifold and let p be a point in X. 
Let A 0(P) be the maximal subcoalgebra of A (X)O containing 
Rp as its unique simple subcoalgebra. Suppose for each pone 
chooses a finite-dimensional subspace Kp of A 0(p). Form a 
"bundle" over X by setting 

K = uKp, 1T:K ---+-X, 1T(k ) = p, if k is in Kp. 

Put a topology on A ° by defining basic sets as follows. For 
E>O, n a positive integer, and elements a1, ... ,an , define 

B (E;a1, ... an ) = {aEA o:l(a;,a) I <E,i = 1, ... ,n J. 
With the topology generated by this base, A ° becomes a 
Hausdorff topological vector space. 

Lemma: The inclusion 

0: X ---+-A ° 
is a homeomorphism of X onto its image. 

Proof First show that any open set U in X contains a set 
of the form B (a l, ... ,an ;E)nX. To do this pick an element u in U 
and a suitable neighborhood W of u having the following 
properties: (i) A has a trivialization 'T over W, and (ii) W con
tains a neighborhood Z of u with the closure of Z contained 
in U. 

Let'" be a function on X with 

"'(x) = 1, x not in Z, 

1 > "'(x) >0, x#u, 

tP(u) = 0 . 

The trivialization provides a commutative square 

A(W) _Coo(W)®ARS 

A (~-Z)-C oo(W 1 Z) ®AR s. 

Leta = 'T-
1(",® l)inA (W),andletb = linA (X - Z).Since 

a = b in A (Wn(X - Z )), there exists some element cin A (X) 
with a = c on Wand a = b on X - Z. Consider the set 
B(c,!)nX. 

For x in X, 

I (c,x) I = I EC(X) I = "'(x), 

and hence I (c,x) I<! implies that x is in Z< U. 
Now show the converse, that given a set 

S = (a + B (a l, ... ,an ,8))nX, 

there exists an open set VinX with V contained in S. Suppose 
that s is in S. Since (ai,x) = Ea;(x), for x in X, and Eai is 
smooth, there exist open sets Vi with s in Vi and 

I (a;,s) - (a;,x)1<8 -I(ai,s) - (aj>a) I, 
for all x in Vi' Let V = nVi . This is an open set inX contain
ing s, and for x in V, 

I (aj>x) - (ai,a) I 
<I(ai,x) - (ai,s) I + I (aj>s) - (a;,a)I<8 

as desired. 
Now put a topology on K as follows. The space X XA ° 

carries the product topology. Identify K with the subset 

K = {(u,aO):aoEKu J 
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and give K the subset topology. The topology on the fibers 
gives each fiber the structure of a finite-dimensional topo
logical vector space, and hence must coincide with the usual 
topology on finite-dimensional vector spaces. 

One can recognize "algebraically smooth" sections of K 
by saying a map O':J( __ K is an algebraically smooth section if 
1T0' = 1 and for all a in A (X), the map 

(O',a): X--R, (O',a)(p) = (O'(p),a) 

is a smooth map. 
For an open set U in X define r (U,K) to be the sheaf of 

algebraically smooth sections. 
Lemma: The assignment u __ r ( U,K ) defines a sheaf of 

COO modules on X. 
Proof: First check that r ( U,K ) is a presheaf: that is, if V 

is an open set contained in U, check that there is a restriction 
homomorphism 

p( V, U):r (U,K ) __ r (V,K). 

Certainly if 0' is in r (U,K ), 0' restricts to a section r of Kover 
V. The problem is to check that it is algebraically smooth. 

Let u be in V and choose a neighborhood Y of u in V 
such that the closure of Y is contained in V. By Lemma 2.1, 
givenainA (V)thereexistsbinA (U)and(r,a) = (O',b )onY. 
Thus (r,a) is smooth on a neighborhood of u in V, for any a, 
and hence r is algebraically smooth. 

The remaining sheaf theoretic properties are not diffi
cult to verify. The COO module structure comes from 
pointwise multiplication. 

Proposition: Suppose K is constructed as above and has 
the property that for all p in X there exists a neighborhood U 
ofp inX such that (i) r (U,K) is a free Coo (U) module on some 
generators m 1, ... ,mk; (ii) the elements m l(u), ... ,mk (u) form a 
basis for K u ' forallu in U; and (iii) thereexistaw .. ,ak inA (U) 
such that (m j ,aj ) = Ojj' Then K can be given a unique 
smooth structure makingK a COO vector bundle, with r ( ,K) 
coinciding with the usual sheaf of smooth functions. 

Proof: Construct an atlas for K as follows. For z in Kp, 
choose a neighborhood U of p such that U satisfies properties 
(i)-(iii) above, and there is a diffeomorphism ¢ from U to an 
open set in Rr . Define a map 

p:K lu--U XR \ 

pte) = (1Te,r11T{e), ... ,rk 1T(e)), 

where the rj are functions on U defined by the equation 

Thus (¢ X 1)P is a map from K lu to an open set in Rr+ k. 

First check that (¢ X 1)P is a homeomorphism. This will 
be a homeomorphism if p is. Notice that p has an inverse, 
explicitly the map sending 

(u,rJ, ... ,rk)f--+( u, L rjm;(u)). 

Check that p is continuous. Certainly 1T is continuous. For 
the functions r j , consider the inverse image of an open set, 

r j- l(r - o,r + 0 ) 

= I!u,a): UEU, aEKu, Irj(a) - rl <oj. 
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The open set 

S = Kn(U X (rmj(w) + B(aj;o))), 

where w is any element of U and aj is the element of A (U) 
with (mj ,aj ) = Ojj, has the property that for (x,a) in S, 

I (aj,rmj(w) - a)1 = !(a;.rmj{w) - L rj(a)m;(x)) I 
= Ir - rj(a)l· 

Thus S = rj- l(r - o,r + 0) as desired. 
. Now check that p is an open map. Given an open set 

S = Kn{U X(a + B(a 1, ... ,ap;0))), 

consider the set 

pIS) = {(u,r1, ... ,rd :L rjmj(u)Ea + B(a1, ... ,ap;0)} 

= {(u,r1, ... ,rk): I (a - L rjmj(u),aj ) I <0, for all j }. 

Supposep(S) is nonempty. Then thereexists{u, r1, ... ,rk) with 

I (a - L rjmj(u),aj ) I <v<o, 

for allj. Each function (~rimj(w),aj) is a smooth function 
on U so there exists an open subset W of U such that its 
closure is compact, u is in W, and 

Irj II (mj,aj)(u) - (mj>a)(w)1 <0 - v/2k. 

Now suppose that (SI, ... ,sk) satisfies 

Irj -sjlmaxl(mj(w),a)1 <0 - v/2k, (1) 

where the maximum is taken over aIlj and all win W. Then 

I (a - LSjmj(W),aj ) I 
< I (a - L r;m;(u),aj ) I 
+ I L (rjm;(u) - s;mj(w),a) I 
<v+ LI(rjmj(u) - rjm;(w) + rjmj(w) -sjmi(w),aj)1 

<0. 

Thus Q= {(W,SI,. .. h): WEW, (sl, ... sd satisfies (1) above) is 
an open neighborhood of (u,r1, ... ,rk ) in U XRk as desired. 

Now check that any two such charts are compatible. 
Suppose U' is another neighborhood of p with r (U I,K) free 
on generators m; , ... mic, , as above, affording the homeomor
phism 

p':Klu __ UXRk '. 

Suppose that ¢ , is a diffeomorphism of U' with an open set in 
R'. Let W = UnU'. Check that the composite (¢' X 1)p'p-l 
X (4; -1 Xl) is a diffeomorphism from (4; Xl) W X Rk to 
(4;'x I)W XRk. 

This will be a diffeomorphism if and only if p'p -1 is a 
diffeomorphism, Since the sets {m;(u)), {m;(u)j are both 
bases for the vector space Ku , for all u in W, write 
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Thus thegij are functions on U. Now p'p-I can be written 
explicitly as 

It is enough therefore to check that the functions gij are 
smooth. 

Consider m/ on UnU'. Pick u in UnU' and neighbor
hoods V, Wof u in U with the closure of V contained in W. 
Let X be a function on U' with X (x) = 1 for x in V and 
x (x) = 0 on the complement of Win U'. Now xmj is an 
element of r (UnU',K), and Xm/ = mj on U. Define an ele
mentminr(U',K)bysettingm = Xm/ on UnU' andm = 0 
on U' - W. Since xmj = Oon (UnU')n( U 'nW), m is well de
fined. Thensincer (U',K)isafree C"" (U') module generated 
by the m;, write 

where the sJ are smooth functions on U'. Now observe that 
sJ = gij on U. Hence the gij are smooth as desired. 

Certainly with this smooth structure K is a vector bun
dle: the maps p provide local diffeomorphisms of K I u with 
U XR k preserving the vector space structure on the fibers. 
That the smooth structure on K is unique depends on the 
following facts. 

First, any atlas A of charts for K must contain an atlas of 
charts of the form (K I u,(<,6 X l)v) where vis a trivializationof 
K I u and ( U,<,6 ) is a chart on X as above. 

Second,if(K I U' ,(<,6'x l)v') is a chart ofthe above form in 
a second atlas A " and UnU' is not empty, the assumption 
that r ( ,K) is the sheaf of smooth functions allows one to 
conclude that the charts are in fact compatible. HenceA and 
A ' must give rise to the same differentiable structure on K. 

Examples. 
(i) The odd tangent space T (X,A ) I' For p in X define 

Tp(X,A h = (aEA 0(P): 

a(ab) = a(a)€b (P) + ( - 1 )Ial€a(p)a(b )}. 

If U is an open set over which A has a trivialization 7, then 

7{U):A (U)-+C oo(U) ®A (Ow .. ,Os) 

is an algebra isomorphism, where {O/} is a basis for RS
• 

Thus, using example (iii) of Sec. III 

7(U)(Tp(X,A h) = p ®AR s' 

and r (U, T (X,A h) is isomorphic to Coo (U) ® (Rs)'. This is 
clearly locally a free Coo module on generators 1 ® A j, where 
the {A/ } is the basis of RSI dual to the basis {OJ}, With this 
choice of generators conditions (ii) and (iii) are clearly satis
fied. 

(ii) Suppose A is the sheaf Coo ® ARs 
• Define 

Kp =p®A (R s)'. 

The sheaf r ( ,K) is in fact globally free. 
(iii) Now get an analog for example (ii) in the event that 

A is not globally trivial. Define 
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Gp(O) = Rp, Gp(l) = Rp + Tp(X,A )1' 

Gp(k) = (aEA 0(p): 

iJa-a®p-p®aEGp(k-l)®Gp(k-l)}. 

Using induction one can show that Gp (k ) is a subcoalgebra of 
Gp (I) for all k < I. Define 

Gp =uGp(k). 

Notice that if U is an open set over which A is trivial, then 
r ( U, G ) is Coo free. The necessary verifications proceed as for 
T(X,A)I' 

Proposition: (i) Gp is isomorphic toATp (X,A has coalge
bras. 

(ii) G is isomorphic to A T (X,A ) I as vector bundles. 
Proof: Pick an open set U with A trivial over U. A trivia

lization 

7:A (U)~C ""(U) ®AR S 

provides a coalgebra isomorphism 

7 0:(C "'(U) ®AR S)O~A (Ut 

By inspection, 7° sends p ® (R S 
)' isomorphically onto 

Tp (X,A hand p ® A (Rs)' isomorphically onto Gp. Hence (i). 
Now let TO denote the restriction of 7° to p ® R S

'. Con
sider the map 

7°A (TO-I):ATp(X,A h~Gp' 

This map restricts to the identity map on Tp (X,A )1' and is a 
coalgebra isomorphism. Thus it is independent of choice of 
trivialization 7 used to define it (see the examples in Sec. III), 
and one can define a bundle map 

S:AT(X,A h~G, 

5 = -flA (TO-I) onATp(X,A h 
for some trivialization 7 in a neighborhood ofp. Thus 5 pro
vides the bundle isomorphism required in (ii). 

v. THE MAIN THEOREM 

Lemma: Let G' be the dual bundle of G. There is a ca-
nonical isomorphism of sheaves of algebras 

O':A~r ( ,G '). 

Proof: Let U be an open set in A. Define 

u(U):A (U)~r(U,G') 
by setting 

(u(U)a(u),g) = (a,g(u), 

fora inA (U),g(u) in Gu • Ifgis a smooth section of Gover U, 
then the function (u(U)a,g) = (a,g) from U toR is smooth, 
and hence u( U)a is a smooth section of G' over U. It is not 
hard to see that 0' commutes with restriction maps appropri
ately. 

Now check that 0' is an isomorphism. It is enough to 
check that u( Ua ) is an isomorphism for a collection of open 
sets Ua which cover X. If U is a set over which A has a 
trivialization 7, then the following diagram commutes: 
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Here 1] is the map determined by the canonical identification 
of A (0 1, ••• ,0.) and A (AI"",As)'. The choice of sections 

A ~I A· .. AA ~':X---+x ®A ~I A· .. AA; 

fixes a C"" linear isomorphism 

v':r(U,G)---+C""(U)®A (AI, ... ,A.). 

Since v' is an isomorphism, by choosing sections dual to 
AI'''',A., one gets the C"" linear isomorphism 

v:r( U,G )---+C ""( U) ® (A (AI,. .. ,A.»),. 

Thus a( U) is an isomorphism for all open sets U over which A 
is trivial. Since X is covered by such open sets, U is an isomor
phism of sheaves. 

Multiplication in F (U,G ') is given by 

(st (u),g) = L ( - ty'(ll(s(U),gli) (t (U),g2;)' 

whereg is in Gu,.Jg = ~gli ®gz;' and Jl(i) = It (u)llg2; I. For 
a, binA (U), 

(a(U)(ab )(u),g) = (ab,g) = L (- 1)lg"llbl(a,gli)(b,gz;) 

= (a(U)aa(U)b,g). 

Hence U is a map of sheaves of algebras. 
Lemma: There is a canonical isomorphism of vector 

bundles 

G'---+AE, 

where E is the dual bundle of T (X,A h. 
Proof This follows from the examples in Sec. IV. Since 

G is isomorphic to A T (X,A ) I as a bundle of coalgebras via the 
canonical isomorphism 5, the dual map 

5':G'---+(AT(X,A h), =AE 

is a bundle isomorphism which preserves multiplication in 
the fibers. 

Theorem 5.1: Let (X,A) be a graded manifold, and let 
T(X,A)1 denote the odd tangent bundle of (X ,A ). LetEbethe 
dual bundle to T(X,A )1' Then there is a canonical isomor
phism of sheaves of algebras 

1]:A---+r ( ,AE). 

Proof The isomorphism of vector bundles in the exam
ples in Sec. IV provides an isomorphism of sheaves 

K:r ( ,G ')---+r ( ,AE), 

which preserves the multiplicative structure. Then define 
1] =KU. 

Corollary: Let V denote the category of finite-dimen-
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sional real vector bundles over nice manifolds and let GM be 
the category of graded manifolds. Then there are functions 

h:GM---+V, k:V---+GM, 

which are adjoint functors. 
Proof Define h as follows. If (X,A ) is a graded manifold 

define 

h(X,A) =E, 

where E is the bundle dual to the odd tangent bundle of 
(X,A ). If/is a map fi( Y,B }---+(X,A ) of graded manifolds, then 
by definition,fis an algebra homomorphismfiA (X )---+B (Y), 
and/gives rise to a map of coalgebras 

/o:B(y)o---+A (xt 
It is not hard to check that Ty ( Y,B ) I gets sent to T /"(Y) (X,A ) I' 
and thus gives a map of vector bundles 

T/I:T(Y,Bh---+T(X,A )1' 

Define h/ = T/I • Thus h is a covariant functor. 
Define k by setting 

kF= (S, F( ,AF')), 

where Fis a vector bundle over a manifold Sand F' is its dual 
bundle. If H is another vector bundle over a manifold T, and 

X:F---+H 

is a vector bundle map, X induces a vector bundle map 

AX:AF---+AH. 

Define kX by setting 

kx:F (T ,AH ')---+F (S,AF 'I, 
(kX(u)(s)J) = (u(I:1(s)), x(f), 

where s is in S,J is in AF, and U is in r (T ,AH 'I. 
It is not hard to check that 

hk(F) =F 

for a vector bundle F, and if (X,A ) is a graded manifold the 
canonical isomorphism 

1](X):A (X)---+F(X,AE) 

of Theorem 5.1 provides a natural transformation from kh to 
the identity. 
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2F. Berezin and G. Kac. Math. USSR Sb. 11, 311 (19701. 
3M. Batchelor, Trans. Math. Soc. 253, 329 (19791. 
4M. Sweedler, Hop! Algebras (Benjamin, New York. 1969). 

M. Batchelor 1582 



                                                                                                                                    

On the space-times admitting a synchronization of constant curvature 
Carlos Bona 
Departament de Ffsica Te6rica. Universidad de Palma de Mal/orca. Palma de Mal/orca. Spain 

Bartolome Coli 
Chaire de Physique MatMmatique. Col/ege de France. Paris. France 

(Received 17 July 1984; accepted for publication 16 November 1984) 

A synchronization S on the space-time is a foliation by spacelike hypersurfaces. We study here the 
vec~or fields, tangent to S, which are Killing fields for the induced metric on every instant of S but 
which are not necessarily Killing.fie!~s of the whol~ space-time metric; they are called S-Killing 
vect?r fields. We anal~ze the multlphclty of the maximal symmetry or complete integrability case, 
that IS the case for which the space-times admit a synchronization S with the maximum number of 
S-Killing vector fields. In particular, the important case where S is umbilical is treated in detail. 

I. INTRODUCTION 

The symmetries defined by Killing vector fields on the 
space-time of the relativity theory have been thoroughly 
studied. But, in spite of their great interest, these symmetries 
often imply too drastic restrictions on space-time and are 
not, therefore, always welcome. 

The hyperbolic geometry of space-time is seen by any 
system of observers as a Riemannian three-dimensional 
time-dependent geometry: the geometry of every instant of 
the synchronization defined by the t = const hypersurfaces. 
The physical situations of interest are then often related di
rectly to the symmetries of this evolving three-dimensional 
geometry rather than to the symmetries of the four-dimen
sional space-time as a whole. 

The object of this paper is to study these kinds of sym
metries. More precisely, we are interested in vector fields of 
space-time which are Killing fields for the Riemannian met
ric induced on every instant of a synchronization S but are 
not necessarily Killing fields of the hyperbolic four-dimen
sional metric. These vector fields will be called, in short, S
Killing vector fields. 

The S-Killing vector fields describe adequately spatial 
symmetries of the gravitational field associated to special 
matter distributions, corresponding to compact objects as 
well as to the continuous medium related to cosmological 
models. These applications would suffice to justify the study 
of such vector fields, but their knowledge is also essential in 
other domains of relativity theory: for example, the integra
tion (analytical or numerical) of the Einstein constraint 
equations (and then of the Einstein evolution equations), 1 the 
analysis, from the Cauchy data, of the dimension of the iso
metry group admitted by the space-time,2 the existence of 
rigid motions in relativity,3 and, in general, the study of the 
integrability of the differential systems whose associated ho
mogeneous system is precisely that of the Killing equations. 

In this paper we shall study in detail the "maximal sym
metry" case, that is the case in which the space-times admit a 
synchronization S with the maximum number of S-Killing 
vector fields. It follows that the induced metric on every 
instant t = const of the synchronization is of constant curva
ture. We shall call them, for brevity, synchronizations of con
stant curvature. 

The existence of S-Killing vector fields which are not 
Killing fields seems to have been first considered only very 
recently, in the works of Krasinski4 and Collins and Sza
fron.5 

The paper by Krasinski begins with the study of spheri
cally symmetric synchronizations, but the second half of his 
work is devoted to the synchronizations of constant curva
ture. He considers some space-times with such synchroniza
tions by taking two inequivalent extensions of the Fried
mann-Robertson-Walker models, based on the two 
coordinate systems commonly used to deal with these me
trics. Here, we are interested directly in the whole class of 
those space-times, and we think that a good understanding 
of their multiplicity needs a good geometric formulation. We 
will show that the evolution formalism of general relativity is 
perfectly adapted to this goal. 

The papers by Collins and Szafron analyze the problem 
in a fairly general way, by considering the more general case 
of conformally flat synchronizations. Nevertheless, they use 
in an essential way the assumption that the matter content is 
a perfect fluid whose flow lines form a geodesic congruence 
orthogonal to the synchronization. In our work we do not 
make any hypothesis on the matter content of the space
time. 

In Sec. II we make precise the notion of synchroniza
tion; the geometric elements associated with it are presented 
and the evolution formalism of the Einstein equations is re
called. In Sec. III, we obtain the equations defining the S
Killing vector fields and give the necessary and sufficient 
conditions for an S-Killing vector field to be a Killing vector 
field. 

The general study of the constant curvature synchroni
zations is carried out in Sec. IV. We introduce the so-called 
standard and conform-standard forms of the induced metric 
and we obtain the necessary and sufficient conditions for 
these forms to be "normal" for the space-time metric. This 
leads us finally to consider, in Sec. V, the important case of 
the umbilical synchronizations. 

II. SYNCHRONIZATIONS 

All the results presented here (except those related to 
the Petrov-Bel types) are qualitatively independent of the 
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dimension of space-time. For this reason, and also because it 
can throw light on many interesting questions related to oth
er dimensions,6 we shall here generically call space-time a 
manifold Vn +! sufficiently differentiable and of dimension 
n+l. 

Tensor elements defined on Vn +! will be noted with a 
caret in order to distinguish them from those, defined on 
submanifolds, which will be introduced below. Also, 
throughout this work, we shall note in general with the same 
letter tensors and cotensors associated with the metric; when 
a confusion is possible, tensors will be distinguished with an 
asterisk"* ." 

We shall suppose that the space-time is endowed with a 
Lorentzian structure (Vn + ! ,g) (see Ref. 7) and, in order to 
make precise some expressions, we will choose the metric g 
to have signature - (n - 1), although the results will be giv
en in a signature-independent form. 

In (Vn + ! ,g) we shall call an energy tensor T the symmet
ric two-cotensor field 

T = Ric(g) - !R (g).g, (1 ) 

where Ric(g) is the Ricci tensor associated to g and 
R (g)=tr Ric(g), "tr" being the trace operator relative to g. By 
v~tue of the Bianchi identities, Tis divergence-free,8 say 
l)T= 0. 

As usual i~ general relativity, we shall suppose that the 
energy tensor T is known a priori. Equations (1) are then 
differential equations on g, and will also be called the Ein
stein equations of (Vn + ! ,g). 

In a domain n of the space-time (Vn + I ,g), a synchroni
zation S is, by definition, a foliation of n by spatial hypersur
faces. Every hypersurface I of the foliation is an instant of 
the synchronization S and two points of n are said to be 
synchronous relatively to S if they belong to the same instant 
I of S (see Ref. 9). 

To every synchronization S is associated the unitary 
one-form n, normal at any point to the corresponding instant 
of S; with our signature, we have 

g*(n,n) = 1. (2) 

Conversely, any locally integrable unitary one-form n, that is 
such that lO 

n Adn = 0, (3) 
defines locally a synchronization S. 

From (3) and (2) we have 

n = Id</J I-I d</J, (4) 

with Id</J 12 g*(d</J,d</J). A local representation of (the differ
ent instants of) S is thus given by the local equation 

</J (x) = t, 

for different t. The parametrization t defines the time in
duced on S by the representation </J. 

A vector field s* is said to leave the synchronization S 
invariant if the local pseudogroup of transformations de
fined by s* transforms hypersurfaces of S into hypersurfaces 
of S. The set of vector fields which leave a synchronization S 
invariant is a Lie algebra, which we shall note by As. It 
contains the Lie algebra Ts of the vector fields tangent to the 
synchronization S (which leave invariant separately every 
instant of S). 

1584 J. Math. Phys., Vol. 26, No.7, July 1985 

A motion F is defined, in the domain n, by a con
gruence of time like curves, called trajectories. Let us note by 
A (r) the Lie algebra of vector fields tangent to F and define 
As(r) by 

As(r)==AsnA (F). 

The elements of As (r) are the vector fields tangent to F 
which leave invariant the synchronization S. 

In the present context the pair { F,S l, of a motion F and 
a synchronization S, will be called an evolution basis on n. 
The evolution bases so defined are the structural elements of 
the evolution formalisms!! of general relativity. 

If the vector field s* is an element of As(r) and </J is a 
local representation of S, we have L (s*)</J = <P, where <P is a 
(nonzero) constant function on every instant of S. Thus, the 
relation 

L (s*)</J = 1 (5) 

defines a one-to-one correspondence between the elements 
s* of As (F) and the representations </J of S. Every pair {s* ,</J 1 
verifying the equation (5) will be called a local representation 
of the evolution basis {F,S l. 

If {s*,</J land {?*,tI'l are two local representations of 
{F,S 1 with domains U and V respectively, uuvcn and 
UnV #0, then there exists! R_R such that, in UnV, 

(6) 

where f~ =df°</J. 
To every evolution basis {F,S 1 we associate in a natural 

manner, the class C (r,S ) oflocal charts {xa 1 simultaneously 
adapted to F and to S; that is, such that Xi = const on every 
trajectory of rand XO = const on every instant of S. The 
condition (5), verified by any local representation {s* ,</J J, is 
necessary and sufficient for the existence of elements of 
C (F,S) such that </J (x)==.x° and s*=J; Jxo. 

The evolution formalism of general relativity is relative 
in the sense that the geometric objects and space-time itself 
do not appear in a covariant way but in reference to (or seen 
by) an evolution basis [F,S l. 

On every instant I of the synchronization S, every (co
variant) tensor of (Vn + ! ,g) induces a unique (covariant) ten
sor of the same rank; in particular, the tensor g induced by g 
endows every instant I with a Riemannian structure (I,g). 
The intrinsic Lorentzian geometry of the space-time Vn + ! 
defined by the metric g is replaced in the evolution formalism 
by a variable n-dimensional Riemannian geometry (I,g) and 
the geometric objects considered are those defined on that 
geometry in evolution. 

Let n by the unit normal one-form of the synchroniza
tion s. It is easy to see that, on every instant I of S, any p
tensor Q (tensor of rank p) of (Vn + ! ,g) is biunivocally char-

acterized by the following set of2P tensors of (I,g): the~) 
A-tensors (A = O,I, ... ,p) induced by the A-tensors of 
(Vn + ! ,g) obtained b.x taking all the possible p - A interior 
products of n:" with Q. Such a set will be called the I charac
terization of Q (see Ref. 12). 

Thus, the I characterization of a vector s* is the set 
[O';s J, where the scalar 0' is the interior product of n* and s 
(see Ref. 13), cr:==i(n*)S, and s is the covector induced by s. 
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The strict elements of the ~ characterization of a second-
A A 

rank symmetric tensor A are [a;a;A J wherea=P(n*)A and a 
and A are, respectively, the vector and the second-rank (sym-

A A 

metric) tensorinduced by i(n*)A andA (see Ref. 14). In parti-
cular, the ~ characterizations of n and g are, respectively, 
[1;OJ and [1;O;gJ. A 

It is also interesting to consider the tensor 2K L (n*)g. 
As n is unitary, one has P(n*)L (n*)g = 0 and it follows from 
Eq. (4) that 

i(n*)L (n*)g = 2l(n)d In u, 

where l(n )=Id - n ® n is the orthogonal (to n) projector and 
0== Idt,b 1-1 is an integration facto~ of n; then, the strict ele
ments of the ~ characterization of K are [0; - du;K J, where 
du is now the differential of u on every instant ~ and K is the 

A 

cotensor induced by K. 
The n-dimensional one-form du measures the non

Gaussian character of the synchronization S (du = O<=>S is 
Gaussian). Nevertheless, the symmetric two-cotensor K de
pends only on the individual instant~: K is called the second 
fundamental form, or extrinsic curvature, of~. 

In our domain n, let us take an evolution basis [r,S J. 
On every instant~ of S, let [1";t;T J and [p;r;R J be the (strict 
components of the) ~ characterizations of the energy tensor 
T of the medium and of the Ricci tensor Ric(g), respectively. 
We have, by definition, 

A A A 

-r==P(n*)T, t =inducz i(n*)T, T=inducz T, (7) 

and analogous relations for p, r, and R. 
The quantities 1", t, and T represent, respectively, the 

energy density, the momentum density, and the stress tensor 
of the medium relatively to the synchronization S. The ~ 
characterization of the Einstein equations is then 

p = (1/(n - l))((n - 2)1" - tr T), 

r= t, (8) 

R = T - (1/(n - 1))(1" + tr T)g. 

Now, let us consider any local representation [s* ,t,b J of 
[r,S J. In every local chart [xa J, (a = O,I, ... ,n), of C (r,S) 
adapted to the representation [s*,t,b J one has t,b (x)==x°, and 
thus the time t induced by the representation t,b is simply 
given by the timelike coordinate t = xo; in addition, as we 
have s*-===a / axo, t is also a canonical parameter of the inte
gral curves of s* . 

Denoting by [u;sJ the~ characterization ofs* (see Ref. 
14), the extrinsic curvature K may be written 

K = (1/2u) (atg - L (s*)g), (9) 

where at is the derivation operator with respect to the pa
rameter t. From the local coordinate expression of Ric (g) as a 
function of g and its partial derivatives, we obtain, for its ~ 
characterization [p,r,R J (see Ref. 15) 

p = - tr K2 + (1/u)(..:1u - at tr K + L (s*)tr K), 

r = - 8K - d tr K, (10) 

R = Ric(g) + 2S - (1/ u)(V du + atK - L (s*)K), 

where K2 K XK and X is the cross product (contraction 
over the adjacent indices of the tensorial product). All the 
operators, except at, are defined on every instant ~ of Sand 
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the de Rham Laplacian..:1, the covariant derivative V, the 
trace tr and the divergence 8 are all taken with respect to the 
induced metric g on every instant~. We have noted by S the 
covariant symmetric quadratic form in K: 

S-===K XK - ~tr K·K (11) 

If we consider the energy tensor [1";t; T J as a known 
source and the quantitiesg and K as unknowns, the Einstein 
equations (8) may be written, using (9) and (10), in the equiva
lent form 

C1: tr K2 - tr2 K + tr Ric(g) = - 21", 

C2: 8K+dtrK= -t, (12) 

E ,: atg = 2uK + L (s*)g, 

E2: atK = u(Ric(g) + 2S - R ) - V du + L (s*)K, 

where R is now the quantity, depending of 1" and T, defined 
by (8). 

These are the so-called Einstein equations of the evolu
tion (or 3 + l)formalism. In the Gaussian evolution bases 
(u = oit)) they were given by Lichnerowicz l6

,17 and, under 
the general form (12), by Choquet-Bruhat. '8,'9 These equa
tions constitute the starting point for the Hamiltonian for
mulation of general relativity obtained, in an important 
work, by Arnowitt, Oeser, and Misner20; due to this fact, the 
Einstein equations of the evolution formalism (12) are some
times called ADM equations. We shall reserve this last ap
pellation only to situations in which the Hamiltonian for
malism is explicitly concerned. 

III. S-KILLING VECTOR FIELDS 

Let us take an evolution basis [r,S J in n and consider a 
local representation [s*,t,b J of it, with domain ucn. Let us 
define in U the local operator on one-forms 

IIIU=Id - dt,b ®s*. (13) 

If [r* ,f/; J is another local representation of [r,S J with do
main vc n, Un V # 0, and II IV is the corresponding local 
operator, it follows from the relation (6) that (IIIU)IU(1v 
= (II IV )1U(1v' Thus, the IIIU 's define in n a unique operator 

II which depends only on the evolution basis [r,S J, and not 
on its local representations. 

From (13) and (5), it is obvious that L (s*)III U = 0, and 
then 

L (r*)II = 0, Vr*EAs(r). (14) 

The operator II can be extended, in the usual way,,,t0 the 
cotensor fields. In particular, for the two-cotensors Q one 
hasII(Q) = II XQ xli, where li stands for the local adjoint 
of II: li =Id - s* ® dt,b. 

Let Q and Q be, respectively, a cotensor field on Vn + I 

and its induced part on~. With respect to any orthonormal 
frame containing n (the unit normal to ~ ), one has 

Q=l(n)Q, (15) 

where l(n)=Id - n ® n* is the projector orthogonal to n. 
However, with respect to the natural frame associated to an 
arbitrary local chart of C (r ,s), Eq. (15) is no longer valid; 
instead of (15) we have 

(16) 
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where n is the operator defined by (13) in the local represen
tation attached to the given chart. It is evident that, when the 
motion F is normal to the synchronization S, we have 
n = lin) and the relations (15) and (16) coincide. 

Thus, the tensor field g[ of Vn + 1 which, in any local 
chart of C (F,S), reduces to the induced metric g on any in
stant 2 of S, is given by 

(17) 

For this reason, we shall call g[ the induced metric tensor of 
the evolution basis {F,S J (see Ref. 21). 

In the same line, it is natural to define, for example, the 
rigid motions F with respect to a synchronization S as the 
motions for which 

(18) 

This new notion of rigidity has been recently considered by 
us elsewhere. 3,9 

In the present work, we are interested in vector fields 
m* which are Killing vector fields for the induced metric at 
any instant 2 of S. The condition for m * to be tangent to 2 is 
obviously i(m*)n = 0, but the condition of metric invariance 
is not L (m*)g[ = 0; this is due to the fact that m* is not 
containedinAs(F)sothati(n*)L (m*)g[ does not vanish iden
tically. Thus, the condition for m * to be a Killing field for the 
induced metric on every instant 2 is 

l(n)L (m*)g1 = o. (19) 

In spite of the fact that g1 depends [by (17) and (13)] on 
the evolution basis (F,S J, Eq. (19) depends only on the syn
chronization S as it was to be expected. To see it, it is suffi
cient to observe that, like g[ and g, the tensors L (m*)g[ and 
L (m *)g differ only by terms containing d¢ because, m * being 
tangent toS [¢}L (m*)¢ = 0], one has L (m*)d¢ = 0; the pro
jector lin) cancels out that difference and (19) turns out to be 
equivalent to 

l(n)L (m*)g = o. (20) 

Let us develop this expression. It follows from Eq. (4) 
that 

L (m*)n =L (m*)(ld¢ I-'d¢) = - (L (m*)lnld¢ I)·n, (21) 

and we have also 

i(n*)L (m*)g = L (m*)n - gHm*,n*]), (22) 

F(n*)L (m*)g = Id¢ 1-2F(d *¢ )L (m*)g 

= - Id¢ 1-2F(d¢ )L (m*)g 

= - 2L (m*)lnld¢ I, (23) 

where we have used the relation 

{L(m*)gj* = -L(m*)g*. (24) 

If we substitute now Eqs. (21)-(23) in the development of 
(20), we obtain 

L (m*)g + n ® [m*,n*]. + [m*,n*]. ® n = 0, (25) 

where we have noted by [m*,n*]. g([m*,n*]) the covariant 
form of the Lie bracket [m*,n*]. Allowing for (24), the con
travariant form of (25) is 

- L (m*)g* + n* ® [m*,n*] + [m*,n*] ® n* = 0, (26) 

which is nothing else but 
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L (m*)(g* - n* ® n*) = O. (26') 

In any local chart [xa J adapted to S, that is so that the 
instants 2 of S are defined by the local equation Xo = const, 
n is given by na = (gOO)- 1/28 ~ and the condition i(m*)n = 0 
by mO = O. The components gij (i,j = 1,2, ... ,n), of the in
duced metric are gij = gij and, as it is well known,22 the in
verseij of gij isgij = fj - (gOO)-lgOi gOj. On every instant 2, 
m* induces a covector m with components m i = m i , and the 
vector mi = il m l is such that mi = mi. With these ele
ments, it is easy to verify that Eqs. (26) are strictly equivalent, 
on every instant, to L (m*)g* = 0 and thus to 

L (m*)g = O. (27) 
Definition l:We shall call S-Killing vector fields the 

fields of Vn + 1 which are, on every instant of a synchroniza
tion S, Killing vector fields of the induced metric [that is, 
they verify Eq. (27)]. 

Gathering the previous results, one has the following 
proposition. 

Proposition 1: The S-Killing vector fields m* are deter
mined by anyone of the following equivalent differential 
systems: 

L (m*)g = [n,m*]. ® n + n ® [n*,m*]., 

L (m*)(g* - n* ® n*) = 0, 

l(n)L(m*)g = 0, 

l(n)L(m*)g[ = 0, 

(28a) 

(28b) 

(28c) 

(28d) 

together with the condition i(m*)n = O. 

As a corollary of(28), Proposition 2 follows immediate-
ly. 

Proposition 2: The necessary and sufficient condition for 
an S-Killing vector field m * to be a Killing vector field of 
(Vn + 1 ,g) is that m* commutes with the unit normal n* to S: 

[m*,n*] = O. (29) 

It is interesting to translate relation (29) into the lan
guage of the evolution formalism. Let {F,S J be an evolution 
basis and (5*,¢ J a local representation of it, and let [ u;s J and 
[ O;m J be, respectively, the 2 characterizations ofS* and m *; 
in every local chart of C (F,S) adapted to {5*,¢ J, we have 
na = u8 ~ ,na = u- ' (8 ~ - s I8f),mO = 0, and m l = mi. Us
ing these expressions, the scalar term of the 2 characteriza
tion of (29), i(n*)[m*,n*] = 0, may be written L (m*)u = 0, 
whereas the vectorial term gives atm* = [s*,m*] or, in co
variant form, atm = 2ui(m*)K - L (s*)m, where we have 
used the Einstein evolution equation E, given in (12). With 
these results, we have the following proposition. 

Proposition 3: In the evolution formalism, the necessary 
and sufficient conditions for an S-Killing vector field 
m - { O;m * J to be a Killing vector field of ( Vn + 1 ,g) are 

L (m*)u = 0, aom* = [s*,m*], (30a) 
or, in covariant form, 

L (m*)u = 0, aom = 2ui(m)K - L (s*)m, (30b) 

where {u;s J -5* characterizes the local representation of the 
chosen evolution basis and K is the extrinsic curvature of the 
instants of S. 

The converse of Proposition 2 is well known: any Kill
ing vector field m * of (Vn + 1 ,g) tangent to S is an S-Killing 
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vector field. Thus, it commutes with the unit normal Fi* to S 
and then, on account of the general relation 
L ( [ mT ,mr]) = [L (mT),L (mr)], it follows that the Lie 
bracket of two Killing vector fields tangent to S is another 
Killing vector field tangent to S. 

The relations (28) being linear and homogeneous in m*, 
it is clear that, for a given synchronization S, the set of s
Killing vector fields has a R-vector space structure. In addi
tion, from the general relation L (Am*)g = AL (m*)g 
+ dA ® m + m ® dA and (28c) it is obvious that, m* being an 

S-Killing field, Am* is also an S-Killing field iff l(Fi)dA = O. 
Thus, theS-Killing vector space has a module structure over 
the ring Fs of the constant functions on every instant of S. 
Finally, from the commutator relation and (28a) it follows 
that the S-Killing module has a Lie algebra structure. 

If {O;mT J and {O;mr J are, respectively, the ~ charac
terizations of two Killing fields m T, and mr, tangent to S, the 
~ characterization of the Lie bracket [mT ,mn is then 
{ 0; [ mT ,mr] J. It is thus clear that, when Eq. (29) holds, the 
Killing and S-Killing Lie algebra structures are identical. 
This fact is the basis for a classification of the S-isometry 
groups according to their isometry subgroups.23 

IV. SYNCHRONIZATIONS OF CONSTANT CURVATURE 

In the preceding section, we have given a (n + I)-di
mensional formulation of the S-Killing vector fields, which 
allows us to find easily their basic structures and is certainly 
helpful to solve many open problems, the most important 
one being, perhaps, that of the existence, in a given space
time, of synchronizations S admitting S-Killing vector 
fields. 

Nevertheless, in what follows we shall suppose that our 
space-time admits such a synchronization and that we know 
it. In such a case, it is useful to consider S as the synchroniza
tion of an evolution basis {r,S J and to work directly in the 
evolution formalism sketched out in Sec. II. 

Moreover, we shall suppose that the synchronization S 
is completely integrable or, in other words, that S admits the 
maximum number of S-Killing vector fields. From their De
finition 1, it is clear that every instant ~ of S, considered as a 
Riemannian manifold (~,g) admits then n(n + 1)/2 Killing 
vector fields: every ~ is of constant curvature. We shall call 
for short synchronizations of constant curvature those for 
which every instant is of constant curvature. 

Let S be our synchronization and let us take a normal 
evolution basis {r N ,S J, that is to say, such that r N is the 
congruence of normal curves to every instant of S. For all the 
local representations {s* ,t/J J of { r N ,S J we have 
s = Idt/J 1-2 dt/J = Idt/J 1- I Fi and the~ characterization ofS* is 
of the form {O";OJ witho==i(s*)Fi = Idt/J I-I. In any local chart 
{xa J of elF N,s) adapted to {s* ,t/J J, these relations give 
XO = t,gOi = 0,0" = (gOO)-1/2and themetricin (Vn + l,g)may 
be written 

g = ~(x,t )dt ® dt + gij (x,t )dXi ® dxi, (31) 

where g gij(x,t )dXi ® dxi is the induced metric on every 
instant ~ of local equation t = const. 

TheS-Killing vector fields m* are evidently of the form 
{O,m* J withm=m j (x,t )dXi and such thatL (m*)g = O. Also, 
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the fact that g is, at every instant, of constant curvature is 
expressed by 

Rij.kl = K(gikgjl - gi/gjk)' (32) 

where Rij.kl are the components of the Riemann tensor 
Riem(g). The metrics (32) are conformally flat, 

g = a2'T/, (33) 

and it is well known that, for every fixed t, there exist local 
coordinates{/ J ("Cartesian" for 'T/) such that a is the stan
dard function 

with 

y2 yoy-==:,cijy)J 

and 

'T/ = cij d/ ® dyi, 

where cij is the signature symbol of g: 

cij = 0, if i=/=j, Cjj = ei , 

ei = ± 1 depending on the signature of g (see Ref. 24). 

(34) 

(35) 

(36) 

(37) 

Because the metrics of same constant curvature and 
same signature are locally isometric, there exists, for each t, a 
diffeomorphism Yt such that the reciprocal image of its in
verse, X ~, carries g to its standard form 

X~:gij(x,t )-a2(y,t )cij' (38) 

where a(y,t) is the standard function (34) with K = K(t). 
In the space-time, Yt preserves the synchronization but 

transforms the time1ike motion r N into another, not nor
mal, one. The local expression of the transformed motion r 
is given by the inverse X t of Yt , with local equation Xi 
= Xi (y,t ) and whose tangent vector field is25 

i(x,t )=(axi(y,t )) . 
at Iy = y(x.t I 

(39) 

In the new local chart of Vn + I defined by {yO = t, 
/ = / (x,t ) J, the other components of g are transformed to 
gOi(y,t) = Si(y,t), wheres-==Si(y,t )d/ is thecovectorassociat
ed to (39) by g, and to goo(y,t ) = ~(y,t ) + s.s(y,t), where S,S 
stands for the g-scalar product and, 0" being a scalar, we have 
put O"(y,t )=a(x(y,t ),t}. It follows that in every space-time 
(Vn + I ,g) admitting a constant curvature synchronization, 
the metric can be written in the form 

g = (~ + s.s)dt ® dt + s ® dt + dt ® s + a 2cij d/ ® dyi. 
(40) 

The possibility of working in local charts in which the 
space-time dependence of the induced metric is condensed in 
a single scalar function, as in (40), offers a great computa
tional advantage. For this reason, we give the following de
finition. 

Definition 2:We shall call standard charts of Vn the 
charts {t,/ J, adapted to S, in which the induced metric g 
takes the standard form gij = a 2cij' with a and cij given, 
respectively, by (34) and (37). Similarly, we shall call con
form-standard charts those for which the induced metric g 
takes a form conformal to the standard one. The correspond
ing forms of the space-time metric g will also be called stan
dard and conform-standard forms, respectively. 
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Let us note that, starting from the standard form (40), 
the motion associated to an arbitrary transformation Zt, de
fined by Zi = i Iy,t ),/ = / (z,t), is given, at every instant, by 

v_vily,t)=(a/(Z,t)). (41) 
at Iz = z(y.t ) 

The induced metric takes then the general form g 
=gij(z,t)dzi ® dz j , and the space-time metric may be ex

pressed by 

g = (~ + (s + v).(s + v))dt ® dt 

+ (s + v) ® dt + dt ® (s + v) + gij di ® dz j , 
(42) 

where ~ = ~(z,t )==::~Iy(z,t ),t ), and s -Si (z,t ) and v - Vi (z,t ) 
being, respectively, the transformed vector fields of Sily,t) 
and ofthat defined by (41). 

The n-dimensional conformal group C (n > 2) is consti
tuted by the isometries of the flat metric 'TJ - C ij , 

Zi =/ + f, i =A il/' A ilAjmcij = Clm; (43) 

together with the dilatations, 

i =A/; 

and the acceleration transformations 

i = Iyi + y2ai )lH(a,y), 

where 

H(a,y)==::l + 2aoy + a2y2; 

(44) 

(45) 

(46) 

and, according to (35), we havenotedaoy=cijaiyj ,a2_aoa. 
Thus, the general transformation of the conformal group 
may be written as 

Zi = [AAillyl +,J)+A21y+r)2ai]!H(AaoA,y+r), (47) 

its inverse being 

/ = - f + /P dz' - z2al)lAH( - a,z), (48) 

withA A -1,(aOA)/=cijaiAjl,andH( , )isthefunction 
defined by (46). 

The Lie algebra Ac of C is represented by26 
. . i 8i 8i 

Pia) = 8~, m(ab) = aYb - bYa' 

d i i i 2"i 2 i =y, a(a) =y U a - ),Ya' 
(49) 

withy, =Clsy' . The general element of Ac is then of the form 

- A (a) + B (ab) + Cd + D (a) s- p~ m~) a~, (50) 

where A (a) , B (ab) , C, and D (a) are arbitrary constants. 
A general transformation (47) of C transforms the met

ric g from its standard form 

gij = a 21y)cij' (51) 
with aly) given by (34), to the conform-standard form 

gij =p2(Z)Cij' (52) 

with 

p(z) = 0 /[H( - c,z) + (K/4)02X2], 

where 

o =a(r)lA, cl==::al + (K/4)OA Isr. 

(53) 

(54) 

The transformed form (52) is yet a standard form iff 
o = 1 and ci = 0, that is, iff 

A = air), al = - (K/4)A 1/. (55) 
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Thus, the g-isometry group Ig is defined by 

. a(r)A idly + r)1 - (K/4)a(r)1y + r)2,J) 
z'= , (56) 

H ( - (K/4)a(r)r,y + r) 
the inverse transformation being given by 

/ = - f + [A ilZI + (K/4~f]/a(r)H((K/4)Aor,z). (57) 

It follows that the Lie algebra Ig of Ig may be represented by 
m!ab) and 

t fa) Pia) - (K/4)alal' (58) 

where Pial' mlabl' and ala) are given by (49). The g-Killing 
fields t la) and their corresponding finite transformations [ob
tained from (56) for Aij = 8i j ] are called quasitrans!ations. 

We have now all the elements needed to discuss the 
"generality" of the standard and conform-standard forms of 
g. Evaluating (41) for the general transformation (47) and 
taking into account the definitions (49), we obtain the follow
ing result. 

Proposition 4: The motion vly,t) associated, in a stan
dard chart, to a general conformal transformation with time
dependent parameters (r" , A a I, A, aa) is of the form 

vly,t) = A (a)P(a) + B (ab) m(ab) + Cd + D (a) a(a) , (59) 

where the coefficients are given by 

D(a) = -AaIA la, 

C = - (A / A + 2D (S)r(S))' 

B (ab) = !(A alA Ib + 2(D A r)ab), (60) 

A (a) = - r' + 2B(as)rs + Cr" + W(s)rsr" - rD(a). 

Evaluating now (60) for the values (55) of the group 
parameters, a straightforward calculation shows the follow
ing. 

Proposition 5: The motion associated to a g-isometric 
transformation with time-dependent parameters r" , A (a) I is 
of the form (59) with the following values of the coefficients: 

A (a) = - a(r)(A arA Isr + r'), 
B(ab) = 0 alA Ib _ (K/4)(A (a)~ _ r"A (b)), 

C= - (K/4)a(r)r, 
(61) 

D (0) = - (K/4)A (0) + (K/4)a(r)r". 

It is interesting to note that the fact that the transforma
tion is a g isometry does not imply that its associated motion 
v is a g-Killing vector field unless K = 0 (when the time-de
pendence occurs only via the group parameters r,A ). 

Taking into account Eqs. (40)-(42), we have the follow
ing proposition. 

Proposition 6: The most general transformation which 
changes the standard form of the space-time metricg, 

g= (~+s.s)dt ® dt+s ® dt 

+ dt ® s + a 2cijd/ ® dyj, 

into its conform-standard form 

g = (~ + (s + v).(s + v))dt ® dt 

+ (s + v) ® dt + dt ® (s + v) 

+ p2c,jdi ® dz j 
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is a time-dependent g-conformal transformation, and v is 
necessarily a g-conformal Killing vector field. 

Remembering the dimensions of C and I, it is clear from 
the above results that two conform-standard (resp. standard) 
forms ofthe metric g are related by, at most, (n + l)(n + 2)1 
2 Crespo n(n + 1)12] functions of the sole time. 

V. THE UMBILICAL CASE 

We have seen in the preceding section that the metrics 
of the space-times admitting a constant curvature synchro
nization depend [for every prescription of the curvature K(t)] 
on an arbitrary function u and on the equivalence classes {s l 
of vector fields differing by conformal fields. We shall ana
lyze here a particularly interesting class of such space-times: 
those for which every instant of the synchronization is um
bilical. The synchronizations having this property will be 
called, for short, umbilical synchronizations.28 

Let P be a point of an instant ~. For every g-unitary 
vector field u*, the quantity K (u,u)=p(u*)K is called the 
extrinsic (or normal) curvature of~ atPin the direction u*; it 
measures the separation between the geodesic of Vn + 1 and 
the geodesic of ~ having at P the same direction u*, and its 
maxima and minima values correspond to the principal di
rections of K with respect to g. P is called an umbilical point if 
K (u,u) does not depend on the direction u*, and~ is called an 
umbilical instant if all its points are umbilical. Therefore, it is 
clear that S is umbilical if, and only if, 

K={3g. (64) 

Let us consider our space-time written in a conform
standard chart 

g = (~ + s.s)dt ® dt + s ® dt + dt ® s 

(65) 

In such a chart, the time derivative of the induced metric 
2 • • b gij = P Cij' IS gIven y 

atgij = 2I,plp)gij' (66) 

so that, if we substitute now this value of atg,] into the defini
tion (9) of K, we have the following proposition. 

Proposition 7: A synchronization of constant curvature 
is umbilical if, and only if, the motion s associated to any 
conform-standard chart is a g-conformal field. 

According to Propositions 6 and 7, if we start from the 
standard form (62) and perform a conformal transformation 
with associated motion v = - s [v being of the form (59)], we 
shall arrive at the expression (63) for g, with s + v = O. Tak
ing into account the relations (53) and (54) for p(z), we have 
the following proposition. 

Proposition 8: The space-times with umbilical and con
stant curvature synchronizations are those that can be writ
ten in the normal form 

g = ~ dt ® dt + p 2cij dx i 
® d~, 

with 

P = (] I[ 1 - 2cox + (c2 + (KI4)(]2)x2], 

where u = u(x,t), K = K(t), (] = (] (t), C/ = c/(t). 

(67) 

(68) 

Let us consider, for a moment, one of these normal con
form-standard charts. According to the definition (9) of K, 
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we have 2uK = atg, so that, taking (66) into account, we 
obtain 

{3 = (1/u)(lnp)' (69) 

for the conformal factor {3 in (64). 
From (64), the direct evaluation of the second Einstein 

constraint equation C2 gives 

- t = (n - 1 )d{3. 

On the other hand, it follows from (32) and (64) that 

Ric(g) = (n - l)Kg, K XK = {32g, 

(70) 

so that, taking traces and substituting into the first Einstein 
constrain equation C1, we have 

-27=n(n-l)(K-{32). (71) 

On account of (66) and (64), the time derivative of K is 

atK = (j3 + 2u{32)g 

and the evaluation of the tensor S defined in (11) gives 

S = - [In - 2)/2]{32g. 

Therefore, the tensor R defined in (10) results in 

R= -(1/u)Vdu+{(n-l)K-n{32-Plulg, (72) 

and the third equation in (8) allows us to evaluate T. Let us 
note that, for a given prescription of K(t ), u and{3 are intrinsic 
scalars on every instant. Thus, asp I u = L (n*){3, we can state 
the following proposition. 

Proposition 9: The S;..characterization {7,t, T l of the en
ergy momentum tensor T of a space-time with an umbilical 
and constant curvature synchronization, is given, in any lo
cal chart adapted to S, by 

7 = [n(n - 1 )/2]({3 2 - K), 

t = - (n - 1 )d{3, (73) 

T = - (1/ u)(V du + ..::1u.g) 

+ [(n - 1)/2](2L (n*){3 + n{32 - (n - 2)K)g. 

The Riemann tensor Riem(g) and the Weyl tensor 
Conf(g) of (Vn + 1 ,g) are related by 

Conf{g) = Riem(g) - 1(1'), 

where 1(1') is a linear function of T. Let us note by (nnA ) the 
two-tensor fi~d with components (nnA)/3<5=nJl nv AJlP,vlj, 

where n and A are, respectively, an unit vector field and a 
symmetric double two-form. Let us note by * the duality 
operator acting on forms. It is well known that the two two
tensor fields 

(74) 

determine biunivocally Conf{g); they are usually called elec
triclike and magneticlike components of the free gravita
tional field with respect to the observers of unitary velocity 
n. 

Now, let n be the unit normal to a synchronization S 
and let us note by G and C, respectively, the strict compo
nents ofthe~ characterization ofG and Con every instant~ 
of S: G and C are nothing else but the restriction to ~ of G 

A 

and C, respectively. A straightforward computation in 
Gaussian charts relatively to ~ gives, taking into account the 
Einstein evolution equations (12), 
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G = Ric(g) + K XK - tr K·K - !T + i(41" + tr T)g, 

C = oK - !*t, (75) 

where * stands now for the duality operator on (.I,g) and 
where we have noted by K the three-tensor obtained by dual
ity from K considered as a double one-form, that is, 

- / (K)ijk = 1]ij/K k· 

Equations (75) relate quantities defined on.I by operations 
intrinsic to .I. For this reason, they are valid in any local 
chart adapted to.I, that is, for every instant .I of S and any 
motionr. 

In the flat case, Riem(g) = 0::::} T = 0, we have 
G = C = o. The equation G = 0 shows then that the square 
of the extrinsic curvature K of.I depends only on the in
duced metric g on.I (Gauss theorem). The equation C = 0 
gives the variation over.I of the extrinsic curvature K (Co
dazzi theorem). For this reason G and C will be called,28 
respectively, the Gauss and the Codazzi tensors o/the instant 
.I. 

On every instant.I, G and C may be constructed from 
the geometrical data g and K and the physical data 1", t, and 
T. In the generic case, Riem(g) #0, their nullity is the neces
sary and sufficient condition for g to be conformally flat. 

Let us define 

Y==T - j(41" + tr T)g, Z =G + !Y. 

From (73) it is obvious that 

T - jtr T.g = - (1/a)(V da + jAa.g) 

and taking into account the value of 1", it follows that 

Y = - (1/ q)(V da + jAa.g) - 4(f3 2 - K)g. 

On the other hand, if we substitute into (75) this result and 
the expressions for Ric(g) and K XK from the preceding 
paragraph, we have 

Z = 2(K - {32)g. 

Let us finally compute C. Accounting for the Einstein con
straint equation C2 of (12), (75) gives 

where{3/ stands for a{3lax/. We can then state the following 
proposition. 

Proposition 10: In the physical space-times (n = 3), the 
Gauss and Codazzi tensors of the umbilical and constant 
curvature synchronizations are given, respectively, by 

G = (1/2a)(V da + jAa.g), C = O. (76) 

Thus, we see that, relatively to the system of observers 
normal to the synchronization (with unitary velocity n*), the 
space-time is of the "electric" type. Furthermore, from (73) 
and (76) it is clear that, apart from a numerical factor, G is 
nothing but the deviator (traceless part) of the stress tensor 
T: 

G = - !(T - jtr T.g). (77) 

Proposition 11 follows. 
Proposition 11: The only vacuum physical space-time 
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admitting an umbilical and constant curvature synchroniza
tion is Minkowski space-time. 

It is well known that the Petrov type of space-time is 
related to the number of independent eigenvectors of the 
tensor P =G + iC. In our case (P = G), Pis diagonalizable 
and, then, it is a Petrov type T3• Thus, depending on the fact 
that the eigenvalues of G be all different, one double or the 
three null, we have, in Penrose notation, the following three 
cases of the Petrov-BeJ29 classification. 

Proposition 12: The physical space-times admitting um
bilical and constant curvature synchronizations are of the 
type I, D, or 0 of the Petrov-Bel classification. 

In the case of a perfect fluid with unitary velocity u*, 
proper energy density p, and pressure p, the stress tensor Tis 

T= (p +p)u ® U -pg, 

where u is the induced of u on every instant of S. It is obvious 
that p will be at least a double eigenvalue of T; thus, on 
account of (77) we have the following proposition . 

Proposition 13: The perfect fluid space-times admitting 
umbilical and constant curvature synchronizations are of 
the Petrov-Bel typeD or O. They are of type o if, and only if, 
the fluid is not tilted (u = n¢:}u = 0). 

The not-tilted case is conformally flat, so that the space
time is contained either in the class of the generalized 
Schwarzschild interiors (if {3 = 0) or in the class of general
ized Robertson-Walker space-times (if {3 #0) (see Ref. 30). 

The Debever vectors31 associated to the Petrov-Bel 
types are given by the Sachs equations.32 The.I characteriza
tion of these equations in terms of the Gauss and Codazzi 
tensors has been given elsewhere. 12 

Let us note by 11,!j the.I characterization of the Deb
ever vectors 1, g(I,!) = - 1 (see Ref. 33). The general Sachs 
equation 

o~o;~I"'JuhConf(g))uJl.TP = 0, 

where 0 ~ = 0 ~o ~ - 0 ~o~, is strictly equivalent to12 

21(/ )G - i 2(l )G.(g + I ® I) 

= (*l)X1(l)C + '((*l)X1(l)C) 

where 1(1) is the projector orthogonal to I, *1 is the two-form 
dual of I, and' M stands for the transpose of the two-tensor 
M. In our case, it reduces to 

21(l)G - P(l)G.(g + I ® l) = o. (78) 

Letpi (i = 1,2,3) be the eigenvalues of T (monotonicallyor
dered), v(il the corresponding eigenvectors, 

T = - 21'(11 V(il ® V(11' 
i 

and let us note by PW1 PUI - Pv1 the relative increments of 
the partial pressures P(il ; we have from (77) 

G = iD(Y1 V(il ® V(11' 
ij 

(79) 

Ifwe substitute this expression for G into (78), a simple alge
braic computation gives the following result. 

Proposition 15: The Debever vectors of the space-times 
admitting umbilical and constant curvature synchroniza
tions are of the form 11, ± I ± j, with I ± given by 
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I _ (P(l2) )112 + (P(23) )112 
± - - V(I)_ - V(3)' 

P(13) P(l3) 
Let us note that if the space-time is of type I, I ± is 

contained in the plane determined by the proper direction 
corresponding to the extreme pressures and if, instead, it is of 
type D, I ± is in the direction corresponding to the simple 
pressure. Of course, in the case 0 all the PWi are null and the 
I ± are undetermined. 
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Rigorous results are given to the effect that a transparent gravitational lens produces an odd 
number of images. Suppose that p is an event and T the history of a light source in a globally 
hyperbolic space-time (M,g). Uhlenbeck's Morse theory of null geodesics is used to show under 
quite general conditions that ifthere are at most a finite number n of future-directed null geodesics 
from T top, thenMiscontractibletoa point. Moreover, n is odd and Hn - 1) of the images of the 
source seen by an observer at p have the opposite orientation to the source. An analogous result is 
noted for Riemannian manifolds with positive definite metric. 

I. INTRODUCTION 

If a galaxy is located between a light source, such as a 
quasar, and an observer then the presence of the gravita
tional field of the galaxy may imply the existence of more 
than one light path from the source to the observer. Conse
quently, the observer sees more than one image of the source. 
Five different cases of this multiple imaging effect, some
times called the gravitational lens effect, have now been ob
served by astronomers. 1-5 Dyer and Roeder have shown that 
a transparent static spherically symmetric gravitational lens 
(i.e., galaxy) must produce an odd number of images. 6 Burke 
has shown that this is also true for lenses without spherical 
symmetry.7 

There is a relatively simple demonstration of why there 
are an odd number of images. Although it seems to be well 
known among astronomers it does not apper to have been 
published before and so is given here. Consider the situation 
shown in Fig. 1. A light source is located at S and an observer 
at O. There is a transparent galaxy G somewhere between S 
and O. A map/from the small sphere A to the sphere B is 
defined as follows. The map/maps a point x onA to the point 
on B where the light ray through 0 and x intersects B. The 
number of images of S seen by 0 is the number of points on A 
mapped onto S. 

Suppose g:M --,. N is a smooth map between manifolds 
of the same dimension and that Mis compact. If y is a regular 
value of g then we define 

FIG. I. A galaxy G is located somewhere between a light source S and an 
observer O. Because of the gravitational field of the galaxy there may be 
more than one light ray from S to O. / maps the sphere A onto the sphere B. 
If x is onA then/Ix) is defined to be the point on B where the ray through 0 
and x intersects B. 

deg(g,y)= ~ sgndgx ' 
xeg- (y) 

where sgn dgx = + 1( - 1) if dgx :Tx(M) --,. Ty(N) pre
serves (reverses) orientations. It turns out that deg(g,y) is the 
same for all regular y; it is called the degree of g and denoted 
deg(g). A complete discussion is given in Ref. 8. 

In an actual physical situation it is reasonable to expect 
that there will be a point yon B such that/-l(y) is a single 
point, i.e., there is only one ray from 0 toy. Thus, deg(f) = 1. 

Let n+ (n_) be the number of points x in/-I(S) such 
that sgn d/x = + 1( - 1). Thus, n+ (n_) is the number of 
images of S, seen by 0, which have the same (opposite) orien
tation as the source, and 

n+ n_ = deg(f,s) deg(f) 1. 

Thus, if 0 sees n n+ + n images of S then n = 2n_ + 1 
and so n is odd, and the demonstration is complete. Note 
thatthis argument also yields n _ = !(n - 1), i.e., the number 
of images with reversed orientation is ! (n - 1). 

There are several difficulties encountered when an ef
fort is made to make this argument into a rigorous proof. 
First, A and B must be chosen so that / is a smooth single
valued map. Second, there does not necessarily exist a point y 
such that/- l(y) is a single point. (It might be possible to show 
that the degree of/is 1 because/is homotopic to the identity 
since the interior of B is contractible to a point.) More impor
tantly, it has been implicitly assumed that the casual struc
ture and topology of the underlying space-time are "very 
reasonable." One of the aims of this paper is to go part of the 
way toward establishing the most general causal structure 
and topology that the space-time can have, while still retain
ing an odd number of images. 

It should be noted that an astronomer might not ob
serve an odd number of images due to resolution or intensity 
limitations. In fact, in four of the five known cases of multi
ple imaging only two images have been observed. Recently 
several high-resolution studies of these quasars did not de
tect a third image.9 

Although no original mathematics is involved, a rigor
ous treatment of multiple imaging is justified on three 
grounds. First, gravitational lenses are receiving a great deal 
of attention from astronomers because they might help solve 
two of the outstanding problems in astronomy: the values of 
the three cosmological constants Ro, qo, and A, and the dis
tribution of mass in galaxies and clusters of galaxies. Because 
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a considerable effort is being made to find third images it is 
worth knowing under precisely what conditions there 
should be an odd number of images. Second, the treatment 
given here shows that the fact that there are an odd number 
of images is basically a topological result and does not de
pend on any particular property of gravity. Third, it is an 
interesting application of global analysis. 

The model used here to investigate the gravitational 
lens effect is the following: the instant of observation is an 
eventp and the history of the source is a timelike curve Tin a 
space-time (M,g) (a manifold M with Lorentz metric g). The 
presence of lenses or galaxies implies that the space-time is 
not flat. If the lens is not transparent then the space-time has 
the region where the lens is removed. The formalism used 
here will implicitly assume that the lens is transparent. Each 
image seen at p corresponds to a future-directed null geodes
ic from T top. 

It is important to note that no assumptions are made 
concerning the location of the lens, matter distribution in the 
lens, or how the metric g depends on the energy momentum 
tensor (in general relativity this is governed by Einstein's 
field equations). Thus the model also represents the propaga
tion of light in an inhomogeneous medium. 

II. A MORSE THEORY OF NULL GEODESICS 

Showing there are an odd number of images is a direct 
application of the Morse theory of null geodesics due to Uh
lenbeck. 10 An excellent introduction to Morse theory is Mil
nor's book. II Morse theory describes the relationship 
between the topology of a differentiable manifold and the 
critical point behavior of generic smooth functions on the 
manifold. A point p in a manifold M is called a critical point 
of a real-valued functionj on M if (dj)p = 0; that is if M is a 
finite-dimensional manifold and (xl, ... ,xn

) is a local coordi
nate system in a neighborhood of p then 

a~ (P) = '" = aj (P) = O. ax axn 

Uhlenbeck constructs a functional on a space of curves 
such that the critical points of the functional are in one-to
one correspondence with the null geodesics from T top. She 
assumes that (M,g) is globally hyperbolic. Conjectures con
cerning the necessity of this assumption are made in Sec. IV. 
There are several definitions of global hyperbolicity which 
are all equivalent. A complete discussion is given in Ref. 12. 
One definition is as follows: a space-time M is said to be 
globally hyperbolicifit contains a Cauchy surfaceS (Ref. 13). 
It can then be shown that M is homeomorphic to S XR. 

A Cauchy surface is basically a spacelike surface such 
that specification of the value of a field on the surface suffices 
to determine the value of the field throughout the entire 
space-time. Examples of globally hyperbolic space-times are 
the Friedman, maximally extended Schwarzschild, and all 
static space-times. Examples of space-times which are not 
globally hyperbolic are the Kerr, Taub-NUT (Newman
Unti-Tamburino), plane wave, anti-de Sitter, and the maxi
mally extended Reissner-Nordstrom space-times. 

Two events p and q are said to be conjugate along a 
given geodesic if there exists a nonzero variation of geodesics 
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(or Jacobi field) along the geodesic which vanishes at p and q. 
The index of the given geodesic is the number of conjugate 
points, counting multiplicities, along the geodesic. A curve T 
and an event p are said to be nonconjugate if (a) all the null 
geodesics from p to Tare nonconjugate and (b) if a geodesic 
fromp to Tis conjugate then expp :Tp(M) ~ M is transverse 
to T. 

Theorem 114: Let (M,g) be a globally hyperbolic space
time and T a smooth timeIike curve in M. Then for all points 
p in M not belonging to a set of measure zero, T and pare 
nonconjugate. 

If T and p are conjugate along a given null geodesic, 
then the corresponding image of the source will have infinite 
intensity. However, Theorem I can be interpreted as saying 
that the probability of this occurring is zero. 15 

It should be noted that Uhlenbeck considered null geo
desics from p to T, whereas the problem considered here 
involves null geodesics from T to p. Consequently, in the 
theorems due to Uhlenbeck stated below the direction of the 
time has been reversed. 

Suppose that in the orthogonal splitting M = S XR, 
P = (r,to)· Let q be the point on S where the timelike curve T 
intersectsS X [to}. Ifa:[O,l] ~ Sis a path inS then let Pa {t ) 
be the solution to the differential equation 

[.!!....Pa(t )]2 = glatt ),Pa{t ))(da, da), 
dt dt dt 

with the initial condition P a to) = to· 
Uhlenbeck defines a functional J on the set of paths in S 

fromqto rby 

J(a) = f(:/a(t))2dt. 

If Mis a static space-time then, up to a constant factor,J (a) is 
just the value of the energy integral for a. In loose terms, J (a) 
is a measure of the "time" taken for a light signal to travel 
along the curve a. Consequently, the first half of the follow
ing theorem can be interpreted as a generalization of Fer
mat's principle for space-times. 

Theorem 216: Let (M,g) be a globally hyperbolic space
time and M = S X (a,b ). Then, the critical points ofthe func
tional J are the unique projections onto S of null geodesics 
from T top. Let n (q,r)C be the set of piecewise differentiable 
curves inS, with endpoints q and r, and such that J (a) < c -:;. b. 
If T and pare nonconjugate then 

Mk ~Bdn(q,rn, 

f (- WMk = f {- l)kBdn (q,rn = X(n (q,rn, 
k=O k=O 

where Bdn (q,rn is the Euler characteristic of n (q,r)C, and 
Mk is the number of null geodesics, (aft ),Pa (t)), with 
J (a) < c, of index k, from T to p. 

This is essentially a local theorem. Uhlenbeck also de
veloped a result which related the number of null geodesics 
to the global topology ofthe space-time. 

A smooth orthogonal splitting M = S X R is said to sa
tisfy the metric growth condition if in the coordinates (xi,t ) 
the metric is 

ds2 = g ij{x,t )dXi dJd - r{x,t )dt 2 
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and for every compact K CS there exists a function F (t ) with 
fO_ 00 [dr I F (1")] = 00 such that for t ~ 0 and a fixed Rieman
nian metric g on S 

[l/r(x,t )]gij(x,t )VV<F2(t )gij(x)vizJ, 

for all vieT", (S) and for all xEK. This condition holds trivially 
for conformally static space-times. As we shall see this con
dition ensures that a large class of timelike curves do not 
have particle horizons. With respect to Uhlenbeck's theory 
this condition ensures that each curve in S which is a critical 
point of J is realized as a null geodesic from T to p. 

Theorem 317
: Suppose that Tis a timelike curve andp is 

an event in a space-time (M,g) and that the following condi
tions hold: (1) (M,g) is a globally hyperbolic space-time; (2) 
there is an orthogonal splitting S X R of M which satisfies the 
metric growth condition; (3) if in this splitting T = (y(t ),t) 
then limt~ _ 00 y(t) exists; and (4)p and Tare nonconjugate. 
Then 

Mk '?BdfJ (M)), 
where Mk is the number of null geodesics from T to p of 
index k and fJ (M) is the loop space of M, the set of all paths in 
M starting and ending at a given point. 

This result differs from the local theorem (Theorem 2) 
in that no restriction is placed on the "energy" of the geodes
ics and the path space, whose topology is related to the num
ber of null geodesics of different index from T to p, does not 
depend onp or Tbut only the topology of M. 

Corollary 1: There exists at least one null geodesic from 
T top. 

This means that J +(T) = M and so T has no particle 
horizon. Similarly, if the metric growth condition holds for 
t'? 0 then T has no event horizons. 

III. TOPOLOGICAL CONDITIONS WHICH ENSURE AN 
ODD NUMBER OF IMAGES 

In order to show that there are an odd number of null 
geodesics from T to p assumptions are now made which im
ply that fJ (q,rr and fJ (M) are contractible to a point. It then 
follows that both X (fJ (q,rn and X (fJ (M)) are one and so 
M + - M _ = 1, where M +(M _) is the number of null geo
desics of even (odd) index from T to p. Finding appropriate 
assumptions is greatly simplified by the fact that the topol
ogy of fJ (q,r,B ), the space of paths in a set B joining q and r, 
two points in B, is closely related to the topology of B. In 
particular, if B is contractible to a point then so is fJ (q,r,B ). 

The ith homotopy group 1Ti(fJ (q,r,B)) is isomorphic to 
1Ti(fJ (B)) which is in turn isomorphic to 1Ti + 1 (B) for i'? 0 
(Ref. 18). If B is contractible to a point then all the homotopy 
groups of B are trivial. Thus, the homotopy groups of 
fJ (q,r,B ) are also trivial and so it must also be contractible to 
a point. This can also be shown directly by constructing an 
explicit deformation retraction. 19 

In the local version of the multiple image theorem it will 
be assumed that fJ (q,rr is a deformation retract of fJ (q,r,B ) 
[i.e., any curve in B from q to r can be deformed into a curve 
a withJ(a) < c] whereBis a subset of Swhich is contractible 
to a point. 

It turns out that no additional assumptions are needed 
to show that fJ (M) is contractible to a point. The following 
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proposition, which is of interest in its own right, shows that if 
there are only a finite number of null geodesics from T to p 
then M is contractible to a point. If the Poincare conjecture is 
correct, this means that M is homeomorphic to R 4. 

Proposition 1: Suppose that the assumptions in 
Theorem 3 hold. If M is not contractible to a point, then 
there is an infinite number of null geodesics from T to p. 

This is the analog of the following result due to Serre20 

for Riemannian manifolds. 
Proposition 2: Suppose that M is a complete connected 

Riemannian manifold which is not contractible to a point. 
Then any pair of nonconjugate points in M is joined by an 
infinite number of geodesics. 

The proof of Proposition 1 given below follows Serre's 
proof closely. 

Proof of Proposition 1: Let U be the universal covering 
manifoldforS. ThenN = U XR can be given the structure of 
a Lorentz manifold by the canonical projection 1T:N ---+ M, 
which is then a local isomorphism.21 It can be readily shown 
thatN satisfies conditions (1) and (2) in Theorem 3. Let T' be 
a curve in N such that 1T(T) = T. Then since 1T is a local 
isomorphism, T I is also timelike and condition (3) is satisfied. 
Let! Pi I J iEI = 1T- 1(p), where the index set I is an arbitrary 
ordering of the elements of the fundamental group, be the set 
of points in N which are projected onto p. Again, because it is 
a local isomorphism, the projection defines a one-to-one cor
respondence between the null geodesics in N joining T' and 
! Pi J iEl and the null godesics in M joining T and p. Two 
different cases are now considered. 

(A) The fundamental group of M, 1T 1 (M), is infinite: The 
set ! p; J iEI is infinite. From Corollary 1, there is at least one 
future-directed null geodesic from T to each Pi' Projecting 
these null geodesics into M gives an infinite number of fu
ture-directed null geodesics from T and p. 

(B)M hasfinitefundam en tal group: Letp' and T' inNbe 
such that 1T(T) = T,1T(P') = p. It is then sufficient to show 
that there is an infinite number of null geodesics from T' to 
p'. It is here that the hard part of Serre's argument comes 
into play. He shows that if N is the universal covering mani
fold of a noncontractible manifold with finite fundamental 
group then N is not contractible to a point and moreover 
there are an infinite number of integers i such that 
Bi (fJ (N)) =1= O. Theorem 3 can be applied to the null geodesics 
in N from T to p'. The inequalities given there imply that 
there are an infinite number of null geodesics from T I to p'. 

It is important to be clear about what is meant when it is 
stated that there is an infinite number of geodesics between 
two points. A geodesic is a curve a(t) in M (i.e., a mapping 
a:[O, 1] ---+ M) whose tangent vector daldt is parallel trans
ported along a. The distinction between the mapping a and 
the point set which is its image (i.e., the set of points traced 
out by the curve a) must be made to avoid confusion when 
discussing Propositions 1 and 2. For example, if two points 
on a sphere are not antipodal then there are an infinite num
ber of distinct geodesics joining them.22 However, all but two 
of these geodesics trace out the same set of points: the great 
circle containing the two points. 

If there are an even (odd) number of conjugate points 
along a null geodesic between T and p then the correspond-
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ing image of the source seen by an observer at p has the same 
(opposite) orientation as the source.23 

The previous discussion is now summarized in the fol
lowing theorems. 

Theorem 4: Suppose that T is the history of a light 
source Sand p is an event in a globally hyperbolic space-time 
(M ,g). Suppose that p and Tare nonconjugate and .a (q,rj<is a 
deformation retract of .a (q,r,B ) where B is contractible to a 
point. Then, there are an odd number (2n + 1) of null geo
desics (a(t ),Pa(t)) withJ(a) < c, from T top. Exactly n of the 
corresponding images of S seen at p will have the opposite 
orientation to the source. 

Theorem 5: Suppose that the assumptions in Theorem 3 
hold and that there are only a finite number m of null geodes
ics from T to p. Then M is contractible to a point and m is 
odd. Exactly ! (m + 1) of the images, seen at p, of a light 
source whose history is S will have the same orientation as S. 

There are results analogous to Theorems 2 and 3, but 
which concern geodesics on Riemannian rather than Lor
entzian manifolds. Since these results do not appear to have 
been noted before they are now stated. They follow directly 
from Proposition 2 and the Morse inequalities for geodesics 
proven by Palais.24 

Let p and q be two conjugate points in a complete Rie
mannian manifold and .a (p,q) be the set of paths fromp to q. 
The energy functional E:n (p,q) -+ R is defined as follows. If 
0':[0,1] -+M then 

i l (dO' dO') E(u)= g -,- dt. 
o dt dt 

If .a (p,q)C = {un (p,q) IE (0') < c} is contractible to a point 
then there are an odd number of geodesics, of energy less 
than c, from p to q. Futhermore, it follows from Proposition 
2 that if there are only a finite number n of geodesics (of all 
energies~ from p to q then M is contractible to a point and by 
the usual argument n is odd. In each case exactly 
!(n + 1) Wn - 1)] of the geodesics have an even (odd) num
ber of conjugate points on them between p and q. 

IV. APPLICATION OF THE RESULTS TO MULTIPLE 
IMAGING BY GRAVITATIONAL LENSES 

Several astronomers have calculated numerically the 
positions and intensities of the different images that would 
be seen by an observer in a multiple imaging situation. 1.25.26 

It has been noted that if the lensing parameters (for example, 
the distribution of mass in the lens, the source and observer 
positions) are varied so that two images coalesce, then as the 
images move closer together their intensity increases with
out bound. This behavior is explained by Theorem 5. The 
space-times corresponding to the lenses considered are stat
ic. Thus, they are globally hyperbolic and satisfy the metric 
growth condition. The source is at a fixed point in space so 
lim

h 
_ 00 y(t) exists. If there are a finite number of images n 

then by Theorem 5 n can only be even if p and T are conju
gate along some null geodesics r. As mentioned previously 
this means that the image corresponding to r has infinite 
intensity and in a certain sense there is a probability of zero 
of this situation occurring. If the intensity of each image is a 
continuous function of the lensing parameters, then as the 
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two images coalesce their intensity must increase without 
bound. 

The result concerning the number of images of each 
orientation might be of practical significance. Quasar images 
in the radio frequency range sometimes have sufficient struc
ture that the relative orientation of the images might be de
termined. Thus, if only two images are detected and they 
have the same orientation, then the third image must have 
the opposite orientation. If the lens galaxy is spherically 
symmetric, then the images of the galaxy and quasar lie on a 
single line and there are constraints on the possible location 
of a third image. Let L be the line segment between the two 
images and L its complement. If the two observed images 
have the same orientation, then there must be an image with 
the opposite orientation on L. If the two images have the 
opposite orientation, then there must be an image on L. 
These conclusions can be drawn from the diagram and dis
cussion in Ref. 27. Unfortunately, if the lens is not spherical
ly symmetric, it does not seem to be possible to make deduc
tions about the possible positions of a third image. 

The applicability of these theorems to the observed 
cases of gravitational lensing is now discussed. Despite its 
somewhat technical nature the local theorem is more rel
evant than the global result to the situations under study of 
astronomers. First, the observation of multiple images is 
very local in the following sense. Astronomers do not look 
for the multiple images over the whole sky but rather only 
over a very small solid angle. Also, only light rays from the 
source which take approximately the same "time" to reach 
the observer can be attributed to be from a single quasar. 
This is because multiple images are assumed to represent the 
same source if they have the same spectra. If an image corre
sponding to an earlier epoch of the quasar was observed, its 
red shift and spectra would be different and so it would not 
be known whether or not it was from a different source. Thus 
consideration of .a (q,rr is more physical than consideration 
of the whole path space. 

Second, the space-time representing the universe is not 
contractible to a point because of the singularity in the past 
(the "big bang"). Also the Cauchy surface might be compact 
(e.g., S 3) and so not be contractible to a point. The metric 
growth condition [in particular, S~ 00 dt ! F (t ) = 00] is not 
satisfied for most realistic cosmological models. It is only 
satisfied for a Robertson-Walker space-time if the scale fac
tor R (t ) tends to zero more rapidly than t. This is not the case 
for physically realistic models. 

The assumption, made in both Theorems 4 and 5, that 
the space-time is globally hyperbolic is now considered: is it 
physically realistic and is it necessary for there to be an odd 
number of images? At least we want the region of space-time 
traversed by the light from the quasar to the earth to be 
globally hyperbolic. Geroch and Horowitz28 discuss 
whether the universe possesses a Cauchy surface. There is no 
definitive answer but they consider that there is the potential 
for some solid evidence. 

The G6del universe, a plane wave (gravitational and! or 
electromagnetic), and the anti-de Sitter universe (hereafter 
referred to as M I,M2' and M 3, respectively) are all homeo
morphic to R 4 and are not globally hyperbolic. I have not 
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p 

FIG. 2. The past null cone at an event p in 
the GOOe! space-time is refocused at 
p' ,p" ,etc. The timelike curve T intersects the 
past null cone of p at only two events. 

been able to find p and Tin M2 or M3 such that there are an 
even number of null geodesics from T to p. The Godel uni
verse has numerous pathological properties (the best known 
being that it possesses closed timelike curves) and so perhaps 
it is not surprising that there arep and Tin MI joined by only 
an even number of null geodesics. See Fig. 2. A more com
plete diagram showing the global structure of M\ is given in 
Ref. 12. The past null cone at any event p is refocused at p', 
p", etc. The curve Tshown is timelike (but not a geodesic) yet 
it intersects the past null cone of p at only two events and so 
there are only two null geodesics from T to p. Although the 
Godel universe is not physically realistic this example shows 
that some assumptions on the causal structure of the space
time are necessary for there to be an odd number of images. 
It is probably necessary to assume at least that the space
time is stably causal29 (i.e., even when the null cones "opened 
out" a small amount there were no closed timelike curves in 
the space-time). It is interesting to note that M2 and M3 are 
both weakly asymptotically simple30 with a past null infinity 
f- which is topologically R XS2. This could be significant 
because if a space-time M is asymptotically empty and sim
plethenf+ andf- arenullandtopologicallyR XS 2,and 
M is globally hyperbolic and homeomorphic to R 4 (Ref. 30). 
Thus, it could be that there are an odd number of images 
when f - is topologically R X S 2, and the timelike curve T 
has its past endpoint on i-, past timelike infinity. 
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It is shown that the same conditions are necessary for both frustration in Ising models with 
negative multispin interactions present and phase transition in analogous ferromagnetically 
coupled models. 

I. INTRODUCTION 

Since 1851 when Riemann outlined a program of "the 
study of the general meaning of an entity obtained by a 
successive increase of dimensionality"l topology has not 
only become a very important branch of mathematics but 
also a very useful tool to investigate a variety of properties of 
nature. As our paper concerns some problems of statistical 
mechanics of spin systems which are very closely connected 
with gauge theory,21et us present a short list of the applica
tions oftopology in physics, starting from the gauge theory. 
The best example for hidden topological concepts in gauge 
theory is the phenomenon of flux trapping in a superconduc
tor. The quantization of flux can be expressed as 
~A·dx = aN, where a is a constant dependent on the Coo
per-pair charge, and N is an integer which is a physically 
measurable quantum number. One can reinterpret this num
ber as a topological property of a geometrical space (called a 
winding number2). Another application of topological meth
ods in physics is the classification of the topological excita
tions3 and defects, for example, the disclination lines.4 By 
using the homotopy theory5 it is easy to detect which topo
logical defects or excitations are stable. Polymer problems6 

can be treated by an application of the knot theory. 7 The 
evolution in time ofthe motion of the polymers behaves dif
ferently for knotted and unknotted polymers. 

In this paper we would like to present the application of 
algebraic topology to statistical mechanics. We consider two 
problems, the appearance of frustration in the models with 
Z2 symmetry with negative couplings present and the phase 
transitions in other ferromagnetically coupled models of the 
same symmetry. This means that we consider the Ising mod
els with mUltispin interactions with or without frustration. 
The model with frustration is a version of the model intro
duced by Wegner8 and by Balian, Drouffe, and Itzykson.9 

The frustration considered here is the generalization of the 
frustration for two-spin interactions introduced by Tou
louse. 10.11 

The second example considered is the Griffiths-Wood 
ferromagnetic Ising model with multispin interactions. 12 

Considering the mechanism of appearance of frustra
tionl3 or the phase transitions in different models of Z2 sym
metry, we find the necessary conditions for each of them 
separately. These conditions are topological. Subsequently, 

-) Permanent address: Institute of Molecular Physics, Polish Academy of 
Sciences, Smoluchowskiego 17/19, Poznan, Poland. 

we can perceive that both of them, although applying to phy
sically different systems and different phenomena, are math
ematically the same. In the next section we present some 
useful definitions and in Sec. III the necessary conditions. 

II. DEFINITIONS 

If we investigate the general mechanism of the arbitrary 
effect we can fix the way out by generalizing the model de
scribing it. As we examine the mechanism of frustration or 
phase transition we may consider somewhat more general 
models but with the assumption that its symmetry does not 
change. Therefore, we consider the Ising model with multi
spin interactions in D-dimensional arbitrary lattice. The 
Hamiltonians are as follows: 

- (3~ = KI LA (bdsi,Si2 + K2LA (b2)si,Si
2
Si

3 
(bd (b2 1 

+ K i LA (b i)si,"'Si4 + ... + mH LSi' 
(b,1 (bol 

(2.1) 

where K is the reduced coupling constant (K = (3IJ I), 
(3( = l/kBT) is a constant, the random variables A (b k ) 

( ± 1) characterize the distribution of the spin interactions, 
s( ± ) are the Ising spins, the sum runs over the elementary k
dimensional cells (or links) bk of the lattice. We look for 
frustration in models with - 1 or + 1 values at A (b k ) and 
for phase transitions in models with A (b k ) = + 1. We as
sume that the interactions are "placed" on the elementary k
dimensional cells bk ofthe lattice. This means that the three
spin interactions are placed on the triangles 
(two-dimensional cells or two-dimensional links) of the 
triangular lattice T, the four-spin interactions on the squares 
b i of the hypercubic lattice Z d, etc. 

IfeveryA (bk ) = 1 (k = 1,2, ... ,d) the model (2.1) is equi
valent to the Griffiths-Wood Ising model, however if m = 0 
and A (bk ) = ± 1 this is another Ising model but now with 
frustration. In the case when k = 1, and A (b l ) = + 1 or 
A (b l ) = ± 1, we have the usual Ising model or the Ising 
model for spin glasses. 

The study of such a model requires the knowledge of the 
properties of k-dimensional surface in Euclidean space. 
Therefore we take into account the following definition. 

Definition 1: We call surface a connected polyhedron 
whose covering complex K has the following two properties: 
(a) every branch bl ofK is adjacent to exactly two cells b2 , b2 

of K and their boundary loops have only bl in common; and 
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(b) to each node there is attached a unique umbrella U (see 
Ref. 14). 

Let us consider property (a). There is a cell b2 } adjacent 
to b}1 and b /, the other cell b/ is adjacent to the branches b / 
and b/, the next one b/ is adjacent to bl

3 and b1
4

, etc. We 
obtain a sequence of branches and cells {b l \ b2

1
, b1

2
, b/, ... J 

such that 

bl
2nb/ = bl 1, 

b2
2n b/ = b1

2
, 

b/n b2
/ + 1 = bl/, 

(2.2) 

which can be finite or infinite. We say that the sequence is a 
circular system PI if 

b2
/ + l=b2

1. (2.3) 

Generalizing, we can talk about the k-dimensional circular 
systemPk if 

bkl+l=bkl 

for the sequence {bk_ l
l, bk I, bk_ 1

2
, ••• J. We obtain a um

brella U (or generalizing a k-dimensional umbrella Uk) when 
the circular system P (a k-dimensional circular system Pk ) 

has one common node. 

Let us consider the triangular, the square, the cubic, 
and d-dimensional hypercubic lattices. In the first case the 
cell b2 is the triangles. In such a lattice we can obtain both 
finite or infinite sequences {b l

l
, b2

1 
, ••• J. However, the um

brella U can be obtained only if the number of b2 cells is equal 
to 6. So, we have a six-cell umbrella such that everyone of its 
sites belongs to two of its cells. 

Definition 2: If there is an umbrella U such that every 
one of its sites belongs to two of its cells, we say that U is 
compact and write 

U==.U c. 

Let us now consider the square lattice. The smallest 
umbrella in the square lattice consists of four cells but it is 
impossible to obtain the compact umbrella U C in this lattice. 
There are at least four points bo which belong exactly to one 
single cell of the umbrella. We can easily see that the com
pact umbrella can never appear in the d-dimensional hyper
cubic lattices, for an arbitrary dimension. In spite of the non
existence of the U C umbrellas in the hypercubic lattice, one 
can find the circular system Pk having a property similar to 
U C

• 

Definition 3: The smallest circular system in the hyper
cubic lattice constructed from k-dimensional cells bk 

(k = 2, ... ,d) such that every one of its sites belongs to two of 
its cells will be called a k-dimensional plaquette or simply k 
plaquette Lk (see Ref. 14). This means that the k plaquette 
Lk exists if there is the sequence 

{bk _ l
l
, bk I, bk_ 1

2
, bk 2, ••• ,b/+ IJ 

such that 

b/+ I==.bk \ 

and for every point b/ and Lk (b/EL k ) 

b/e b/n b/+ I, 

we have 
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b/nbk
i+ 1= bk_ 1 i, bk Inbk

l = bk_ll, 

with 1= 1,2, .... The smallest circular system Lk is build of 
four k-dimensional cells bk (I = 1, ... ,4). In general, we give 
the following definition. 

Definition 4: The circular system is called a compact 
circular system P C when each of its points belong to two cells 
of this system. 

III. TWO MODELS 

Let us consider two models. We look for the mechanism 
of the appearance of the frustration or of the phase transi
tions. 

Example I: Let us take the model described by Eq. (2.1). 
We see that this Hamiltonian is local gauge in variant, that is, 
invariant under the following transformation: 

Si- -s;. A (bd- -A (b k ), (3.1) 

with Si sitting at the site boiebk. As is well known the frustra
tion effect in the Ising model for spin glasses appears when 
there is an odd number of antiferromagnetic interactions in 
the plaquette. The definition of the frustration is then that 
the frustration arises when the spins of the plaquette cannot 
find a fully satisfactory ground state. IO,ll.15. 

Let us consider the condition required for the existence 
of the frustration in general. The distribution of spins of the 
interactions in the ground state is the most important while 
dealing with the frustration effect. There are only two con
figurations: ferromagnetic and antiferromagnetic in the 
ground state in the Ising model. However, the problem be
comes more complicated when the multispin interactions 
appear. The spins are in the ground state when the energy is 
E = Emin = - 1. The problem of finding the frustration of 
multispin interactions is equivalent to studying a system of n 
equations: 

A (bk 1)s1"'Sw = 1, 

A (b k 2)s; ... s;., = 1, 

A (b
k 

n)sAn - I) ... S<,:: - I) = 1, 

(3.2) 

where A (bk )sJ'"sw = E is the energy of the ground state for 
the k link bk with w-spin interactions. It turns out that there 
is no frustration in the system described by Eqs. (3.2) if this 
system of energetical equations is consistent. In this case 
there is more than one solution and each of the variables s 
(spins) can take two values ( + 1) or ( - 1). This fact means 
that every spin s can take a position which minimizes the 
energy of its link bk • However, in the case when the system is 
inconsistent, there is no solution and there is a spin which 
could not minimize the energy of its link bk • In such a case 
there is frustration in our system with multispin interac
tions. Now we are able to give the general necessary condi
tion for the appearance of frustration. 

Theorem 1: The necessary condition for the appearance 
of the frustration in the arbitrary lattice with multispin inter
actions is the existence of the compact circular system pC. 
The proof is based on the arguments given above. 

In particular the triangular lattice P c= U c, the small
est surface in T lattice on which the frustration can arise is a 

H. Nencka-Ficek 1598 



                                                                                                                                    

honeycomb built of six triangles. The necessary condition 
for frustration in the hypercubic lattice Zd is given byl3 the 
next theorem. 

Theorem 2: In Z d a frustration can arise if 

(3.3) 

where w is the number of spins taking part in a single interac
tion of bk • 

Proof If k = d, then bd In bd 1= 0, so there are points 
(sites of the lattice), which belong only to the single b d I or b d I 

cells (links). The spins are sitting at every site of the cell of 
Z d. Therefore, at least one spin of b d I or b d I can minimize 
the energy of their links. In the case when the system of bk is 
finite the system of the n energetical equations (3.2) is consis
tent, but it has more than one solution. Hence there is no 
frustration. If k < d - 1, then 

bk In bk I = bk _ I' 

we obtain the circular system, and, what is more, it is a com
pact one. The suitable distribution of the signs of the multi
spin interactions (A (bk ) 1 gives rise to the inconsistent sys
tems of the energetical equations. This means that there is a 
frustration effect. As k<.d - 1, then every bk has exactly 2k 
comers. Because the spins S are sitting at the comers of bk , 

and since bk represents a single interaction ofw spins then 

W<.2k. QED 

We see that these necessary conditions express the topologi
cal property of closure. Therefore, one requires the existence 
of closed k-dimensional surface in the spin system in order 
that frustration can appear. 

Example fL· Let us consider the problem of phase tran
sition in the Ising model with positive w = 2k-spin interac
tions in the hypercubic lattice. In particular, the interactions 
can be described as follows: 

-PYr=Kk I S;,·"S;w· 
(bkl 

The partition function is 

Z = tr exp{Kk ~IS;' ••• S;w} 

and we must notice that 

)$=0, I.r=2. 
ti (sl 

(3.4) 

(3.5) 

(3.6) 

Considering the product s;, ···s;, tanh K we see that it depends 
on different graphs in the lattice. However, in the case when 
k = d, this product does not contribute to the partition func
tion because of (3.6) and a lack of closed graphs made of bd 

cells. So, we obtain the specific heat in the following form: 

Cv = akB(Jw/kBT)2 sech2(Jw/kBT), (3.7) 

where a is a number of d-dimensional cells bd in the lattice. 
We see that in this case there is no phase transition in the 
lattice. Griffiths and Woodl2 have formulated the necessary 
condition for the appearance of a phase transition in the Is-
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ing model with multispin interactions as a necessity of the 
existence of closed graphs in the lattices. Our generalization 
is that the condition for the phase transitions is the existence 
of the arbitrary compact circular systems pC or U C in the 
lattices. In particular, for a Z d lattice the phase transition 
can appear only if a number of spins taking part in a single 
interaction of bk cell is 

W<.2d - 1. (3.8) 

Taking into account these conditions we can easily show the 
type of the interactions and/or the sort oflattices in which 
the phase transition can appear (in the model with Z2 inter
nal symmetry). 

IV. CONCLUSIONS 

In this paper we have presented the application of the 
algebraic topology to statistical mechanics of spin systems. 
The striking feature is that the necessary condition for the 
frustration and the phase transition is the same mathemat
ical form (3.3) and (3.8). This means that the topological clo
sure plays a fundamental role in the problems of statistical 
mechanics. It seems that the knowledge of these conditions 
might help in finding the solutions of the unsolved problems 
of statistical mechanics presented by Wu, 16 i.e., in the deter
mination of the critical points for such lattices as a Kagome 
lattice or a checkerboard one. 
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A Euclid-invariant random walk representation for spin-! and vector propagators is developed in 
analogy to random walks with internal states. 

I. INTRODUCTION 

The aim of this paper is to develop a Euclid-invariant 
random walk representation for spin-! and vector propaga
tors. We shall consider random walks in which rotational 
symmetry is maintained, and all steps have the same length. 
Such a discretization is of interest first because it permits a 
Euclid-invariant elimination of singularities of Green func
tions and hence of divergences in Feynman diagrams. Of 
course, invariant regularizations are not hard to come by, so 
this alone does not particularly recommend the awkward 
abandoning of continuity. Looking beyond regularization, 
however, to replace quantum fields by Feynman diagrams, 
which are in tum replaced by discrete networks of elemen
tary steps, provides at least a framework in which one can 
imagine doing without the background continuum space
time altogether. 1.2 This idea has been one of the motivations 
behind the investigations reported here. 

That the following construction treats a Euclidean 
rather than a Minkowskian position space surely weakens its 
prospects as a conceptual substitute for continuum space
time. Euclideanization seems unavoidable in this context for 
at least three reasons. First, the random walk representation 
fails to exist for Green functions of second-order hyperbolic 
operators. Second, going to Euclidean space seems to be the 
only local way to arrive at the Feynman propagators to be 
used in amplitudes, as opposed to the retarded and advanced 
propagators. Third, the basic idea being to build diagrams 
out of small steps, how does one specify "smallness"? One 
way is to choose a timelike vector t and take steps whose 
spatial part relative to t is small. Of course this smallness 
depends on t, and a theory built upon this notion would not 
be Lorentz invariant.3 Another possibility is to take steps 
small in the Minkowski metric, however, this set of "small' 
steps forms a noncompact manifold (a hyperboloid) with in
finite Lorentz invariant measure. In Euclidean space on the 
other hand, the steps of a small length span the (finite mea
sure) surface of a sphere. For these reasons the analysis has 
been carried out in a Euclidean context. 

Spinor and vector propagators have matrix indices that 
label polarization states. A random walk construction for 
these propagators might thus plausibly resemble a random 
walk with internal states.4 Such a stochastic process is speci
fied by giving a distribution matrix Pab (x,x') indicating the 
probability of a transition from internal state b to state a, and 
position x' to x. For a probability interpretation to hold, 

a) Research completed while the author was a Chercheur Associe au Centre 
National de la Recherche Scientifique at l'Observatoire de Meudon and 
I'Institut Henri Poincare, Paris France. 

Pab (x,x') should be a non-negative real number for all a, b, x, 
and x', and should satisfy the identity 

~ I dx Pab (x,x') = 1 

(for every x' and b ) which asserts that the total probability for 
some transition to occur is unity. 

In our constructions, Pab (X,x') will depend only on 
x - x' and will be nonzero only when x - x' has a fixed 
length 'T, so it can be given as a function of the unit vectors 
n = (x - x')Ir. Only for the scalar will the probability inter
pretation remain intact. For the spinor, Pab(n) will contain 
imaginary numbers, while for the vector it will be real but 
not, in general, non-negative. 

II. SPIN-I GREEN FUNCTION 

Let us consider the Dirac operator i + m in d Euclid
ean dimensions, where i: = '1 ai and '1 (i = 1, .. . ,d) are 
Hermitian matrices generating the Euclidean Clifford alge
bra 

'1yj + yy = 2/jij. 

We seek an approximation to the Green function of(i + m) 
in the form of a path integral over polygonal paths built with 
steps of length 'T, and which in the limit 'T--+O agrees with 
(i + m)-I. The key is the identity 

(i + m)-I = ('" dse-s(~+m) = lim 'T i e-N7j~+m), 
, Jo 1'-+0 N~ 1 

(1) 

which is valid since the Hermitian part of(i + m) (i.e., m) is 
positive definite. 

The operator exp[ - s(i + m)] can be regarded as the 
evolution operator corresponding to the equation 

ast/J= -(i+m)t/J. (2) 

Our method is to derive a path integral for the kernel of this 
evolution operator by finite differencing (2), and then to sum 
as in the last expression of (1) over the total number N = sir 
of steps. 

Equation (2) can be finite differenced in a rotationally 
symmetric fashion by first rewriting it in the form 

{Idn(l + '1n;)(d- 1 as +niai)}t/J= -d-1mt/J. (3) 

Here the integral is over the vectors ni on the unit (d - 1) 
sphere, with respect to the normalized rotationally invariant 
measure dn. [To verify (3) note that f dn = 1 and that, by 
symmetry, fdn ni = 0 and fdn niJt a:. tY;; that the (annoying 
but) correct factor is d -I is seen by taking the trace of both 
sides.] 
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Now with small 7 we approximate the directional deri
vative as a finite difference 

1"(d -1 as + ni aj )tP(s,x) 

= ¢(s,x) - ¢(s - d -17,x - n7) + 0 (r), (4) 

and substitute (4) in (3) to obtain after rearranging 

tP(s,x) = f dftp(n)¢(s-d -17,X - n7) + O(r), (5) 

where 

(6) 

By iterating (5) it follows that, neglecting the 0 (r) con
tribution, the kernel (xlexp[ - Nd -17(i + m)]IO) oftheevo
lution operator can be approximately written in the form 

KN: = f JJldno p(nN)·· .p(n l )8(x - 7 otlno). (7) 

which is in fact an integral over polygonal paths with N steps 
of length 7. It is this approximation of the exact kernel that 
will be substituted in (1) to arrive at an expression for 
(i+m)-I. 

It will be convenient to rewrite K N as a single d-dimen
sional integral. This is done by substituting the Fourier rep
resentation of the delta functionS and interchanging the inte
grations over no dwo and d" k. This yields 

Kn = (21T) -d f ddk eikxA N(k), 

where 

A (k): = f dn p(n)e - iknT 

= e-mTd-'F(v + 1)(21KnJv(K) - ilJv+ dK)] 

= 1 - (i7d -I)(l_ im) + 0 (r), (8) 

with v: = d 12 - 1, K: = Ik 17, Ik I: = (k 2)1/2, k: = k Ilk I, 
and J v is a Bessel function having the expansion6 

(
Z)V 00 (_z2/4)m 

Jv(z)= - L . 
2 m~om!r(v+l+m) 

Now the sum over N is easily carried out: 

Nt
p 

KN = Nt
p 

(21T)-d f ddkeikxAN(k) (9) 

= (21T) -d f ddk eikxA P(k)[ 1 - A (k)] -I. (10) 

In the limit 7---+0, the exact Green function is recovered when 
the sum is multiplied by 7d -I [cf. (8)]: 

lim(7d- l
) i KN =(21T)-dfddkeikx[il+m]-1 

T---+O N~p 

= (xl(i + m)-IIO). (11) 

Note that in the limit 7---+0, the value of p (the minimum 
number of steps) is inconsequential. This occurs because the 
entire sum is multiplied by 7, so that any finite collection of 
(finite) terms contributes nothing in the limit. The choice of p 
will be discussed further in Sec. V. 

The step from (9) to (10) involves interchanging an infi
nite series and integral, as well as summing the series, while 
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in (11) the limit 7---+0 has been interchanged with the integral 
over dd k. It must be checked that these manipulations are 
justified. Taking into accountS the (implicit) factor 
exp( - TJk 2), the interchanges can be justified by examining 
properties of uniform convergence and large k behavior of 
the integrand.7 As for the series, it is of the form ~ N ~ pA N 

with A a matrix given by (8). This series converges to 
AP [1 - A ] - 1 provided AN ---+0 as N_ 00. Since A (k ) is dia
gonalizable, we will have AN (k)---+O provided its eigenvalues 
have modulus less than unity. The eigenvalues of 1 are ± 1, 
so the moduli are given by 

1...1.± (k W 
= e- 2mTr '{ [F(v + 1)(21K)VP(J~(K) + J~+ 1 (Kll) 
= e - 2mTd - '.i(K). 

Now flO) = 1 and f(K) is monotonic decreasing 
(f'(K) = -[F(v+ lWf 2(2v+ I)K-2v-lJ~+dK)<0) so 
we have 1...1. + I <exp( - m7d - I), with equality only when 
k = O. Hence the series converges.8 

Let us discuss the results of this section. The Green 
function of (i + m) has been represented as an integral over 
paths with an arbitrary number of steps all of length 7. The 
path integral is a good approximation to the continuum 
Green function when Ix I >7, and converges to it in the limit 
7---+0. The "weight" or "amplitude" for a given path is the 
ordered product of the matrices p(no) 
= exp( - mTd - 1)( 1 + 11 0 ); because permutation of the se-

quence n 1" •• ,n N does not change the sum ~~ ~ 1 no, in fact 
only the symmetrized product enters. When m > 0, the 
weight of paths with more steps is exponentially damped. 

Since S dn(1 + II) = 1, 1 + II plays a role analogous to 
that of a distribution matrix for a random walk with internal 
states (cf. Sec. I). The polarization state is correlated with the 
direction vector n in the following sense: A step in direction 
n puts the particle in a polarization state that has zero ampli
tude to travel in the opposite direction - n, since 
(1 - 11)(1 + II) = O. The Fourier transform (with respect tox) 
of the path integral for finite T can, somewhat surprisingly, 
be evaluated exactly and is given by AP (k )[1 - A (k)] -I, with 
A (k ) as defined in Eq. (8). 

III. SCALAR GREEN FUNCTION 

We consider now the second-order, scalar operator 
- J 2 + m 2 , where a 2 = aa Jo is the d-dimensional Lapla

cian. Following the development of the preceding section we 
make use of the identity 

(_J2+m2)-I= 100 

dse-s(-iP+m'l. (12) 

The operator exp[s(J2 - m2
)] can be regarded as the evolu

tion operator corresponding to the equation 

asqJ = (a2 
- m2)qJ; (13) 

to proceed as before one should find a finite differencing of 
this equation that will yield a path integral of the desired 
form. This could be done using the fact that J2qJ (x) is propor
tional to the difference between qJ(x) and the average of qJ 
over an infinitesimal sphere surrounding x. Proceeding 
along these lines, one would demonstrate that the evolution 
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operator of the diffusionlike equation (13) can be obtained 
from a random walk, a well-known result.9 

Our path integral for the spino! case [(7) and (9)] is much 
like a random walk, and in fact it is easiest simply to adapt it 
by inspection to the case of the scalar. In a free, scalar ran
dom walk all steps are equally weighted, so in place of the 
matrix 1 + • appearing inp(n) we expect to have the number 
unity. Furthermore, as indicated by (12), exp( - m1'd -I) 
should be replaced by exp[ - m2-r2(2d )-1] [the choice of 
(2d)-1 ensures that m2 will be the mass term in the corre
sponding differential operator; cf. (14) and (15)]. In place of 
KN ofEq. (7) one now has the N-step scalar evolution opera
tor 

with 

GN = (e- m'T'(2d)-')N J iJ.ldna O(X -1' attna ) 

= (217") - d J d dk eikxaN (k ), 

a(k) = e - m'T'(2d)-' J dn e - iknT 

= e- m'T'(2d)-'r(v + I)(2/KtJv(K) 

= 1_(k2 + m2)-r2(2d)-t + 0(1'4), 

where V,K are as defined after (8). 

(14) 

Summing now over N, 

jp GN = (217") -d J ddk eikxaP(k)[ 1 - a(k)] -I (15) 

so that 

lim-r2(2d)-t f GN = (217rdJddkeikx(k2 + m2)-1 
T->O N=p 

=(-tf+m2)-I. (16) 

The same comments5
•
7 as in the spino! case apply to 

justify the steps in (15) and (16). The series 1: aN converges 
since la(k ) 1 <exp( - m2-r2(2d ) - I), thanks to a known inequa
lity on Bessel functions6 lr(v + 1)(21KtJv(K)I<1 for K real. 

IV. VECTOR GREEN FUNCTION 

We turn now to the vector operators 

oij( - a2 + m2) + (1 - S -I)a; aj . 

The case S = 1 can be taken over directly from the scalar if 
one merely multiplies everything by Oij' In this case the prop
agation is independent of the polarization, and in the limit 
m-o one obtains the (Euclidean) photon propagator in the 
Feynman gauge. In the general case the propagator has the 
form 

(k 2 + m2)-1 [Oij - (1 - s )kik/(k 2 + Sm2
)]. (17) 

Can this propagator be obtained in the limit 1'-0 from some 
random walk-type path integral? To answer this we shall 
proceed by guesswork. 

The step distribution matrix appearing in the sought
after path integral must have two vector indices, so that, 
assuming it must be built with unit vectors, the only possibi
lities arepij(n) = aOij + ,8ninj , with a and,8some constants. 
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From the previous analyses it is clear that to zeroth order in l' 
we must have Sdn pij(n) = oij. Treating first the massless 
case for simplicity, P ij is independent of 1', so this must hold 
identically and pij must have the form 

pij(n) = aOij + d (1 - a)n;nj • (18) 

Our strategy is simply to try all of these. 
Once again, the N-step propagator is easily computed to 

be 

KijN = (217") - d J d dk eikxA :(k), 

where now 

Aij(k) = J dn(a + d(1 - a)ninj)e-iknT 

= r(v + I)(21KnJv + (1 - a)Jv + 2 

-d(l-a)Jv + 2 kikj] 

(19) 

= 1 _ ( 2a + d )K2 _ ( 1 - a)KiKj + 0 (K4), 
2d(d + 2) d + 2 

(20) 

with v: = d /2 - I and Ki = k i 1'. The implicit argument of 
the Bessel functions is K, and terms without indices are un
derstood to be mUltiplied by oij. 

If the sum over N converges, the Fourier transform of 
the path integral/sum will be given by 
A ~(k)[ 1 - Aij(k)] -I, as in (10) and (15), and the limit 1"-0 
will be determined by 

lim-r2[1-Aij(k)]-1 
T-+O 

= (2d(d + 2)) k -2[0;- _ ( U(1 - a) ) ie/c
j

]. 

2a + d ~ 3d - 2a(d - 1) 
(21) 

Thus, modulo convergence, we can obtain the propagators 
(17)withm=Oand l-s=U(1-a)/(3d-2a(d-l)). 

The sum over N will converge provided the moduli of 
the eigenv!"~es of Aij(k) are less than unity. Since the eigen
values of kikj are 0 (for d>2) and 1, the eigenvalues of Aij 
[Eq. (20)] are given by 

..1.1 =r(v+ 1)(2/KnJv +(1-a)Jv+2] 

= 1- [(2a + d)/2d(d + 2)]~ + ... , 
..1.11 =r(v+ l)(21KnJ" -(d-l)(1-a)JV+21 

= 1 - [(3d - 2a(d - 1))/2d (d + 2)]K2 + ... (22) 

These eigenvalues do not have moduli less than unity for 
arbitrary of a, and it is difficult to determine in general the 
allowed range of a. A necessary but not sufficient restriction 
is easily obtained by looking at the eigenvalues near K = 0: 
A. (0) = 1, so the coeffici~nts of ~ in the expansions (22) must 
be < 0 which yields the constraint 

-(d/2)<a<3d/2(d-l). (23) 

This ensures that 1..1. 1 starts out diminishing as K grows from 
zero. The problem is that at some finite value of K, 1..1. 1 may 
nevertheless exceed unity. For example, if a is too large and 
negative, A. II willgobelow -lasJv + 2 reaches its first max
imum. As one can only proceed in particular cases, let us 
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investigate the choices a = 0 and a = (1 _ d - I) - I. 
With a = 0 the step distribution matrix is pij(n) 

= dninj , corresponding to "no transverse propagation." 
The eigenvalues of Aij are [using (22)] 

Ai = r(v + 2)(2IKt+ IJv+ I, 

All = r(v + 1)(2IKn Jv - (d - l)Jv+ 2]' 
It follows from the known inequality Ir(v + 1)(21 
KtJv(K)i <: 1 that IAll <: 1, and equality holds only fOrK = O. I 
have determined that IA II I <: 1 for d <: 4, and it seems very like
ly that it is true for all d, although it has not been demonstrat
ed. At least for d<:4 then, the scheme with a = 0 is conver
gent, and from (19) and (21) we have 

00 

[2(d + 2)] -I lim r L KijN 
.,.-00 N=p 

= (21T) - d J d dk eikxk -2( 8ij - ~ k/'j). 

corresponding to the propagator (17) with m = 0 and 5 = j. 
It is curious that 5 is independent of d. Note also that where
as step by step there is no transverse propagation (p ij - n in j ), 
in terms of wave vectors transverse polarizations are propa
gated with greater weight than longitudinal polarizations! 
The reason for this remains hidden in the mysteries of the 
sum over paths of arbitrary length. 

With a = dId - 1)-1 (d;;;'2), Pij takes the form 
pij(n) = dId - 1)-1(8ij - ninj ), corresponding to "no longi
tudinal propagation." This a satisfies the constraint (23), and 
the eigenvalues (22) of the corresponding Aij(k) are 

Ai = r(v + 1)(2IKnJv - (d - 1)-IJv+ 2 ], 

All = r(v + 2)(2IKt+ IJv+ I' 

Now IAIII..; 1, and I have checked that IA11..; 1 for 2..;d < 4; 
once again it seems likely that JA1 I..; 1 for all d;;;. 2 but is has 
not been demonstrated. At least for 2..;d<:4 then, the scheme 
with a = d (d - 1)-1 is convergent and from (19) and (21) we 
have 

[ 
d+l ] 00 

2(d - 1)(d + 2) ~~ N2:P KijN 

= (21T)-d J ddkeikxk-2[8ij +2(d-l)-lkikj ], 

corresponding to the propagator (17) with m = 0 and 
1 - 5 = 2(d - I)-I. In this case 5 does depend on d and in
deed 5-1 as d-oo. While it is perhaps plausible that as 
d-oo the effect of excluding one (longitudinal) step direc
tion becomes negligible, it is difficult to see for finite d why, 
in terms of wave vectors, the longitudinal polarization 
should propagate with greater weight than the transverse. 

Finally, the restriction to zero mass in the above discus
sion is removed by multiplying pij(n) (18) with 
exp( - m2rr). To obtain the propagator of the form (17), r 
must be set equal to the coefficient of k 2 in A ij (k ) (20), i.e., 
r = (2a + d )12d (d + 2). Any choice for a that is convergent 
with m = 0 will converge with m#O (since the eigenvalues 
of Aij will only be smaller) and, depending on the magnitude 
of m 2rr, some otherwise divergent a will converge. 
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V. REGULARITY OF THE DISCRETE PROPAGATORS 

The exact continuum scalar, spinor, and vector Green 
functions are singular at the origin. This can be seen either 
directly from the form of the equation ~ G (x,x') = 8(x,x') 
that defines them (~ is a differential operator) or from their 
Fourier representations. The spinor and vector cases are ob
tained by applying a differential operator to the scalar Green 
function f dd k e1kx (k 2 + m 2

) - I, which with x = 0 reads 
-fodk k d- l(k 2 + m2)-I. This integral is divergent except 
for the case d = 1 (in which case the Green function is not 
differentiable at x = 0). 

Having introduced the discrete step length 'T, our ap
proximations to the continuum Green functions can be 
made regular everywhere by a suitable choice of p, the mini
mum number of steps in the path integrals. We now indicate 
how this comes about. 

The Fourier transform of the discrete propagators 
I.~=pKNisoftheformAP(k )[1 - A (k n-I,withA (k )givenin 
(8), (14), and (20) for the spinor, scalar, and vector cases, 
respectively. Convergence of the integral over k depends in 
general on the oscillations of eikx andA (k ). For simplicity, let 
us consider only the conditions for absolute convergence. 
From the asymptotic behavior Jv (k) - 0 (k -1/2) of the Bessel 
functions, it follows that A (k ) _ 0 (k - v - 112 ) 

= O(k-(d-I)/2) as k-oo, so that AP(k) 
X [ 1 - A (k )] -1 _ 0 (k - p(d - 1)/2 ). The integration measure 
being -dk ~ - I , the integral will converge absolutely pro
vided d - 1 - p(d - 1)/2 < - 1, i.e., p> 2d I(d - 1). As 
long as p satisfies this inequality the discrete propagators will 
necessarily be everywhere regular. Due to oscillations of the 
integrand, they may in certain cases be regular for lesser 
values ofp. 

In one dimension 2d I(d - 1) is divergent, so for no 
choice of p are the propagators regular. This is because the 
set of points that can be reached from the origin with steps of 
length 'T span a lattice in one dimension, so that our propaga
tors are singular at every lattice point. (This case could be 
regularized by employing a Kronecker delta rather than a 
Dirac delta function to enforce the constraint x = 'TI.~ = Ina 
in the path integral.) For d;;;.4 the choice p;;;.3 yields every
where regular propagators, whereas d = 2 or 3 requires p;;;.4 
or 5, respectively. 

VI. DISCUSSION 

With the random walk representations obtained here, 
one can consider carrying out the program mentioned in the 
introduction. That is, given the expansion in Feyman dia
grams of a quantum field theory, one can replace each line by 
an integral over the discrete paths connecting its endpoints, 
thus obtaining a Euclid-invariant discretization of the quan
tum field theory. 

The usual perturbation expansion is recovered if one 
performs the sum over each line separately, going to the limit 
'T~ before applying Feynman rules. Other summations can 
now be considered, however. For example, rather than ex
panding in the coupling constant or the topology of the dia
grams, one might sum first over all diagrams (networks) with 
a fixed total number N oflinking steps and then sum over N, 
as we have done for single lines. I have not determined 
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whether such a resummation is even well-defined, much less 
what it yields, but merely note that it is an interesting possi
bility arising only because the diagrams are broken down 
into pieces smaller than usual. 

As for application to quantum field theories of physical 
interest, at least two potential problems arise. One problem 
is that the relation to Minkowski field theory is not evident. 
Consider, for example, our Euclidean scalar propagator giv
en in Eq. (15), aP (k )[1 - a(k )] - 1. This expression has a count
able infinity of poles in the complex k 2 plane, in contrast to 
(k 2 + m 2

) -1, which has only 2. Furthermore, the numerator 
aP (k ) grows exponentially as exp(p I 1m k I). It remains to be 
seen whether our propagator is nevertheless related by ana
lytic continuation to something that converges in the limit 
1'-0 to the Minkowski propagator. 

Probably a much more serious problem is that our dis
cretization destroys gauge invariance if applied, for example, 
to Euclidean quantum electrodynamics. The finite l' ampli
tudes do not satisfy Ward identities, even at zeroth order in 
the coupling constant, and in particular there is nothing to 
prevent the photon from acquiring a mass. A lattice gauge 
theory preserves gauge invariance by attaching the gauge 
potential [or rather exp(ieSAIl dxll )] to lattice links rather 
than points. Lacking a background lattice we cannot adopt 
this approach. 
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A classical finite-dimensional integrable Hamiltonian system, corresponding to the motion of a 
particle constrained to an n-dimensional sphere l:; = 0 x! = 1, with the Hamiltonian 
H =:= l:p(!.v! + u~/~! + Eapx!).(where uP' a.p' and E are constants andyp are the momenta 
conjugate to X p ), IS mtegrated usmg several dIfferent methods. These are the following: (I) The 
projection of geodesic (free) flow on a larger space, namely the sphere S 2n + I (for E = 0). The flow 
is obtained in terms of elementary functions. (2) Separation of variables in the Hamilton-Jacobi 
equation in elliptic coordinates or, alternatively, the use of a complete set of integrals of motion in 
involution to reduce Hamilton's equations to quadratures. The flow is obtained in terms of 
Abelian integrals which are then inverted in terms of generalized e functions. The relation 
between the different methods and results is clarified using methods of algebraic geometry, in 
particular the geometry of quadrics. 

I. INTRODUCTION 
A certain unifying geometrical and algebraic structure 

has been found at the base of a wide variety of integrable 
Hamiltonian systems. These include finite-dimensional sys
tems such as the Toda lattice, the Calogero-Marchiori mod
el, and numerous similar systems l

-4 as well as several fam
ilies of field theories such as the Korteweg-de Vries (KdV) 
equation, sine-Gordon system, etc. 

This structure manifests itself in two distinct ways: first, 
at the level of the phase space, the invariants of motion, and 
the structure of Hamilton's equations; second, in the actual 
determination of the flow. The first may be described as fol
lows: there exists some primordial system in a larger space 
which is either free (i.e., geodesic for some Riemannian met
ric) or has very simple dynamics such as harmonic oscillator 
motion and which possesses a very large invariance group. 
Reduction of the system through the Marsden-Weinstein 
reduction theoremS (i.e., by restriction to the level sets of 
certain of the invariants of motion) frequently leaves a resi
due of this original system, providing, for example, a com
plete set of commuting integrals which render the reduced 
system completely integrable. In the case where the original 
system involves biinvariant flow on a Lie group, the reduced 
system lives in the dual to a part of the Lie algebra and the 
Kirillov-Poisson structure gives rise to reduced Hamilton
ian equations of the Lax type through the Adler-Kostant
Symes theorem.6-9 For finite-dimensional systems, with fin
ite-dimensional symmetry groups, the flow can be directly 
determined by a suitable projection of the original 
flow. 1,4,8-10 

However, for many interesting systems, whether finite 
(e.g., periodic Toda lattice) or infinite dimensional (e.g., 
KdV), the underlying symmetry is of the Kac-Moody var
iety/-Io and thus involves infinite-dimensional reduction. 
Since the notion of exponentiation and projection in the cor
responding groups is not yet well understood, this approach 

does not lead in the same way to a determination of the flow. 
On the other hand, geometric structure appears in these 

systems in another form, namely, via the algebraic geometry 
of curves and their Jacobi varieties. 7,11-14 In the cases involv
ing the Kirillov-Poisson structure, one obtains a spectral 
curve from a Lax pair associated to the system, and the flow 
can be linearized in terms of the Jacobi variety of the curve. 
Although the flow is thus explicitly determined, it is difficult 
to see the link between the curve and the symmetries of the 
primordial system. 

In a more classical vein, the presence of algebraic curves 
is implicit in the Abelian integrals that appear in the solution 
of the Hamilton-Jacobi equations for many classical Hamil
tonian systems, through separation of variables in elliptic 
coordinates. 14-16 Moreover, there is a well-developed theory 
relating separation of variables to isometry groups. 17-24 This 
suggests that a more direct link could be established between 
the geometric notion of reduction by symmetries and the 
algebraic geometric linearization of flows on Jacobi varie
ties. 

The purpose of the present work is to establish this link 
as clearly as possible for a rather simple finite-dimensional 
system that has been known and studied since the nineteenth 
century: the so-called Rosochatius system. 16

,25 Actually, 
most of our attention will be confined to a particular special 
case of this system which lends itself to the most complete 
geometrical interpretation in terms of projections of geodes
ic motion, although a part of the analysis is applicable to the 
general system. For another approach which relates to the 
Lie algebraic structure underlying the Rosochatius system, 
see Ref. 26. 

Let I xP J,,u = O, ... ,n denote standard coordinates in 
Rn + I and I xP , Y p J the associated canonical coordinates on 
T *Rn + I. The configuration space of the system is the unit 
sphere sn E Rn + I and the phase space T*sn C T*Rn+ I, 
defined by 
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(1.1) 

The Hamiltonian for the Rosochatius system is 

1 n n u2 n 
H=- L Y~ + L -f-+€ L allx~, (1.2) 

2 1l=0 1l=0 xil 1l=0 

where the constants {ull , all J are arbitrary and for the gen
eric case distinct. The parameter € is introduced because we 
shall be concerned with the limit €-O (where the harmonic 
terms in the potential vanish). 

Another specialization is the Neumann oscillator prob
lem, 15,16 where only the harmonic terms are retained and all 
ull = O. As pointed out in Ref. 23, the €-O case (with 
~UIl = 0) corresponds to geodesic motion on Cp n under the 
standard Fubini-Study metric reduced by the maximal torus 
[U(IW in the isometry group SU(n + 1). More generally, as 
mentioned in Ref. 16 the system (1.2) may be obtained by 
reducing the Neumann oscillator problem on S 2n + 1 with all 
oscillator frequencies occurring in degenerate pairs by the 
product of 0(2) rotations in the planes of the degenerate fre
quencies. 

In the following section, these reductions will be ob
tained more explicitly and the flow for the restricted (€ = 0) 
case of system (1.2) will be obtained from the projection of 
geodesic flow on s2n + I (or RP 2n + I). In Sec. III, the flow 
will be reobtained in elliptic coordinates in two related ways, 
the first based upon the use of a known complete set of inte
grals, the second by separation of variables in the Hamilton
Jacobi equation. Although the flow is obtained thus in terms 
of hyperelliptic integrals, the geometrical significance of the 
underlying hyperelliptic curve is not yet apparent from this 
computation. The particular case € = 0 turns out to lower 
the genus of the curve from n to n - 1, giving rise to a singu
lar Abelian integral together with n - 1 regular ones. For 
this case the geometrical significance of the curve is given in 
Sec. IV in terms of the intersection of geodesics in RP 2n + I 

with confocal families of quadrics, and the dual description 
in terms of pencils of quadrics in RP 2n + I •. The fact that the 
flow involves linearization on an extended Jacobi variety 
such that the image under the regular part of the Abel map is 
constant while the singular part gives a linear time depen
dence is shown to follow from the Abel theorem and a reci
procity formula for singular Abelian integrals of the third 
type. Finally, in Sec. V, the flow for the € = 0 case is given 
explicitly in terms of Clebsch's generalized () functions, 
thereby establishing another relation with the elementary 
form of the projection of geodesic flow in terms of the am
bient T "'Rn + I coordinates. 

II. GEODESICS ON Sln + 1 AND SYMMETRY REDUCTION 

It will be convenient to identify S 2n + I as the unit 
sphere in Cn + I with complex Cartesian coordinates 
{ WIlJIl=o, ... ,n 

WIl=SIl+itll' (2.1) 
n 

s2n + I: L WIlWIl = 1. 
1l=0 

(2.2) 

Introducing canonical coordinates { WIl,PIl J on T"'Cn + I 
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. h . R h h T",s2n + I WIt Pil =YIl +IZIl,yll,ZIl E ,t e p ase space 
may be identified as the submanifold determined by the rela
tion (2.2) together with 

n 

L [Wilpil + Wllpll ] = o. 
1l=0 

Consider now the Neumann oscillator with Hamiltonian 
n n 

H =! L PIlPIl + € L al-' I WIl 1

2 
(2.3) 

1-'=0 1-'=0 

(i.e., such that each frequency is doubly degenerate between 
the real and imaginary parts of each complex axis). 

In general, the oscillator strengths all are otherwise dis
tinct, but we shall be particularly concerned with the case of 
free motion, i.e., where € vanishes. For this case, the flow is 
geodesic and given by 

WIl(t) = uf' cos wt + if sin wt, 

Pil (t) = - wI? sin wt + wiJ' cos wt, (2.4) 

where w = {uf' J and v = {if J define an orthonormal two
frame 

(2.5) 

Note that such geodesic flow may already be interpreted in 
terms of Weinstein-Marsden reduction in the following 
sense. The sphere may be identified as a symmetric space 
SO(2n + 2)1S0(2n + 1) with isometry group SO(2n + 2), 
such that the projection 

1T:SO(2n + 2)-+S2n+ I 

is a principal SO(2n + 1) fibration. Geodesic flow on 
SO(2n + 2) which is horizontal with respect to the canonical 
left-invariant connection projects to geodesic flow on S 2n + I. 

The natural lift of such horizontal flow to 
T "'SO(2n + 2) - TSO(2n + 2) (identified via the metric) rep
resents free Hamiltonian flow with zero-momentum map 
with respect to the right SO(2n + 1) action. The reduced 
phase space is just T '" S 2n + I and the reduced Hamiltonian 
the corresponding free Hamiltonian with projected flow 
(2.4). 

Returning to the general case with Hamiltonian (2.3), 
note that the maximal torus Tn + I C SO(2n + 2), represent
ed in complex coordinates by the diagonal SU(n + 1) matri
ces with action 

. i {{ wIlJ_{i.6 .. wll }, 
dIag{ e 4>"J: _ i4> 

{PI-' J-{ e "PI-' j, 
is a symmetry group, with momentum map 

cfJ:T",S2n+ I_t ~+ I' 

cfJ:{ WIl,PIl J-diag{ Wllpp - Wllpp Jp=O, ... ,n, 

(2.6) 

(2.7) 

where t ~ + I' the dual to the Lie algebra tn + I -R n + I, is 
represented by imaginary diagonal matrices. Applying the 
Marsden-Weinstein reduction procedure again, we pick a 
point 

U = diag{ 2.y'2iull JEt ~ + I' (2.8) 

with all ull distinct and nonzero. The reduced phase space 
cfJ -iI U)lT n + I may be identified locally with T '" S n embed
ded in T"'Rn+ I with canonical coordinates {xIl'YIl J by the 
relations 
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n 2 L XJ1- = 1, (2.9) 
J1-~O 

where 

xJ1-= ± IWJ1-I, YJ1- = Repw (2.10) 

More precisely, we must remove all the S n - 1 defined by 
intersecting the hyperplanes. The resulting manifold is dif
feomorphic to an open disk. The reduced Hamiltonian is 
precisely (1.2). Since H is invariant under these reflections, 
the system may equivalently be studied on the sphere S n 

(minus the n intersections with coordinate hyperplanes) 
without quotienting by the reflections. Moreover, since the 
potentials repel away from the coordinate hyperplanes, the 
motion is confined to the sectors of the sphere which these 
bound. 

For the case E = 0, the invariants associated with the 
geodesic flow (2.4) have values 

uJ1- = (1I2i..)2HWJ1-pJ1- - WJ1-PJ1-) = (wl..)2) Im{lifvJ1-1. 
(2.11) 

The corresponding projected flow for the special case of the 
Rosochatius system with E = ° is thus given by (2.10) in 
terms of the flow (2.4), where in view of the Tn + 1 quotient, 
the vector lif = WJ1-(O) may be taken as real. The ambiguity 
of the sign in (2.10) is resolved by continuity. The flow for the 
general system (2.3) may be explicitly given in terms of hy
perelliptic integrals, which we do in the following section, 
but in what follows we shall be particularly concerned with 
the geodesic case. 

III. ABELIAN INTEGRALS 

The flow for the Hamiltonian (1.2) will now be obtained 
by two related classical methods (a) through a complete set of 
commuting integrals, and (b) through separation of variables 
in the Hamilton-Jacobi equation. To treat the case where the 
harmonic oscillator forces vanish uniformly with the generic 
one we have introduced the parameter E. For the case E = 0, 
we shall understand {a J1-1 to be any distinct set of n + 1 real 
constants. 

A. Commuting integrals 

On T * S n, we introduce the following set of n + 1 Pois
son commuting functions (cf. Refs. 15 and 16): 

(3.1) 

where 

l!v=I!v + 2[(x!lx~)u~ + (x~/x!) u!], (3.2) 

IJ1-v = xJ1-Yv - x V YJ1-' (3.3) 

There are really only n independent functions, in view of the 
linear relation 

n 

L F~ = 2E. (3.4) 
J1-~O 

The Hamiltonian (1.2) may be expressed in terms of 
these quantities as 

(3.5) 
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and hence the quantitiesF; Poisson commute with H, form
ing a complete set of invariants. These invariants have a sim
ple group theoretical significance in the E = ° limit.23 Name
ly, they are the reductions under the Tn + 1 action discussed 
above of a maximal algebraically independent set of com
muting quadratic invariants in the enveloping algebra of the 
isometry algebra so(2n + 2). Such sets form strata under the 
action of SO(2n + 2) and the set {F~ 1 is the generic (open 
dense) stratum whose only symmetries consist of the finite 
group of reflections in all coordinate planes. 

To relate the invariants F~ with the basis of Refs. 23 
and 24 we introduce the rational function of complex param
eter A 

where 
n 

A (A )= II (A - aJ1-)' (3.7) 
J1-~O 

Ik = LSk~ 1 1~(3' (3.8) 
a,(3 

SfP = 1.- ~ a .. ·a , 1= O, ... ,n. (3.9) 
I , ~ J1-, J1-1 

. J1-,#"'#J1-1 
#a,p 

For E = 0, the F~ are thus linear combinations of I k , which 
are the invariants of Refs. 23 and 24. 

Now, introduce ellipsoidal coordinates on S" as the n 
zeros a i of the rational function 

i x! PIA) 
J1-~O A-aJ1- = A(A)' 

(3.10) 

where 

" P(A) = II (A - aJ (3.11) 
i~l 

Similarly, express the right-hand side of (3.6) as the quotient 
of two polynomials 

(3.12) 

where Q "(A ) in general is an nth-order invariant polynomial 
with leading term EA n, reducing therefore to an (n - 1)-or
derpolynomialin theE = ° limit. On T*sn, we have canoni
cal coordinates {aj> hi 1 where 

h
j 

= 1.-L xJ1-YJ1- . (3.13) 
2 J1- aj -aJ1-

To express the flow in ellipsoidal coordinates, introduce an
other invariant polynomial S "(A) of order (2n + 1) with 
leading term - 8EA 2n + 1 defined by 

(3.14) 

(3.15) 
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In order to verify (3.15) one evaluates (3.14) at A = a;. using 
the definitions (3.1) and (3.6) and the fact that the second 
term in (3.6) vanishes for A = a i • 

To obtain the flow differentiate the identity 
n x 2 

I I' =0 
1'=0 ai - al' 

along the flow lines 

n x"'y n ...u2 

2 I I' - I A' /li = 0 
I'=oai -al' 1'=0 (ai-al') 

(the dot denotes differentiation with respect to time). Thus, 
defining the polynomial W (A ) of degree 2n by 

n Xl'2 W(A) 
I A 2 21' 

I'=o( -al') A (/I.) 
(3.16) 

we have, using (3.15), 

ai = ,jS(ai ) [A (a;)lW(ai )]. (3.17) 

From the definitions (3.10) and (3.16), we have 

W (A ) _ d (P (A ) ) 
A 2(A ) - - dA A (A ) 

and hence 

W(a;)lA (ai ) = -P'(aJ 

Therefore (3.17) reduces to the Abelian differential system 

. ,jS(ai ) 
a i = -. (3.18) 

IIj,6i(ai - aj ) 

Using a standard transformation, this may be expressed 
in the equivalent form 

i a/-jai ={-1, if )=1, (3.19) 
i= I ,jSE(ai ) 0, if 2<j<n, 

or, in terms of Abelian integrals 
n 10 .1') n 10 .1') An -j dA I il;=I 

i= I a"O) i= I a,10) ~SE(A ) 

{ 
- t, if) = 1, 

= 0, if 2<j<n, 

on the hyperelliptic curve X E defined by 

Z2 = SE(A). 

(3.20) 

(3.21) 

The above procedure amounts to an application of the 
Liouville theorem, reducing a Hamiltonian system to qua
dratures, given a complete set of integrals of motion. Name
ly, (3.15) expresses [bi J in terms of [a i J and the set of con
served quantities defining the coefficients of the invariant 
polynomial Q E (A ). The latter provide the action variables 
and the flow becomes linear in terms of the corresponding 
angle variables defined by differentiating the generating 
function G obtained from integrating the canonical form 

G= I fbi dai=~ Ifa; ~S(A) dA 
i 4 i A(A) 

with respect to these coefficients. 
Note that if e#O, the genus of the curveX E isg = nand 

hence the Abelian integrals in (3.20) are all regular, while in 
the limit e = 0, the polynomial S E(A ) drops to degree 2n, and 
hence the genus is g = n - 1 and the) = 0 case becomes a 
singular Abelian integral of third type with poles of first 
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order at A = 00, on each sheet of X. This is the case corre
sponding to the projection of geodesic flow on S 2n + I and 
will be examined from a more geometrical viewpoint in Sec. 
IV. 

B. Hamilton-Jacobi equation 

We shall now briefly summarize how the flow given 
above in terms of Abelian integrals may be deduced by sepa
ration of variables in the Hamilton-Jacobi equation. The 
main interest is to relate the separation constants in the pres
ent procedure to the integrals of motion given above. 

To express the Hamiltonian (1.2) in elliptic coordinates, 
we use the relation 

x~ = P(al')IA '(al')' (3.22) 
following from (3.10) by evaluation of residues. The potential 
energy terms in H may then be expressed in ellipsoidal co
ordinates as 

(3.23) 

i u! = i u2 _ i R (a i ) 

1'=0 x~ 1'=0 I' i= I A (ai)P'(a i) ' 

where R (A ) is a polynomial of degree 2n defined by 

n u! R (A) I 2 2 • 
1'=0 (A - al') A (A) 

(3.24) 

The coordinate change involved in (3.23) is most easily com
puted using the standard trick l5 of converting sums over 
poles to contour integrals evaluated at 00. 

Making the appropriate transformation for the kinetic 
energy term, the Hamiltonian (1.2) expressed in ellipsoidal 
coordinates is 

~ A (a i ) 2 ~ R(a i ) 
H=-2£,.--b. -£,. 

i= I r(ai) , i= I A (a;)r(ai ) 

n a.n n 

- e I -,' - + I [U~ + WI' ] . (3.25) 
i= I P (ai ) 1'=0 

Using the Jacobi method described in Ref. 15 we introduce a 
polynomial 

QE(A )=eA n + PIA n-I + ... + Pn , (3.26) 

where, in terms of the energy E, PI is defined to be 
n 

PI = E - I [u~ + eal' ] (3.27) 
1'=0 

and the other [ Pi J i = 2, ... ,n are arbitrary separation constants. 
Putting 

n n a.n n QE(a.) 
E- I (u! +eal')+eI -,' -= I -,-'-, 

1'=0 i= I P (ai ) i= I P (ai ) 

we obtain the Hamilton-Jacobi equation 

(3.28) 

in the form 

~ [2A (a;) (JG)2 R (ai ) QE(a;) ] 
£,. -- - + +-- =0. 
i= I r(ai) Jai A (ai)P'(a;) r(ai) 

(3.29) 
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This admits the separated complete solution 
n 

G(al,···,an) = L Sj(a;), (3.30) 
;=1 

where 

Sj(a;) = VSE(A) dA [
'1t)~ 

a,10) 4A (A) 
(3.31) 

and 

(3.32) 

Treating P j as the new momenta (action variables), the flow 
in terms of the canonically conjugate Qj (angle variables) is 

aG La
'1 t

) An -j dA 
Q.=-= -L 

J aPj j a,W) ~S E(A ) 

{
t, if j = 1, 

= 0, if n>j> 1. 
(3.33) 

To complete the correspondence with the flow deduced 
above in terms of the commuting invariants F;, we must 
identify the separation constants as functions on phase 
space, and hence relate the polynomials S E(A ) and S E(A ). 

Lemma: The polynomials S E(A ) and S E(A ) are identical 
and hence, for the particular case E = 0 the separation con
stants P j are related to the integrals of motion (3.8) by 

Pk =!( - l)k+ Ilk' (3.34) 

Proo!' From (3.31), it follows that along the flow, 

b~=(aS)2 = S(~j) . (3.35) 
aaj 16A (a;) 

But, by Eq. (3.15), we have 

SE(a j ) = SEra;). (3.36) 

However, in view ofEq. (3.32), and the corresponding rela
tion 

(3.37) 

following from (3.14) and (3.24), we conclude that the two 
nth-degree polynomials Q E(A ) and Q E(A ) are equal at the n 
distinct points A = a j • Since they also have the same leading 
term EA n, they are identically equal, and hence so are SE(A ) 
andSE(A ). 

In the following sections, we shall only be concerned 
with the case E = 0 and denote the polynomial S orA ) hence
forthS(A ). 

IV. GEODESICS AND THE GEOMETRY OF QUADRICS 

We have obtained a linearization ofthe system (1.2) on 
the reduced phase space in terms of Abelian integrals, i.e., 
integrals of holomorphic differentials over the algebraic 
curveXE = [r = SE(A )}, whereSE(A) is of degree 2n + 1 if 
Ei=O. As noted above, for the case E = 0, which we concen
trate on from here on, the polynomial S orA )==5 (A) is 
of degree 2n and the genus of the curve X ==X 0 drops to 
g = n - 1. For this case, the differential 110=11 g in (3.20) 
becomes singular, having simple poles at the points ( 00 I' 00 2) 

on X over A = 00. It follows from the definition (3.14), or 
equivalently (3.32), that S (A ) has leading term - 4ru2 A 2n , 

where m is the frequency of the geodesic motion (2.4), and 
hence the residues of 110 at ( 00 I' 00 2) are ± il2m. 
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We now turn to showing how the curve X arises natu
rally in relation to geodesic flow on RP 2n + I = S 2n + 1/1..2, 

i.e., on the unreduced system. (The distinction between 
RP 2n + I and S 2n + I is irrelevant, in view of the Tn + I quo
tienting.) 

Invariantly, the map 
n ,,1t ) 

(Ao, A): [a j }~j~1 JaAO) (110' 0), (4.1) 

0= (11 1,. .. ,l1g), A = (AI, ... ,Ag) is a map from sg+ IX, the 
(g + 1 )th symmetric power of X, into an extended Jacobian 
J = c g + I I !.l', where !.l' is a lattice isomorphic to 1..

2g + I; the 
integrals are defined modulo the 2g cycles of the curve and 
the residues of 110 , The extended Jacobian J is thus related to 
the standard Jacobian by projection onto the last g coordi
nates 

o-C/(il2m)~J~J~. 
Under this projection, we see from (3.20) that the flow is 
mapped to a single point: A(aj(()) = A(aj(O)). By Abel's 
theorem,27 this implies that there exists a meromorphic 
function on X with zeros [a j (()} and poles [aj(O)}. The flow 
is thus a flow of meromorphic functions. Furthermore, we 
shall see that it is of the form k - cot(m( ), where k is a fixed 
function on X and therefore the flow takes place in a one-
dimensional linear system. It is the pair (X, k ) that we must 
obtain in terms of geodesics. 

In view of the Tn + I quotienting, we may limit our
selves to the geodesic flow lines in (2.4) with uI' real. Inter
preting (s'"', (I') as homogeneous coordinates, one can rewrite 
(2.4) as 

s'"'=Kbl'+eIl, (I'=dl', (4.2) 

where 

K = cot (m( ), 

uI'=b 1', if=eIl + id 1'. 

(4.3) 

(4.4) 

The geodesic is the projective line spanned by 
[(bl" 0), (el" dl')}' The elliptic coordinates ofthe image un
derreduction by Tn + 1 of(s'"', (1') are the values orA such that 

~ s'"'2 + (1'2 __ O. 
£.. (4.5) 

1'=0 A-ap. 
The family of confocal quadrics defined by (4.5) will be 

denoted [Q,,), A E C. (From now on, we complexify our 
problem by letting all parameters take values in C.) Now 
choose a specific geodesic. This is equivalent to choosing 
initial values and ul' in the reduced problem. One has two 
families: the family of points h in the geodesic, and the fam
ily Q" of quadrics. Consider the set 

[(k, A ) E cp I X Cp IlPk E Q" }. 

Putting (4.2) and (4.5) together, one has 

O=k zf ± ~2 )+2k( ± b~eIl) 
~=o A ap. \p=o A ap. 

+ ( ± eIl
2 

+ d 1'2) 
~=o A -ap. 

=k2 R2(A) + 2k RI(A) + Ro(A ). 
A(A) A(A) A(A) 
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Comparison with (3.14), using ufJ. = - (w/{l)bfJ.dfJ., 
xfJ.(O) =bfJ.,yfJ.(O) =wd', shows that this is precisely the 
curve X, (z2 = S (A )) with the identification 

S(A) = 4w2 [R i - RoR2] (4.8) 

and the change of variable 

z=2w[kR 2(A) + RdA)]. (4.9) 

Now k is a function on the curve X and (4.9) gives it in 
terms of z and A. 

A particular value K of k corresponds to a particular 
point P on the geodesic. The A coordinates of the point on X 
where k takes the value K are just the elliptic coordinates of P 
by (4.5). Thus, the values {aj(t) J of A at the zeros of k cot(wt) 
give the flow in elliptic coordinates. Also, from (4.9), the 
poles of k are at the zeros of R 2, and so the values of A at these 
poles are aj (0). Thus k is precisely the k we were looking for, 
and the flow of functions isf, = k - cot(wt). 

We now obtain the linearization in terms of Abelian 
integrals, using k. As noted before, the constancy of the lastg 
integrals in (3.20) follows from Abel's theorem. There re
mains the evaluation of the first integral. This may be done 
using the following reciprocity formula. 

Proposition: Let aj> bj be a set of representative cycles 
for a basis of HI(X, Z) with a j • aj = 0, 
aj • bj = Djj , bj • bj = 0, i,j = 1, ... ,g. 

Letfbe a function on X with poles at qj and zeros at 
Pi' i = 1, ... ,d, and n be an Abelian differential with simple 
poles at 00 I' 00 2 with residues y, - y. Setting I ad (logf) 

J 

= 21Tinj , I bi (logf) = 21Timj (n j' mj E Z), I ap = n j, 
Ib

j
n = n J, one has 

itl rin = jtln jm j - n Jmj 

+ y(logf( 00 J! - logf( 00 2))' (4.10) 

Proof: The proof is the same as that of the Weil relation 
for meromorphic functions (see, e.g., Ref. 28), with n substi
tuted for an exact differential d (log g). 

We now apply this formula to /, = k - cot(wt), and 
n = no' One notes that, by continuity, ni and mj are con
stants, and so 

~ La",) nil (k (00 J! - cot(wt)) 
~ ~~o = - og = - t, 

i = I a,{O) 2w k ( 00 2) - cot(wt) 
(4.11) 

since k ( 00 I), k ( 00 2) = ± i. This completes the correspon
dence between geodesic flow (2.4) and the solution (3.20) in 
terms of Abelian integrals. 

The geometry of the situation is best exhibited by going 
to the dual space (cp 2

n + 1)*, as in Ref. 29. Denoting points in 
(CP 2n + 1)* by dual coordinates (sfJ.' tfJ.) the object which is 
dual to the confocal family of quadrics {Q" J is the pencil of 
quadrics {Q l' J defined by the relations 

n 

L (A - afJ.)(s~ + t~) = O. (4.12) 
fJ.=0 

The duality correspondence may be summarized as in Table 
I. 

We have thus obtained two pencils, the pencil pt of 
hyperplanes through /* and the pencil Q l' of quadrics. The 
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TABLE I. The duality correspondence. 

The pointp = (.I", t") <-+ 

The line' spanned by <-+ 

(b ", 0) (e", d ") 

pEl <-+ 

p = (kb" + e", d") 

The hyperplanes 

!(s", t,')I.I"s" + t"t" = 0 1 
The (2n - 1) plane '* 
{(s", t")lb"s,, = 0, e"s" + d"t" = 01 '* c p* 
p* is the hyperplane 
pt = {(s,,, t,,)I(kb" + e")s" + d"t" 
= 0 1 in the pencil of hyperplanes through ,* 

The confocal family Q,t <-+ 

pEQ,t +-> 

The pencil Q l' 
p* tangent to Q l' 

curve X, after dualizing, is just the set 

{ (k, A ) E Cp I X Cp I [Pt is tangent to Q f J . 

The above exhibits X as an invariant ofthe flow; this can 
also be seen in a way that is more natural to an algebraic 
geometer. Nondegenerate pencils of quadrics Q l' on p2n - I 

are classified by an associated hyperelliptic curve, of genus 
(n - 1), whose branch points Ai over PI(a) are given by the 
condition that Q f, be singular. 29,30 In our case, if we restrict 

Q f to our (2n - 1) space /* that gives the flow, one obtains 
the curve X. 

Remark: The phase space of the projected system is 
foliated locally by the real parts of the extended Jacobian J; 
equivalently, the space of flows (lines in c,p2n + I, after com
plexification) is foliated by standard Jacobians J. There re
mains the question of determining how J (X) parametrizes the 
set I (x) of lines that correspond to a given curve X, up to a 
finite multiplicity. 

For each '* corresponding to X, choose an isomorphism 
tff:/ * -Cp 2n - I so that Q! is mapped to some standard 
pencil Q f; this is well defined modulo a finite number of 
choices and, locally, can be done continuously. 

One has on (CP 2n + I)* the (n+l) quadrics 
s~ + t ~ = 0, giving pairs of hyperplanes H ~, H ~. The pen
cil Q f is built up from these quadrics. Their complete inter
section is a union of r + I n-dimensional planes 
PJ = n; =oH;(i), whereJ:{O, ... ,n J-{O, 1 J. These planes, re
stricted to /*, give (n - 2)-dimensional planes on the inter
section ofthe Q f, restricted to /*. One then uses the tff to get 
an (n - 2) plane on the intersection of the Q f. However, the 
space of these, by results in Refs. 29-31, is precisely J (X). 
Thus choosing one PJ , for example, P = n; = oH ~, one ob
tains a map rp:I (X )-J (X). 

Conversely, given a Cp 2n - I with a pencil Q l' on it 
whose invariant is X, choosing an (n - 2)-dimensional plane 
on the intersection of the Q 1"s and calling it P, and using 
again results in Refs. 29-31, one can recreate the other P J 's, 
and so the H ~, H ~ . One can then embed p2n - l_p2n + I in a 
unique way such that Q f = Q l' Ipln _ I and the P/s corre
spond to those given above. This means that the map rp is 
invertible. 

V. B FUNCTIONS 

The inversion of the extended Abel map was studied by 
Clebsch,32 using a generalized (J function e. We sketch this 
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theory and its application to geodesic flow and see how e 
reduces to exponentials. 

First, renormalize the differentials (no, n i ) so that the 
aj periods of (no, n i ) are (0, {jij) and the residues of no at 00 I' 

00 2 are ± 1. Also, redefine the Abel map so that if 

p = (PI'''''Pg + I), 

(Ao(p), A(p)) = gil (i1" no, i1'l n), 
1=1 Po Po 

where n = (nl, ... ,ng ); that is, we are taking the integrals 
from a fixed point instead of ai(O). With these conventions, 
the flow becomes 

(Ao(p(t )), A(p(t))) = (co + iwt, c), (5.1) 

where co, c = (cl, ... ,cg ) are constants. 
We also define the Abel map for individual points q EX 

(5.2) 

Now define the function e for J in terms of the normal (J 

function for J, 
- z0l2 zof2 
(J (zo, z) = (J (z - vIe - + (J (z + v)e, (5.3) 

where z = (zl, ... ,zg), v = (v1, ... ,Vg ), Vi = !S:~ni' Just as (J 

can be used to invert the standard Abel maps A , e can be used 
to invert our extended map (Ao, A). 

_ ~ore speci~ally, if q EX,koE C, k E cg, set Fko.k(q) 
= (J (Ao(q) - ko, A (q) - k); then one has, in complete ana

logy with standard (J functions, the following. 
Lemma 5.1 (Refs. 32 and 33): If Fko.k(P)=!O, then 

Fko. kip) has (g + 1) zeros on X. 
Theorem 5.1 (Refs. 32 and 33): There exist 

ko E C, k E cg such that for Ao E C, A E cg generic, if 
Pi' i = l, ... ,g + 1 are the zeros of F, + k A + kip) then 

A A - ~ 
l:f,! l(Ao(Pi)' A(Pi)) = (Ao, A). 

Thus, one can invert (Ao, A): the inverse image of Ao, A is 
the zero set of FAo + ko. A + k on X. 

We now solve for the flow (5.1) in terms of the coordi
nates xp , and show how one can reobtain (2.4). First, the 
inversion of the Abel map gives pointsPi(t) on X and under 
the two-sheeted projection 1T:X-+PI (e), one has 1T(pi(t)) 
= ai(t). However, the ai(t) are the zeros of the function 

g+1 x 2 (t) 
g I(A ) = (A - ao) L p (5.4) 

p=O (A -ap ) 

on PI (e). Pulling back g I to function h I on X, h I has zeros 
(Pi(t), 7{pi(t))}, where r is the hyperelliptic involution, and 
poles at the (2g + 2) points (fJ p' Tij3 p )} that are the inverse 
image under 1T of [ap , J.l = 1, ... ,g + I}. 

Note now that if p = (PI, ... ,pg + I ) are points on X, then 
[Ao(r(p)), A (T(p))] = (To, T) - (Ao(p), A(p)), where (To, T) are 
constants. Using this, one can recreate h I from e, up to con
stants 

h I(q) = FCo+iWI+ ko.c+k(q)F -co-iwl+ To+ko. -c+ T+k(q) , 

F Yo + ko. l' + k (q) F - Yo + To + ko. - l' + T + k (q) 
(5.5) 

IA A 

where (Yo, y) = l:!!, I (Aol/1p), Al/1p )). 
To see this, one verifies that Theorem 5.1 implies that 

the right-hand side of (5.5) has the same zeros and poles as 
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hI' The fact that it is a well-defined function on X, indepen
dent of the paths of integration in the definition of (Ao, A) 
follows from the periodicity relations for e. 

By evaluating residues at the fJ p' and separating out the 
t dependence, which enters only through the exponentials in 
(5.3), one has 

x!(t) = epe-2iWI +fp +gpe2iwt, (5.6) 

where e p' f p' gp are constants. The reality of the coefficients 

of the function g implies gl(l) = gl(A ); and so 
el' = gl'./I' =71" The resulting flow is identical to that ob
tained in (2.4), with suitable identification of the constants. 

VI. CONCLUSIONS 

The main result of this paper is a clarification of the 
relation between different methods of integrating a specific 
Hamiltonian system. The simplest method, when applicable, 
is that of the projection of geodesic flow from an appropriate 
larger space. The Rosochatius system, studied in this paper, 
is obtained by such a projection only if E = 0 in (1.2). The 
alternative methods, making explicit use of the known sys
tem of integrals of motion, are more general and have been 
applied for E arbitrary. 

The "free" Rosochatius system (E = 0) could of course 
be solved by separation of variables in any system of coordi
nates which allows separation of the free Hamilton-Jacobi 
equation on Sn (see Ref. 23), e.g., in spherical coordinates. 

The methods of this article can be directly applied to 
other systems. The system (1.2) with E = 0 (and l:up = 0) 
was obtained from the free system on CP" -SU(n + l)/U(n) 
by quotienting by the maximal torus.23 Spaces with noncom
pact groups of isometries yield much richer results. Thus, 
starting from the Hermitian hyperbolic space 
HH(n)-SU(n, l)/U(n) we can quotient by anyone of the 
many different mutually inequivalent maximal Abelian sub
groups of SU(n, 1). Different subgroups will give different 
integrable systems,22 all of them integrable by the group pro
jection method (as well as the other methods of this paper). 

As we have seen, the relationship in the E = 0 case 
between reduction of geodesic flow and linearization on a 
Jacobi variety is somewhat trivial because all the time depen
dence is contained in the singular component of the extended 
Abel map. It would be of great interest to obtain such a 
relationship for the case of regular maps. Of perhaps even 
greater interest would be the extension of these consider
ations to the case of infinite-dimensional symmetry algebras 
of the Kac-Moody variety. 

ACKNOWLEDGMENTS 

The authors thank P. van Moerbeke for helpful discus
sions. 

This research was supported in part by the Natural Sci
ences and Engineering Research Council of Canada and the 
Fonds FCAC pour l'aide et Ie soutien a la rechereche du 
Gouvernement du Quebec. 

1M. A. Olshanetsky and A. M. Pereiomov, Phys. Rev. 71, 313 (1981). 
2p. Calogero, "Integrable dynamical systems and related mathematical re
sults, in Lecture Notes in Physics, Vol. 189, edited by K. B. Wolf(Springer, 
New York, 1982), pp. 47-96. 

Gagnon et al. 1611 



                                                                                                                                    

3M. Adler, J. Math. Phys. 20, 60 (1979). 
4D. Kazhdan, B. Kostant, and S. Sternberg, Commun. Pure Appl. Math. 
31,481 (1978). 

sJ. Marsden and A. Wienstein, Rep. Math. Phys. 5, 121 (1974). 
6M. Adler, Invent. Math. 50, 219 (1979). 
7M. Adler and P. van Moerbeke, Adv. Math. 38, 267 (1980); 38,318 (1980). 
8B. Kostant, Adv. Math. 34,105 (1979). 
~. W. Symes, Physica D 1,339 (1980). 
lOA. G. Reyman and M. Semenov-Tian-Shansky, Invent. Math. 54, 81 

(1979); 63,423 (1981). 
"I. M. Krichever, Usp. Mat. Nauk 32, 183 (1977) [Russ. Math. Surv. 32, 

185 (1977)). 
121. M. Krichever and S. P. Novikov, Usp. Mat. Nauk 35,47 (1980) [Russ. 

Math. Surv. 35, 53 (1980)). 
I3B. A. Dubrovin, Usp. Mat. Nauk 36, 11 (1981) [Russ. Math. Surv. 36, 11 

(1981)). 
14H. P. McKean, "Integrable systems and algebraic curves," in Global 

Analysis, Lecture Notes in Mathematics, Vol. 755, edited by M. Grmela 
and J. E. Marsden (Springer, New York, 1979), pp. 83-200. 

ISJ. Moser, "Various Aspects ofIntegrable Hamiltonian Systems," in Dyna
mical Systems, CIME Lectures, Bressanone, Italy, June 1978; Progress in 
Mathematics, Vol. 8 (Birkhauser, Boston, 1980). 

16J. Moser, "Geometry of quadrics and spectral theory," in The Chern Sym
posium, 1979, edited by W. Y. Hsiang, S. Kobayashi, I. M. Singer, A. 
Weinstein, J. Wolf, and H. H. Wu (Springer, New York, 1980). 

17p. Winternitz and I. Fris, Yad. Fiz. 1,889 (1965) [SOy. J. Nucl. Phys. 1, 
636 (1965)). 

1612 J. Math. Phys., Vol. 26, No.7, July 1985 

18W. Miller, Jr., Symmetry and the Seporation of Variables (Addison-Wes-
ley, Reading, MA, 1977). 

I~. Miller, Jr., J. Patera, and P. Winternitz, J. Math. Phys. 22, 251 (1981). 
2~. G. Kalnins and W. Miller, Jr., SIAM J. Math. Anal. 11, 1011 (1980). 
21E. G. Kalnins and W. Miller, Jr., SIAM J. Math. Anal. 12, 617 (1981). 
22C. P. Boyer, E. G. Kalnins, and P. Winternitz, J. Math. Phys. 24, 2022 

(1982). 
23C. P. Boyer, E. G. Kalnins, and P. Winternitz, SIAM J. Math. Anal. 16, 

93 (1985). 
24E. G. Kalnins and W. Miller, Jr., "Separation of variables on n-dimen

sional Riemannian manifolds: 1. The n-sphere S. and Euclidean n-space 
R. ," research report No. 102, Waikato, New Zealand, 1982. 

2sE. Rosochatius, Dissertation, Gotiingen, Gebr. Unger, Berlin, 1877. 
2'7. Ratiu, "The Lie algebraic interpretation of the complete integrability of 

the Rosochatius system," in Mathematical Methods in Hydrodynamics 
and Integrability in Dynamical Systems,AIP Conference Proceedings, Vol. 
88 (AlP, New York, 1982). 

27C. L. Siegel, Topics in Complex Function Theory (Wiley, New York, 1971), 
Vol. 2. 

2.p. Griffiths and J. Harris, Principles of Algebraic Geometry (Wiley, New 
York, 1978). 

29H. Knorrer, Invent. Math. 59, 119 (1980). 
30M. Reid, Ph. D.thesis, Cambridge University, Great Britain, 1972. 
31R. Donagi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7, 217 (1980). 
32A. Clebsch, Ler;ons sur la Geometrie (Gauthier-Villars, Paris, 1883), Vol. 

3. 
33L. Gagnon, M.Sc. thesis, Universite de Montreal, 1984. 

Gagnon et al. 1612 



                                                                                                                                    

Classes of potentials of time-dependent central force fields which possess 
first integrals quadratic in the momenta 
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The general form for the potential of a time-dependent central force which possesses an energy like 
first integral is determined. In two special cases additional first integrals (apart from the angular 
momentum) are found. These enable the orbit equation to be determined without further 
quadrature. The Schrodinger equation is solved fully in these cases. 

I. INTRODUCTION 

Interest in dynamical systems for which a first integral 
exists is a continuing fact. One source of impetus for the 
study of first integrals is the study of fusion processes. The 
particle distribution function is a solution of the Vlasov
Poisson equations in one dimension and the Vlasov-Max
well equations in three dimensions. Since the Vlasov equa
tion has the same form as the Liouville equation in Hamil
tonian mechanics it follows that the distribution function is a 
function of the first integrals of the dynamical system. There 
is an aesthetic pleasure in solving a problem such as deter
mining the first integrals of a dynamical system. The practi
cal problem of developing a theoretical fusion model to pro
vide a guide for experiment adds utility to the pleasure. 

The attention given to one-dimensional systems in re
cent years l

-
7 has established that the Hamiltonian 

H =.l p2 _.l P (q _ a)2 _ aq +.l u(q - a) 
2 2 P p2 P 

(Ll) 

has the first integral 

1= Hp(P - a) - p(q - aW + U((q - a)lp). (1.2) 

Thefunctionsp(t ),a(t ),and U(S' ) are arbitrary. The first 
integral above is quadratic in the momentum. The question 
has been asked2(c),3,5 whether an invariant which is not qua
dratic in the momentum will exist for an interesting potential 
as the potential above has not been of much use in fusion 
applications.8 A first integral linear in the momentum oc
curs only when the potential is quadratic.2(b) For a posited 
polynomial integral of degree greater than 2 it is not possible 
to solve the problem in closed form, 2(b),5 and there has been 
specUlation that the permissible potential will be contained 
in that above.5 The situation is different in the case of one 
posited nonpolynomial integral. For 

H=.lp2_.l P (q_a)2 
2 2 P 

- a(q - a) - &log(q - a) _.l cr , (1.3) 
2 (q _a)2 

there exists the first integral 

1= T - [(q - a)lp]l[p(p - a) -p(q - a) - O"p/(q - all, 
(1.4) 

where pIt ), a(t), and O"(t) are arbitrary functions of time and 
T = S p-2 dt [see Refs. 2(c), 3, and 9]. 

While the problem of finding the most general potential 
for one-dimensional particle motion for which an explicit 
first integral can be written down cannot yet be said to be 
solved completely, the realities of three-dimensional space 
have turned attention to determining first integrals and the 
corresponding class(es) of permissible potentials for the Ha
miltonian 3,10-12 

(1.5) 
One of the interesting features of many-dimensional 

systems is the opportunity for a proliferation of first inte
grals. The two great classical systems, the harmonic oscilla
tor and the Kepler problem, possess a sufficient number of 
first integrals to enable the orbit equation to be derived with
out painful integration. In the case of the oscillator, be it 
time-independent13 or time-dependent,14 the angular mo
mentum and a matrix with elements 

Aij = qiqj + PiPj (1.6) 

(in the case H = ! p2 + ! q2) are conserved quantities. For 
the Kepler problem the conserved quantities are the energy, 
angular momentum, and the Laplace-Runge-Lenz vector. 
In two recent papers Katzin and Levinell ,12 have extended 
the existence of the same number of first integrals to the 
time-dependent Kepler problem with Hamiltonian 

H = !p2 - /-Lo/(at + /3)r (1.7) 

and also to the as yet nameless system 

H =! p2 -! UrlU - /-LoIUr, (1.8) 

where /-Lo,a,/3 are constants, U is an arbitrary function of 
time, and r = Iql. 

In the various papers cited above there are gaps. In 
Refs. 3 and 10 the generalization of ( 1.1 ) and ( 1.2) to three (or 
many) dimensions is obtained, but there is no indication of 
the special cases which give more first integrals as are found 
in Refs. 11 and 12. However, Ref. 11 fails to obtain all of the 
first integrals in one process. The purpose of this note is to fill 
in these gaps and to provide a unified treatment of the central 
force system described by the Hamiltonian 

H =! p2 + VIr, t) (1.9) 

as far as determining all first integrals which are quadratic in 
the momentum. In addition we shall provide a simple expla
nation of the results and provide the solution of the corre
sponding quantum mechanical problem. The orbit equation 
will be obtained for one class of potentials. 
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II. THE CHOICE OF METHOD 

The first question which arises in this. What method 
will be used to determine the first integrals? The direct meth
od has been used in Refs. 10 and 11 for multidimensional 
systems and Noether's theorem with point transformations 
in Ref. 11. 

The method which we choose to use here is the version 
of Noether's theorem which guarantees completeness, i.e., 
there is a one-to-one correspondence betwen first integrals 
and equivalence classes of symmetries for a given Lagran
gian. For a full discussion we refer the reader to the masterly 
review of Noether's theorem by Sarlet and Cantrijn. 15 We 
summarize the relevant results. If an infinitesimal transfor
mation 

t = t + E5 (t, q, 4), qi = qi + er/(t, q, 4) 
leaves the action integral 

A = I'2L (t, q(t ), 4(t ))dt, 
" 

(2.1) 

(2.2) 

in which the Lagrangian L is assumed regular, invariant up 
to gauge terms, then there exists a constant of the motion 
given by 

[ 
aL· .] I(t, q, 4) =/(t, q, 4) - L5 + ai/(1]' - q'5) . (2.3) 

(The method of calculating 5, 1]i, and/is found at the begin
ning of the Appendix.) The way the theorem has been stated, 
the existence ofa Noether symmetry implies the existence of 
the first integral I. However, Sarlet and Cantrijn (See Ref. 
15, Lemma 6.2) have shown that, if I is an arbitrary constant 
of the motion of the Euler-Lagrange equations derived from 
(2.2), then all symmetries corresponding to I are determined 
by 

i _ 'iE:-_g"jaI 
1] q~ - ai/' (2.4) 

where gij is defined by 

iPL 'k _ 8k 

ai/ai/ g' - i (2.5) 

(hence the necessity for L to be regular). Furthermore (see 
Ref. 15, p. 487) the choice of the time component 5 is com
pletely free and we are at liberty to set 5 = 0 so that (2.4) 
becomes 

. .. aI 
1]'= -g')-.. 

ai/ 
(2.6) 

In summary, provided we permit velocity-dependent 
infinitesimal transformations, Noether's theorem provides a 
one-to-one correspondence between the existence of a 
Noether symmetry and the existence of a first integral. 

We recall that we are looking for first integrals quadrat
ic in the momenta [which for H (1.9) are equivalent to the 
velocities]. The Lagrangian corresponding to H (1.9) is 

L=!f2- V(r,t), (2.7) 

which is regular, andgik is independent of the velocity com
ponents. From (2.6) the choice of the nature of the velocity 
dependence of the first integral, viz., quadratic, means that 
r/ is linear in the velocity components. (This is an example of 
the systematic approach proposed by Kobussen. 16

) Since L 
(2.7) satisfies the requirements of Noether's theorem as stat
ed above, if we find all r/ linear in the velocities and the 
corresponding/'s which satisfy Eqs. (A 1) and (A2), then (2.3) 
will provide all first integrals of L which are quadratic in the 
velocities. 

Before commencing the calculations we may simplify 
them by making use of the radial symmetry of the potential 
V(r, t). A priori we know that the an~ular momentum I is a 
first integral. In particular the vector I is constant and so the 
motion is in a plane. We choose coordinates (r, (J) and origin 
such that the origin lies in this plane and (J is the angular 
displacement in the plane. This reduces the number of func
tions 1]i to two, thereby making (AI) and (A2) more manage
able. With this choice of coordinates we define 

1]1 = ar + be + c, 1]2 = ur + ve + w, (2.8) 

where the functions a,b,c,u,v,w are functions for r,(J, and t 
only, 1]1 corresponds to r-r, and 1]2 corresponds to (J-O. 

III. CLASSES OF FIRST INTEGRALS AND THE 
CORRESPONDING POTENTIALS 

The determination of the functions 1] I, 1]2, and / is, as 
usual in multidimensional problems, a lengthy and compli
cated task (cf. Ref. 10). There are 12 first-order linear partial 
differential equations to be solved. The details are found in 
the Appendix. We distinguish three classes of potential. 

Class I: V(r, t) =! A (t Jr. Substituting for 1]1,1]2, and/ 
into (2.3) we obtain the first integral 

- I = ~ (t/J; - ¢r)2 + ~ t/J 2re 2 + ~ (K5r /t/J 2) + sin 2(J {! (r; - i-r)2 - ! rre 2 + ! (K3r /r) I + cos 2(J (rt - -Tr)ne 

- sin 2(J (t; - tr)tre + cos 2(J {! (tr - ;rf - ! t 2re 2 + ! (K4r / t 2) J + {sin (J (8r - tSr) + cos (J8re J re 

+ { - sin (JEre + cos (J (Er - Er) J re + sin (J (o-r - O'r) - O're cos () + sin (Jpre + cos (J ipr - prj 

+K1(re)2-Kzre, (3.1) 

where, if X (t) is a solution of the so-called auxiliary equa
tion17 

(3.2) 

and 

T= j'x-2(t ' )dt ', (3.3) 
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I 
then 

8 =AIXsin T+BIXcOS T, 

E =AU' sin T + BU' cos T, 

0' = A3X sin T + B3X' cos T, 

P = A4X sin T + B4X cos T, 

P. G. L. Leach 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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r = K ~/2X2(A5 sin2 T + Bs cos2 T + 2C5 sin T cos T), 
(3.8) 

t 2 = K !l2r (A6 sin2 T + B6 cos2 T + 2C6 sin T cos T), 
(3.9) 

and the constants are arbitrary subject to the constraints 

(3.10) 

The expressions associated with (J, 1',t,8,E,u,p,K I' and K2 are 
each first integrals. The conserved angular momentum is 
readily identified. The integral containing (J is an energylike 
expression. The integrals involving l' and t resemble those 
found for the oscillator in Cartesian coordinates. IS The lin
ear expressions containing 8,E,U, and p are essentially the 
initial conditions and are independent (or, more strictly, are 
a combination of four linearly independent first integrals). 
The fact that any two of(3.4)-(3.7) and any two of the corre
sponding integrals in (3.1) are independent means that we do 
in fact have four independent integrals. Furthermore, 
neither l' nor t need be the same as X (up to a constant multi
plier). This is a feature which has not been so evident in other 
studies of this nature. 

Case n· VIr, t) = ~ ¢rl(J - J.lol(Jr. The first integral 
corresponding to this potential is given by 

+ rHJ(J sin B - y3iJ;P sin B - J.lo cos B} 

(3.11) 

Four independent first integrals occur. The conserved angu
lar momentum is obvious. The expression without a con
stant multiplier is an energylike first integral. If we denote 
the angular momentum by I, the coefficients of K7 and Ks 
may be combined to give the conserved vector 

(3.12) 

which accords with the result of Katzin and Levine. II 
Case IlL' VIr, t) = - ~ (¢ 1(J)r + (J -2U(r/(J). The 

first integral is given by 

- I = ! ((Jt - ;Prf +! riJ 2(J 2 + U(r/(J) + !KI(riJ f - K2riJ, 
(3.13) 

i.e., an energylike first integral and the conserved angular 
momentum. 

IV. A SIMPLE EXPLANATION FOR THE EXISTENCE OF 
THE FIRST INTEGRALS 

The existence of the various first integrals associated 
with the three types of potential in Sec. III may, now that we 
know what they are, be explained in terms of a simple gener
alized canonical transformation. Consider the Hamiltonian 

H(R,P,T) =! (P~ + P~R -2) + U(R). (4.1) 

Under the generalized canonical transformation 

1615 J. Math. Phys., Vol. 26, No.7, July 1985 

(R,8,PR,Po ,Tl-((r,B,Pr,Pe,t: R = rx-I, 8 = B, 

PR =XPr -Xr, Po =Pe, 

T = J~-2(t ')dt J 
we obtain 

(4.2) 

H = ! (p; + p~r-2) - ! tX/X)r + x-2U(r/x). (4.3) 

The system (4.1) has its Hamiltonian and the angular mo
mentum as first integrals for general U. In terms of the trans
formed coordinates these first integrals are 

and 

2 d8 r· 2 2' II = Po = R - = - BX =,B 
dT X2 

12 = h = ~ (P~ + P~R -2) + U(R) 

(4.4) 

= ! {(xPr - xr)2 + p~x2r-2} + U (rx- I
). (4.5) 

This immediately gives the result for case III. 
For case I, the potential is specified and we require the 

potential in (4.3) to match it, i.e., we seek a function U such 
that 

-! tX1x)r + X-2U(rIX) = !Ar. 

It is evident that 

U(r/x) = ! K (r/xf, 

so that X is a solution of 

X+ AX=KX- 3
, 

(4.6) 

(4.7) 

(4.8) 

which is an equation of the type in (A31)-(A33). To simplify 
the discussion we set K = 1. Then H is 

(4.9). 

which is just the Hamiltonian of the two-dimensional har
monic oscillator. Apart from the integrals already given in 
(4.4) and (4.5), H has as integrals quadratic in the momenta, 
the elements of the lauch-Hill-Fradkin tensor. 13

,19 Ex
pressed in polar coordinates, the two integrals apart from the 
energylike integral are 

13 =! sin 28(R 2 + P~ - P~R -2) +PRPoR -I cos 28, 
(4.10) 

14 =! cos 28(R 2 + P~ - P~R -2) - PRPoR -I sin 28. 
(4.11) 

Under the transformation given in (4.2), these become 

13 = ! sin 2B {(xPr - xrf - x2P~r-2 + rx-2} 

+ (xPr - Xr)PeXr- 1 cos 2B (4.12) 

and 

14 = ~ cos 2B {(xPr - xr)2 - X]J~r-2 + rx-2} 

- (xPr - Xr)PeXr- 1 cos 2B. (4.13) 

These two integrals have the same structure as the cor
responding first integrals in (3.1). Further, H also has four 
first integrals which are linear in the momentum and which 
represent the initial conditions. In terms of polar coordinates 
they are 

P. G. L. Leach 1615 



                                                                                                                                    

Is = R cos 0 cos T - (P R cos 0 - PeR - I sin 0 ) sin T, 
(4.14) 

I6=R cos o sin T + (PR cosO-PeR -I sin 0) COS T, 
(4.15) 

17 = R sin 0 cos T - (P R sin 0 + PeR - I cos 0) sin T, 
(4.16) 

Ig=RsinOsinT +(PR sinO + PeR -I cosO) cos T. 
(4.17) 

From the transformation (4.2) we see that these become 

Is = sin OPer-IU- sin T) + cos 0 [r(K-I cos T 

+ X sin T) - PrX sin T J, (4.18) 

16 = - sin OPer-l(x cos T) + cos 0 [PrX cos T 

- r(t cos T - X-I sin T)j, (4.19) 

17 = - cos 0Per-IU- sin T) + sin 0 [r(K-I cos T 

+ X sin T) - PrX sin T}, (4.20) 

Ig = cos OPer-Iu- cos T) + sin 0 [PrX cos T 

-r(tcosT-x-lsinT)j. (4.21) 

Since X is a solution of (4.8) it follows that X sin T and 
X cos T are solutions of the differential equation 

(4.22) 

which is of the same type as (A27), (A29), and (A30) and so 
the integrals IrIg have the form of the integrals in (3.1) 
which are linear in the momenta. 

In case II the potential also is specified and we require 
the potential in (4.3) to be such that 

_..!...X r+..!...u(~)= _..!...~ r_/-Lo. (4.23) 
2 X X2 X 2 </J </Jr 

clearly this occurs only if 

X = </J, U(rf</J) = - /-Lo(</J fr). (4.24) 

Now the Hamiltonian 

Ii = ~ (P~ + P~R -2) - /-LoR -I (4.25) 

has, in addition to the energy and angular first integrals, the 
conserved Laplace-Runge-Lenz vector 

A 

I = P eX P + /-LoR. (4.26) 

Under the transformation (4.2) 
A • 

R = r, P = </Jp - </Jr, 

and so the conserved vector is 

1= </JPe Xp - ¢Pe Xr + /-Lor, 

which is the conserved vector given in (3.56). 

(4.27) 

(4.28) 

In summary, we have seen that all of the first integrals 
quadratic (or up to quadratic) in the momenta for a time
dependent potential of permitted form for a central force 
field are obtained by the action of the simple point transfor
mation (4.2) on the first integral of the corresponding time
independent problem. 

v. ORBIT EQUATIONS 

The orbit equation for case III cannot usually be found 
by simple quadrature, a situation which already occurs in 
time-independent problems. The use of the quadratic first 
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integrals in Cartesian coordinates to determine the orbit 
equation in case I was discussed some time ago in Gunther 
and Leach 14 and need not be reproduced here. However, it 
does seem to be appropriate to derive the orbit equation for 
case II by a method which is simpler than that given in Kat
zin and Levine. 11 We recall that we have the conserved vec
tor 

1= </J IXp - ¢ IXr + /-Lor· (5.1) 

Jaking the scalar product ofI with r (see Ref. 20) and taking 
I as the direction of the reference line in the plane of the 
orbit, we have 

lr cos 0 = I . r 
= </J (IXp) • r - ¢ (Ixr) • r + /-Lor· r 

= -/2</J + /-Lor. (5.2) 

The orbit is given by 

r- I = !/lo - I cos 0 )I(/2tfJ ). (5.3) 

We may in principle determine </J from the angular momen
tum since 

(5.4) 

may be rewritten as 

dO dt 
!/l0-IcosO)2 = /3</J2' 

(5.5) 

The left-hand side of(5.5) is integrable although the expres
sion is not awfully tidy. Let us suppose that the integrated 
form of(5.5) is 

M(O)=N(t). (5.6) 

Assuming that we can invert (5.6) to obtain t as a function of 
0, something which usually will be locally possible, we have 

(5.7) 

and the orbit equation 

l/r =!/lo - 1 cos O)/[l2</J 0 N- I 
0 M(O)l. (5.8) 

The only problems in a practical implementation of this 
schemearetheintegrationof</J -2(t ) and the inversion ofN (t). 

For an example let us consider the case for which /-Lo > 1. 
then 

M(O)= I sinO 
/-L~ - 12 /-Lo - 1 cos 0 

+ 2p,0 arctan{(/-LO + 1)112 tan~}. 
!/l~ - 12)2 Po - I 2 

(5.9) 

Let 

</J (t) = / -3/2(a + b cos t)1/2, a> Ib I >0. (5.10) 

Then 

f' dt ' 
N(t) = Jo [3</J 2(t ') 

= arctan -- tan -2 (a - b)1I2 t 
(a2_b 2)1/2 a+b 2 

and so 

P. G. L. Leach 
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t/J 2(t) = /-3 {a + b cos2 arctan(a + b )/(a - b )1/2 

xtan [(a2 - b 2)1/2]M(0)}, (5.12) 

whereM(O) is the right-hand side of (5.9). To simplify the 
discussion we fix a2 

- b 2 by writing 

a2_b2=/p~ _/2)3Ip~ (5.13) 

and for ease of notation define 

_~ 2 b 2)1/2 I sinO 
w-~a -

2 p~ _/2 Po-/cosO 
(5.14) 

Then (5.12) simplifies to 

t/J 2(t) = /-3{/P~ - 12)3Ip~ }/Po - I cos 0) 

X [a/po - I cos 0) + b {(I - Po cos 0) cos 2w 

+ /p~ _/2)1/2 sin o sin 2WI1-1. (5.15) 

It is evident from (5.15) that t/J 2(t ) is a periodic function of 0 of 
period 21T. Hence from (5.8) it is obvious that r(0) isa periodic 
function of 0 and so the orbit is closed. An example of such 
an orbit is given in the Fig. 1. 

VI. SOLUTION OF THE CORRESPONDING 
SCHRODINGER EQUATION 

Solutions of the Schr6dinger equation for time-depen
dent potentials have been obtained in some instances. 21 .22 

For the potentials ofthe types discussed here, the procedure 
for solving the Schr6dinger equation is particularly simple. 
Wolf23 has shown that for time-independent systems, solu
tions of Schr6dinger equations of systems whose classical 
Hamiltonians are related by time-independent linear trans
formations are related by integral transforms except when 
the transformation is a point of transformation. In this case 
the transform collapses to a geometric transform, i.e., the 
wave functions are related by a phase factor with possibly a 
scaling factor. Leach21 extended this result to time-depen
dent systems and time-dependent linear transformations. 

For the three cases obtained in Sec. III we showed in 
Sec. IV that they were related to time-independent systems 
by means of a generalized canonical transformation which is 

-2 
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pointlike in the canonically conjugate variables. We consider 
case III first as this illustrates the general method. For cases 
I and II we can obtain the actual wave functions as the relat
ed time-independent systems are fully integrable. 

For case III we have 

H(r,p,t) =! /p; +p~r-2) -! (XIx)r + x2-1U(rlx), 
(6.1) 

H(R,P,T) =! (P~ +P~r-2) + U(R), (6.2) 

which are related by the generalized canonical transforma
tion 

(R,(J,PR.Pe,T)_(r,O,Pr,Pe,t: R = rx-I, (J = 0, 

PR =XPr -xr, Pe =Pe, 

T = J~-2(t ')dt ') (6.3) 

The Schr6dinger equation corresponding to H is 

lrif = ifz aif. (6.4) aT 
For two spatial dimensions, we may separate variables by 
writing 

If(R,(J,T) = e-iJ..Tlfieimet/J (R)R -1/2 (6.5) 

so that t/J (R ) is a solution ofthe ordinary differential equation 

" (U 2 m
2 

- 4) t/J + ---u- t/J=O. fz2 fz2 R 2 
(6.6) 

[For three dimensions, Y1m (0, t/J ) and the appropriate Lapla
cian would be used. There is no essential difference in the 
treatment.] The problem is to find the eigenvalues and eigen
functions of(6.6). For general U this is not possible in closed 
form. As two potentials for which an exact solution is avail
able are the harmonic oscillator and the Coulomb problem, 
we shall obtain exact solutions for cases I and II. As an aside 
we remark that for certain classes of anharmonic oscillators 
an exact solution is also available. 24 Let us suppose that we 
have found t/J (R ). The solution (6.5) and the solution ofthe 
Schr6dinger equation for H are related by21 

FIG. 1. Sketch of the closed orbit for the p0-

tential V(r,t) = - ~ (¢ /~)r - Jtol~rwhen 
~(t) = (a + bcos t)I12, with a = 20, b = I, 
andJto = 9. 
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tP(r,B,t) = Ixl-1I2expL~ fr]~(;,B,T(t)) (6.7) 

so that provided we can find the solution of (6.6) we know 
tP(r,B,t ). 

For case I, 

(6.8) 

(we set the constant K at unity for simplicity) and (6.6) is now 

~" + (~ _ ~ R 2 _ m: -; !)~ = O. (6.9) 

The eigenfunctions of (6.9) (see Ref. 25, p. 781,22.6.18) (to 
within a normalizing factor) and the eigenvalues are 

~n, m (R ) = exp( - R 2/2fi)R m + 1/2 L ~m)(R 2Ifi), 

An,m = fi(2n + m + 1), 

(6.10) 

(6.11) 

where L ~m) is the generalized Laguerre polynomial. Hence 
the solution for the time-dependent potential of case I is, to 
within a normalizing factor, 

f/ln, m (r,B,t ) 

= Ixl-1/2 exp[_i X r _ ~] [.!..-] m L ~m)(~) 
2fi X 2fiX2 X fiX2 

xejm6 exp[ -i(2n +m + I)T(t)lfi]. (6.12) 

For case II, 

U(R) = - f.1,r/R, 

and (6.6) is 

~ " + (~ + .J!:!L _ m
2 

- !)~ = O. 
fi2 fi2R R 2 

(6.13) 

(6.14) 

The eigenfunctions of(6.14) (see Ref. 25, p. 781, 22.6.17) (to 
within a normalizing factor) and the eigenvalues are 

~n,m(R) = exp[ - 2kR ]R m+ 112L ~m)(kR), (6.15) 

(6.16) 

where again L ~m) is a generalized Laguerre polynomial and 
the constant k is given by 

k=f.1,r/fi2(2n+2m+l). (6.17) 

Hence the solution of the Schrodinger equation for the time
dependent potential of case II is, to within a normalizing 
factor, 

f/ln, m (r,B,t ) 

= Ixl-
1/2

exP[;fi ; r- 2;r](;rL~m{;) 

xejm6 exp[ - if.1,~ T(r)l2~(2n + 2m + 1)2]. (6.18) 

As a final remark on the solution of the Schrodinger 
equations with the particular time-dependent potentials giv
en above, we point out that it is not necessary to calculate 
matrix elements and expectation values in terms of the wave 
!,unctions f/ln, m(r,B,t) (see Ref. 21). Writing the states f/ln and 
tPn in the Dirac notation as In) and Iii), respectively, we have 

(mlf(r,p)ln) = (ffiIF(R,p)lii), (6.19) 

where 
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F [R(r,t ),P(r,p,t)] = f(r,p). (6.20) 

So, for example, 

(mlrln) = (ffilxR Iii) = x(ffilR Iii). (6.21) 

This simplifies the calculations to an extent since the r-de
pendent phase term is removed from the calculation. 

VII. CONCLUSION 

In this paper we have obtained all first integrals qua
dratic (and linear) in the momenta for the potential of a cen
tral force field and also the potentials for which such inte
grals exist. This was done using the form of Noether's 
theorem discussed by Sarlet and Cantrijn 15 which guaran
tees a one-to-one correspondence between Noether symme
tries and first integrals. The existence of such potentials and 
first integrals has been explained in terms of a simple time
dependent linear generalized canonical transformation. In 
view of the contents of the Appendix, it may well be asked 
why the latter method was not used rather than the former. 
We have already discussed the completeness property of the 
appropriate formulation of Noether's theorem. There is not 
a corresponding result for canonical transformations. From 
Noether's theorem we know that we will obtain integrals 
quadratic in the momenta if the infinitesimal transforma
tions are linear in the momenta (in the case of the Lagrangian 
used here). However, in the context of canonical transforma
tions (again for the type of Hamiltonian used here), the only if 
fails as can be seen by a simple counterexample. For 

H = !p2 + ! q2, Ii = ! p2, 

the transformation from H to Ii can be achieved by 

Q =! arcsin [ qlR+J?J, p2 = q2 + p2, (7.1) 

which is not linear. 
For case I it has already been shown 14 how the third set 

of integrals (the first being the energylike integral and the 
second the angular momentum) may be used to obtain the 
orbit equation. In this paper we have shown that the orbit 
equation for case II may be obtained also using the third set 
of integrals. Finally, we demonstrated how easy it was to 
solve the corresponding Schrodinger equation. 
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APPENDIX: DETERMINATION OF SI 1/~ AND F 

The functions S, 1/j, andfin (2.3) are determined from 
the partial differential equations 

L as + aL(a1/j _ .j as) = aj (AI) 
ail ail ail q ail ail ' 

S aL + j aL +L (as + .j as.) + aL.{a'Tl 
at 1/ aq' at q aq' ail at 

+ a1/j iI- il( as + iI as.)} = af + if af. (A2) 
aq' at aq' at aq' 

SubstitutingL (2.7) and the 1/j (2.8) into (AI) and integrating, 
we find that 
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f = ! ra + bHJ + ! rvO 2 + g(r,O,t ), 
b=ru, 

(A3) 

(A4) 

where g is an arbitrary function. The integration of (A2) is 
achieved by equating the coefficients of powers of rand 0 to 
zero after substitution with (2.7), (2.S), (A3), and (A4). The 
cubic and quadratic terms yield 

a =A (O,t), 

b = 1-1' aA + rB(O,t), 
2 ao 

C = _1- l' aA - D (0 t) 
2 at ' , 

(A5) 

(A6) 

(A7) 

u = 1- aA + B (AS) 
21' ao ' 

I a2A aB 
v = A + 2" ao 2 + 21' ao + rC(O,t ), (A9) 

aB I aD 
W= -r-----E(Ot) (AW) 

at raO " 
plus six differential equations for the functions A (O,t) 
through E (O,t ) which may be integrated to give 

A = a +/3 sin 20 + ycos 20, (All) 

B = c5 sin 0 + E cos 0, 

C=K1, 

D = 0' sin 0 + P cos 0, 

E = v + ! iJ cos 20 - ! r sin 20. 

(AI2) 

(A13) 

(AI4) 

(AI5) 

In the right-hand side of (All) through (AI5), lowercase 
Greek letters represent functions of time and the uppercase 
Latin letter is a constant. 

The remaining coefficients provide the three equations 

av ac ag 
-a-+-=-, 

ar at ar 
(AI6) 

_ b av + r aw = ag, 
ar ar ao 

(AI7) 

av ag 
-C-=-. 

ar at 
(AIS) 

We may integrate (AI6) to obtain 

g=AV _1-r~A - l' aD -F(O,t). (AI9) 
4 at 2 at 

Substituting this into (AI7) 

aF =(1- r aA +rB)av _ aA V+ r a
2
B +rv. 

ao 2 ao ar ao at 2 

(A20) 

Since the left-hand side of (A20) is free of 1', the derivative of 
the right-hand side with respect to l' is zero. As A and B 
contain sine and cosine terms, the coefficient of each is sepa
rately zero and we find that for the coefficient of 

1619 

cos 20: 

sin 20: 

/3("'~V _ av) = 0 
ar ar ' 

.i,..~V _ av) = 0 
'\ ar ar ' 
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(A21) 

(A22) 

cos 0: E(2r ~~ + r~;) + 3Er = 0, (A23) 

sin 0: c5 (2"'~~ + r ~~) + 38r = 0, (A24) 

-' v = K 2• (A25) 

We distinguish three distinct cases in the solutions of (A2I)
(A25). 

Case L' /3,y,c5,E=/=O, 
v= 1..1, (t)r, (A26) 

where 

A(t)= -8/c5= -€IE. 

Case IL' /3,y, = 0, c5, E=/=O, 
V = 1 A (t )r - J.l(t )/1', 

(A27) 

(A2S) 

with A (t ) defined as in (A27). The possibility thatA (t ) is zero is 
contained in the more general case II. The possibility of J.l(t ) 
being identically zero is not contemplated for case II. 

CaseIIL' 
/3,y,c5,E = O. 
Equation (AI7) provides no information about the po

tential. 
For case I, F (O,t ) is an arbitrary function of time, which 

turns out to be a constant and is ignored. (The actual effect of 
this constant is to change the value of the first integral by an 
additive constant.) When we substitute for g, V, and C in 
(AIS) and equate the coefficients of independent functions of 
l' and 0 to zero, we find that 

0-+..1,0'= 0, (A29) 

p+Ap=O, (A30) 

T + ..1,1" = K31"-3, (A31) 

; +A;=K4;-3, (A32) 

~ +At/J =Kst/J -3, (A33) 

where /3, y, and a have been replaced by r, ; 2, and t/J 2, re
spectively. In discussions of first integrals for time-depen
dent systems a function, say X (t ), is introduced. For example, 
the time-dependent harmonic oscillator with Hamiltonian 

H = !p2 + ! w2(t )q2 (A34) 

has the first integral 

I =! (xp - Xq)2 +! q2/x2. (A35) 
For the problem under discussion here we have seven 

such differential equations. We can reduce the number of 
functions to two as follows. Let us take the solution t/J (t ) of 
(A33) to be 

t/J (t ) = K ~/4X(t ). 

Then the solution of an equation of the form 

y+Ay=O 

is 

y =AX sin T+Bxcos T, 

and of an equation of the form 

y +Ay = Ky-3, 

the solution is 

P. G. L. Leach 
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(A37) 

(A3S) 

(A39) 

1619 



                                                                                                                                    

y2 = K 1/2X2(A sin2 T + B cos2 T + 2C sin Tcos T), 
(A40) 

where 

T= f~-2(t')dt" (A41) 

In (A40) the constants are arbitrary, subject to the constraint 

AB - C 2 = 1. (A42) 

For case II we find that 

F(B,t) = p8 sin B + pc cos B, (A43) 

to within an arbitrary additive function of time, which again 
turns out to be a constant. We substitute for g, V, and c in 
(AI8) and equate the coefficients of independent functions of 
rand B to zero to find that 

(7= 0 =p, 

P = poi ¢, 
8=K7¢, c=Ks¢, 

¢ +).¢ = 0, 

(A44) 

(A45) 

(A46) 

(A47) 

where again a has been replaced by ¢ 2 and (A27) results from 
the integration of a third-order differential equation in a. In 
contrast to (A33) there is no constant of integration because 
of (A46). 

For case III, F (B,t ) is again an arbitrary function of time 
which may be ignored as it vanishes from the first integral 
and has no dynamical effect elsewhere. Substituting for c, V, 
andg into (AI8) we find that for the potential to differ from 
case I, (7 and p must be zero. We then have a first-order 
partial differential equation for V, viz., 

I . av av . V I _.2'" -ra-+a-= -a --fa, 
2 ar at 4 

(A48) 

for which the characteristics are 

WI = ria, W 2 = aV +! wl(aa -! a2
). (A49) 

The potential is 

V(r,t) = -! (¢I¢)r + ¢ -2U(rl¢), (A50) 
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where, as before, a has been replaced by ¢ 2 and U is an 
arbitrary function of its argument. 
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Relationships between alternative sets of hyper spherical coordinate systems for the treatment of 
three-body systems are developed. Transformations of hyperspherical harmonics for S states 
under a change of intrinsic angles are derived, and applied to harmonic expansions of potential 
energy surfaces. 

I. INTRODUCTION 

Hyperspherical coordinates are a powerful instrument 
for accurate treatments of nonrelativistic three-body sys
tems. These coordinates prove particularly convenient if col
lective modes of motion rather than independent particle 
motions are dominant. During the last few years they have 
been applied successfully to problems of atomic,l-6 chemi
cal, 7-9 and nuclear1

0--12 physics. 
Except for minor modifications two different sets ofhy

perspherical coordinates are used in the literature. One set 
parametrizes Jacobi coordinates,13-15 the other set-some
times called "democratic coordinates" -treats all three par
ticles on an equal basis. 16--19 From the practical point of view 
both sets have advantages as well as disadvantages. Jacobi 
hyperspherical coordinates are usually more suitable for the 
formulation of asymptotic boundary conditions. Treatments 
within the framework of democratic coordinates often show 
simple harmonic potential expansions. In many situations it 
appears desirable to use hyperspherical coordinates in a 
more flexible way, i.e., to use alternative sets ofhyperspheri
cal coordinates within the same problem. 

The purpose of this paper is to present new relation
ships useful for applications between different sets of hyper
spherical coordinates. Section II introduces sets of Jacobi 
hyperspherical coordinates and identifies intrinsic angles as 
parametrization of suitably defined quaternions. Section III 
develops the connection between Jacobi and democratic hy
perspherical coordinates. Transformation properties of sca
lar hyperspherical harmonics are presented in Sec. IV and 
applied to harmonic expansions of potentials in Sec. V. 

II. JACOBI HYPERSPHERICAL COORDINATES 

We consider three mass points described by position 
vectors Ci in their center of mass system 

3 

L mic,. =0, 
i=1 

(1) 

and introduce suitably scaled Jacobi coordinates in the usual 
way. With the reduced masses 

(.ujk)-I = (mj)-I + (mk)-I (2) 

and 

-) Permanent address: Fachbereich Physik, University ofKaiserslautem, D-
6750 Kaiserslautem, Federal Republic of Germany. 

(.u'Hk))-1 = (mi)-I + (mj + mk)-t, 

we define two relative vectors given by 

C(/I = ..[ii;(cj - ck ), 

(.) ~ p' = "f-li(jk) (ci - (mjcj + mkck)/(mj + mk)), 

(3) 

(4) 

i=h=l=k = 1,2,3. Hyperspherical coordinates are now intro
duced, putting 

C(/I = Jiir sin a(i)flll, 

p(/1 = Jiir cos a(/lp(/1, 

where f-l is an arbitrary mass. 

(5) 

The angle ali) measures the relative length of the two 
Jacobi vectors, 0<a(/\;;;1T12. The unit vectors fill andp(/1 are 
parametrized by spherical polar angles, 

fill = flll({J ~I,cp ~I), 

p(/1 = P'I({J ~),cp ~'). 

The hyperradius r;;;.O in Eq. (5) is given by 
3 

f-lr = L mic7· 
i=1 

(6) 

(7) 

The six hyperspherical coordinates (r,n (II) with n (II 

= (a(/l,t?- ~I,cp ~I,t?- ~I,cp ~)) replace the two Jacobi vectors. The 
five angles n (II depend on the choice of Jacobi coordinates 
whereas the hyperradius r is invariant. 

Consider now a cyclic permutation C of the particles 

C:(i,j, k) ---+ U,k,i). (8) 

Two Jacobi vectors CUI and pUI obtained from Eq. (4) by cy
clic permutation are connected with the Jacobi vectors C(/I 
and p(i) by a 6 X 6 matrix, 

(
C(/') = ( 1 cos{3ij 1 Sin{3ij)(cUI ). (9) 
p(/1 - 1 sin {3ij I cos {3ij pUI 

The angle {3ij normalized to 

1T12 <{3ij < 1T 

is given by 

tan{3ij = - (mkM Imimj)I/2, 

where M is total mass, 

(10) 

(11) 

M= m l + m2 + m3. (12) 

The six coordinates necessary to describe the three
body system may always be decomposed into three external 
and three intrinsic coordinates. The external coordinates de
scribe the position of the rigid three-body system in the lab 
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frame, whereas the intrinsic coordinates describe all possible 
modes of particle motion in the body-fixed frame. A rota
tional invariant interaction depends only on intrinsic coordi
nates. 

Often one wants to represent graphically a potential 
energy surface using hyperspherical coordinates. Intrinsic 
coordinates within the above-introduced Jacobi hyperspher
ical coordinates are r,all"e(l" i = 1,2,3, with 

cos eli) = ;J.Il . pill. (13) 

In order to see how a potential energy surface mapping de
pends on the choice of hyperspherical angles we investigate 
the transformation of the intrinsic angles (ali),e (i») under a 
cyclic particle permutation. Straightforward calculation 
leads to the transformation law 

cos 2ali) = cos 2/3ij cos 2alll 

- sin 2/3ij sin 2alll cos e 111, 

sin 2ali) cos e 111 = sin 2/3 .. cos 2all) 
IJ 

+ cos {3ij sin 2a1l) cos e Ill, 
sin 2a(ll sin eli) = sin 2a1l) sin e 11). 

(14) 

These equations may be regarded as parametrization of a 
rotation in a four-dimensional space R4 • This rotational sym
metry is established, for instance, identifying Eqs. (14) as 
multiplication of quatemions.20 To this end we introduce 
three sets of quatemions 

Q(i) = (Q~"QII1), i = 1,2,3, (15a) 

with scalar parts 

Q gl = cos 2alll 

and vector parts 

(I5b) 

Q(II = elll sin 2a(ll. (15c) 

We parametrize the unit vector eli) by spherical polar angles 

elll = (sin e lll cos <plll,sin e lll sin <p11\cos ell). (16) 

The angle <p (I) does not appear in Eq. (14) and may be regard
ed for the moment as an arbitrary constant. 

We describe a cyclic permutation by the quatemion 

with 

plil) = (pliJ) P(!!l) 
0' , 

pl(J1 = cos 2/3ij, 

p@ = e(O) sin 2/3ij' 

and the unit vector elO) given by 

e(O) = (0,0, I). 

(17a) 

(17b) 

(17c) 

(18) 

It is now straightforward to confirm that Eqs. (14) supple
mented by 

<p (1) = <p 1l) +{3@ (19) 

read in terms of the above-introduced quatemions 

plil)QIl) = QIIl, (20) 

where the product of two quatemions P = (Po,P) and 
Q = (Qo,Q) is defined by 

1622 

PQ = (PoQo - PQ,PxQ + PoQ + QoP). 

Quatemions with unit length, 
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Q g12 + Q(112 = P lf12 + plil)2 = I 

are isomorphic to special unitary matrices 
Ref. 20). In our situation the mapping 

QII1~Uli), 

may be written in the forms 

Ulll = cos 2a(iluo - i sin 2all)(e(ll. a) 

and 

(21) 

U(lleSU(2)(see 

(22) 

(23) 

U@ = cos 2/3ijUO - i sin 2/3ij(eIO) • a). (24) 

The four matrices u!l (P = 0, 1,2,3) form a basis for the vector 
space ofSU(2) matrices, 

U o = (~ ~), U 1 = (~ 
- i) (I 
o ' U 3 = 0 

The isomorphism between quatemions and SU(2) matrices 
implies that Eq. (20) reads in terms of the matrices given by 
Eq. (23) and Eq. (24) 

(25) 

III. DEMOCRATIC HYPERSPHERICAL COORDINATES 

Jacobi coordinates for a three-body system have the 
property that the particles are not treated equivalently. Hy
perspherical coordinates which treat all particles on an equal 
basis were first considered by Smith21 and Dragt.16 For arbi
trary masses we parametrize the c.m.-position vectors by22 

r i = (t..t(mj + mk)lmiM )1/2rM(a,/3,y) 

(

cos'" cos(cp /2 + Yi)) 
X sin '" Sin(~ /2 + Yi) '. i = 1,2,3 (26) 

In Eq. (26) M(a,{3,y) is an orthogonal3x3 matrix de
pending on three Euler angles a,/3,y, which transforms from 
the lab-fixed frame to a body-fixed frame. The hyperradius r 
is again given [Eq. (7)], andMis the total mass [Eq. (12)]. The 
intrinsic angles'" and cp are independent of any particle la
beling. 

The constants Yj in Eq. (26) depend on a decomposition 
of the three-body system into "one body plus a two-body 
subsystem" as in the case of Jacobi coordinates. If we label 
this one body by the index i(i = 1,2,3) the set of constants Yj 
if = 1,2,3) reads explicitly 

(27) 

The constants{3ij are given by Eq. (II). Since Eq. (26) as well 
as all following equations containing these constants hold in 
any decomposition we drop the upper index for simplicity, 

r/'=Yj' 
The connection between the Jacobi hyperspherical in-

trinsic angles alII and e III and the democratic angles", and cp 
is found by calculating the quantities r(I)2 - p(i)2,rli) • p(i), and 
(rill X pillb in both systems. The result reads 
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COS 2a(/l = COS 2t/J cos('P + 2Yi)' 

sin 2a(/l cos e (11 = - €ijk cos 2t/J sin('P + 2Yi)' (28) 

sin 2a(/l sin e (/1 = sin 2t/J. 

A cyclic permutation of the three particles in the democratic 
frame changes only the numerical values of the constants Yi 
and leaves the angles t/J and 'P unchanged. 

IV. SCALAR HYPERSPHERICAL HARMONICS 

We consider now rotations in the six-dimensional c.m.
position space of the three-body system. We denote Carte
sian vector components of this space by XfL and canonically 
conjugate momentum components by PfL' 

[XfL'P1'] =i{)fL1" p,v= 1, ... ,6. (29) 

Infinitesimal rotations are generated by 

..:ifL1' = XfLP1' - X1'PfL' (30) 

The quadratic Casimir operator, often called the "grand an
gular momentum," reads 

A 2=~ LA!1" 
2 fL1' 

(31) 

The eigenvalue equation 

A 2':11 Ag(n) = A. (A. + 4)':11 Ag(n), (32) 

withA. = 0,1,2, ... defines hyperspherical harmonics depend
ing on a set of five angles n. The index g stands in general for 
a set of quantum numbers which labels degenerate A. states. 

Scalar hyperspherical harmonics satisfy the additional 
requirement 

L2':11 Ag(n) = 0, (33) 

where 
3 

L= L riXPi (34) 
i=1 

is the total orbital angular momentum of the three bodies. 
These harmonics are particularly important; a harmon

ic expansion of a rotational invariant potential energy sur
face for instance contains only these scalar harmonics. They 
depend only on two intrinsic angles. In terms of Jacobi hy
perspherical angles these harmonics normalized to unity 
read13,14.23 

':11 (a(/l e (/1) = N C (I, + I) (cos 2a(/l) AI,' AI, A /2 - I, 

X (sin 2a(i))I'YI,o(e (i), <1> (11), (35) 

with Ii = 0,1,2 ... and A. = 2/;.21i + 2,21i + 4, .... 
The normalization constant is given by 

N _~2/,+1/2/' 
AI. - i' , 1T 

(A. + 2)(.1 /2 - Ii )! 

(.1/2 + Ii + I)! 
(36) 

The symbol C ;;'(x) stands for a Gegenbauer polynomial, and 
Ylm (e,<1» is a spherical harmonic independent of <1> for 
m=O. 

Our discussion in Sec. II has identified the angles 
a(/l,e (11, and <1> (11 as parametrization of quaternions Q (11 with 
unit length. One expects therefore that scalar hyperspherical 
harmonics in six dimensions given by Eq. (35) are equal toR4 

harmonics. This may be seen, for instance, by comparing the 
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explicit expressions for A 2 in six dimensions, disregarding 
derivatives with respect to external angles, with the expres
sion for A 2 in four dimensions, disregarding derivatives with 
respect to <1> (11. We circumvent here this tedious calculation 
and compare directly the scalar hyperspherical harmonics 
with the well-known R4 harmonics.20 The, latter read in 
terms of quaternionic components [see Eq. (15a)], is 

':1I)i,~,(Q (11) = HjI, (Q gl, IQ(i)1 ) ':1I1~':',(Q(ll), (37) 

where 

(38) 

is a harmonic function in three dimensions, 1 Q(lll 
= (Q(/l. Q(/l) 1 12, Q(ll = Q(ll/IQ(111, and HjI, is the rotational 

invariant. Using Eqs. (15b), (15c), and (16) these functions 
read up to a constant factor 

H (cos 2a(/l sin 2a(/l) a: C (I, + I)(COS 2a(ll) . 
}Ii ' 2J-/j 

(39) 

We thus find the expected result 

':11 AI,(a(ll,e (11) a: ':1Ii1)/4)/,o(Q (i)). (40) 

Next we consider the relationship between R4 harmonics 
and rotation matrices in three dimensions,24,25 

Hj/(Qo,IQI)':1II~ (Q) 

= t:(-)j+ 1"~ 2j2~ 1 
(jvjvllm)Dj - 1",1' (Qo,Q), (41) 

where (,,,1,,,) stands for a Clebsch-Gordan coefficient. In 
this relation we putj = A. /4, I = Ii' and m = 0 and express 
the right-hand side (rhs) in terms of the angles a(ll and e (11. 

On the left-hand side (lhs) with v' = - v we express Q gl and 
Q(i) by the angles t/J and 'P [see Eq. (28)]. The rotation matrix 
then gets the form 

D (A/4) (Q(i)Q(i)) _ iEijk'7'D(A/4) ( .1 •• 1. ) (1'/4)(1'/4) 0' - e (1'/4)(1'/4) - €ijk'P,lf/If/, - €ijk'P , 

(42) 

where the last D symbol is a rotation matrix parametrized by 
Euler angles. This function coincides with the scalar hyper
spherical harmonics parametrized by democratic an
gles4.5,16--19 

YA1'(t/J,'P) = ~(A. + 2)/21?Di~:411v/4)( - 'P,t/J, - 'P). (43) 

Equation (41) represents therefore a simple relation between 
the two sets of scalar hyperspherical harmonics given by 
Eqs. (35) and (43), 

YAI, (a(i),e (11) = i -I'L( _ )(A + 1')/4/Eijk'7, 
v 

x (~ - : ~ : I Ii 0) YA1'(t/J,€ijk'P ). 

(44a) 

A relation of this structure was first communicated by 
Aquilanti et al.,26 inspecting hydrogenic wave functions in 
the momentum space. Suitably standardized simultaneous 
eigenfunctions of the energy (E = - lIn2 < 0) and of the 
Lenz vector A, and those of the energy and of the orbital 
angular momentum 1, are connected by 

(
n - 1 m + q n - 1 m - q I ) 

rpnlm(P)=~ -2---2--2---2- lm rpnqm(P), 
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where q is the eigenvalue of A 3• Except for a factor propor
tional to 

{1 + (np)2) -2, 

the functions <P nqm (p) are equal to rotation matrices parame
trized by Euler-Rodrigues parameters on a sphere S3 CR4 • 

For the special quantum numbers n = Ii /2 + 1, q = v/2, 
and m = 0 these rotation matrices have been identified in 
Ref. 26 with scalar hyperspherical harmonics [Eq. (43)] 
whereas the R4 harmonics <Pnlm(P) have been identified with 
scalar hyperspherical harmonics parametrized by Jacobi hy
perspherical angles [see Eq. (3S)]. The 0 (4) symmetry of the 
H atom suggests then a four-dimensional rotation connect
ing the two particular sets of intrinsic hyperspherical angles. 

Our present treatment circumvents the consideration of 
the H atom and shows directly that a hyperspherical frame 
transformation in the six-dimensional three-particle space is 
always accompanied with a four-dimensional rotation for 
the intrinsic angles. The connection between R4 harmonics 
and rotation matrices used here is well known in angular 
momentum theory. 

With the help of the orthogonality for Clebsch-Gordan 
coefficients relation (44a) is easily converted 

Y).v(I/J'€ijk(jJ) = (-)(). + v)l4e - iEijkvri 

X" /i(i. _ ~ i. ~ 1/.0) Y .(a(l) e (i)). t 4 4 4 4 1 ),1, ' 

(44b) 

Finally, we use Eqs. (44a) and (44b) to derive a relation 
between two sets of hyper spherical harmonics parametrized 
by different Jacobi hyperspherical angles. This result reads 

(4S) 

with 

v 

X(i.-~i.~I/.O)(i.-~i.~I/.O). (46) 
4444 ' 4444' 

Transformation (46) has also been derived by Smorodinskii 
et al.,27 directly using Eq. (9). 

V. HARMONIC EXPANSION OF POTENTIALS 

For the purpose of illustration we apply our results to 
the expansion of a central field potential into a series of scalar 
hyperspherical harmonics. To this end we consider a poten
tial between particles labeled by indices i andj, V(!ri - rj I). 
In the Jacobi frame labeled by the indices k =/=i =/) only har
monics with I k = 0 occur in the expansion because the po
tential is independent of the angle e (k). In consequence of 
Eq. (3S) the expansion reads therefore 

V(!ri-rj !)= L v).(r)C~~2(Cos2a(k)). (47) 
)'~O,2, ... 

The coefficients v). (r) are obtained using the orthogonality of 
Gegenbauer polynomials. 

The transformation of the rhs of Eq. (47) to another 
Jacobi frame labeled by the index i is performed with help of 
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the addition theorem for Gegenbauer polynomials,23 which 
may be cast in our situation into the form 

C~~2(COS 2a(k)) 

2~ A./2 
=-- L Y)'I,( -!3ki>O)Y).I,(a(ll,e(I)). (48) 

Ii + 2 I,~O 

Here we have used the relation 

cos 2a(k) = cos 2/3ki cos 2a(i) 

- sin 2!3ki sin 2a(l) cos e(i) 

[see Eq. (14)]. The harmonics on the rhs of Eq. (48) are de
fined by Eq. (3S). 

Tranformation ofEq. (48) to democratic angles I/J and (jJ 
is provided by Eq. (44a). Using Eq. (28) and the orthogonality 
for Clebsch-Gordan coefficients we find 

C~~2(COS 2I/J cos((jJ + 2ri)) 

= /: 2 ~Y).V(OI - 2r;)*'??1 ).v(I/J,(jJ), (49) 

where the harmonics on the rhs of Eq, (49) are given by Eq. 
(43), Expressing these harmonics explicitly in terms of re
duced rotation matrices and exponentials we obtain in angu
lar momentum notation (i.e.,j = 0, 1/2, 1, ... and m = - j, 
- j + 1, ... ,j) the interesting relation 

j 

ChY(cos2I/Jcos«P)= L r 2imo1>d';"m(cos4I/J), (SO) 
m= -j 

which seems to be unknown. 
The development of this section leads to surprisingly 

simple results in the case of Coulomb potentials 

V(!ri -rj!)=(!ri -rj!)-I. (SI) 

The expansion coefficients v). (r) read in this case2S 

v).(r)=~ ~ 1i+2. (S2) 
1Tr -V J.l (Ii + 1)(1i + 3) 

The harmonic expansion of the potential may, for example, 
be used for the computation of matrix elements between hy
perspherical harmonics. It is evident that such matrix ele
ments can always be expressed in terms of 0 (6) Wigner coef
ficients. For scalar hyperspherical harmonics however a 
grand simplification occurs. Using Jacobi hyperspherical 
angles the integration of three R4 harmonics leads to 0 (4) 
Wigner coefficients. This technique29 has been used recently 
in the treatment of the molecular ion H/ . Using democratic 
angles on the other hand, the integration of three 0 (3)-rota
tion matrices leads to 0 (3) Wigner coefficients.4 ,5,3o 
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The splitting theorem, previously derived for symmetric operators, is generalized to arbitrary 
one- and two-particle operators. The notion of altemant systems, as defined in various 
semiempirical theories of altemant hydrocarbons, is accordingly generalized to arbitrary 
Hamiltonians. A simple test to decide whether or not a given Hamiltonian is altemant is obtained. 
A configuration interaction space Xn generated by n electrons moving over 2n orthonormalized 
orbitals is considered. Eigenstates '/I E Xn of altemant Hamiltonians are contained in 
complementary spaces X n+ and X n- , subspaces of the space X n • Each state '/I ± EX n± is called 
altemantlike, and it has characteristic properties of eigenstates associated with neutral altemant 
hydrocarbons, such as uniform charge density distribution, vanishing bond orders between 
vertices of the same parity, etc. The complete set oflinear properties associated with one- and two
particle operators and common to all altemantlike states '/I ± EX :- is obtained. 

I. INTRODUCTION 

The purpose of this paper is to generalize the so-called 
splitting theorem 1.2 and its consequences to arbitrary one
and two-particle operators. This theorem applies to the con
figuration interaction (eI) space Xn generated by n fermions 
(electrons) moving over 2n orthonormalized spin orbitals. 1-3 

The theorem was originally derived for one-particle opera
tors 1 in connection with the molecular orbital resonance the
ory (MORT) 1-4 approach, and then generalized to two-parti
cle symmetrical operators. 2 In brief, the theorem states that 
the space Xn can be partitioned into two complementary 
subspaces X n+ and X n- which are of the same dimension 
and such that each state '/I + EX n+ as well as each state 
'/1- EX n- is "altemantlike" in the sense that it has all the 
essential properties of 1T-electron eigenstates of neutral alter
nant hydrocarbons (AH). 

In order to formulate the theorem, the so-called "re
duced" operators are defined. These operators are of two 
kinds, "altemant" and "antialtemant." Altemant reduced 
operators block diagonalize in the space Xn into subspaces 
X n+ and X n-' i.e., they have vanishing matrix elements 
between all the states '/I + EX n+ and '/1- EX n- contained in 
different subspaces. On the other hand, antialtemant re
duced operators have vanishing matrix elements between all 
the states contained in the same subspace, either in X n+ or in 
X n- • Each linear combination of reduced altemant opera
tors is defined as an altemant operator, while each linear 
combination of reduced antialtemant operators is defined as 
an antialtemant operator. Altemant operators defined in 
this way have altemantlike eigenstates which in turn have all 
the nice properties (like uniform charge density distribution, 
vanishing bond orders between vertices of the same parity, 
etc.) traditionally associated with altemant systems. Re
duced operators thus serve as elementary building blocks of 
altemant and antialtemant operators, and in particular they 
lead to the constructive and efficient definition of altemant 
systems. 

The plan of the exposition in this paper is as follows: We 
first derive the complete set of reduced operators. This leads 
to an explicit construction of arbitrary altemant and antial
temant operators, and to the generalization of the splitting 
theorem to arbitrary operators. Using the notion of the so
called "weakly" altemant operators, we then derive the most 
general definition of altemant systems: Quantum systems 
described by weakly altemant Hamiltonians, and only such 
systems, are altemant. This definition appears to be quite 
natural, since Hermitian weakly altemant operators are 
shown to have a complete set of altemantlike eigenstates, 
and also each operator having a complete set of altemantlike 
eigenstates is shown to be a weakly altemant operator. Final
ly, all "linear" properties of altemantlike states are derived. 
Among these properties are uniform charge density distribu
tion, vanishing bond orders between the vertices of the same 
parity, etc. 

The above consequences of the splitting theorem pre
sent, among other things, a systematic and qualitatively new 
approach to the long-standing problem of altemant systems. 
It has been shown by various authors, that within a range of 
models 1T-electron eigenstates of neutral altemant hydrocar
bons have uniform charge density distribution over all car
bon atoms, and vanishing bond orders between atoms of the 
same parity. 5-7 Traditionally, these remarkable properties of 
altemant systems are derived from the so-called pairing 
theorem within various molecular orbital (MO) approaches. 
There have been many attempts to construct "altemant" 
Hamiltonians having eigenstates with such properties. 5-7 

The most general explicit solution was given by McLachlan.6 

He has shown that eigenstates of the Parieser-Parr-Pople 
(PPP) Hamiltonian associated with an AH system satisfy the 
pairing theorem, and hence the above properties follow in 
the case of neutral AH systems. Koutecky has extended the 
notion of altemant systems to some more general symmetric 
Hamiltonians. 7 However, his approach is rather implicit, 
and it does not permit an easy construction of altemant 
Hamiltonians, nor does it present any simple test to decide 
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whether a given Hamiltonian is alternant or not. 
In addition to many other results, the splitting theorem 

as formulated here gives the complete answer to the above 
problem of the construction and identification of alternant 
systems. These systems are defined in such a way that no 
further generalization is possible without seriously altering 
the properties of the corresponding eigenstates. The set of all 
alternantlike states is identified, as well as all one- and two
particle linear properties of these states. 

In the present paper we are restricted to the one- and 
two-particle operators and to the CI space Xn . Hence, unless 
otherwise stated, all the statements such as "each operator," 
"an arbitrary state," "all linear properties," etc., should be 
interpreted as "each one- and two-particle operator" (or 
their linear combination), "an arbitrary state in the CI space 
Xn ," "all one- and two-particle linear properties," etc., re
spectively. It is possible to extend the conclusions of this 
paper to more general operators and spaces.8 However, the 
present approach is quite general, since each observable is 
represented as at most a two-particle operator, while rather 
complex quantum chemical systems can be described within 
the space Xn . 

II. THE SPLITTING THEOREM 

Let 1]/ and 1]; be fermion creation and annihilation 
~rators, respectively. Define reduced operators I, Rij' and 
Rij.kl 

A A 

Rij =Aij -Oij, 

Rij.kl = Aij.kl (i=lIfk =/=1), 
A A A 

R;k.jk = 2A;k.jk + Aij (i=/=j=/=k), (la) 

Rij.ij = 2Aij.ij +Aii +Aii - I (i=/=j), 

where 

Aij = 1]/1]j + 1]/ 1];, 
A 

Aij,kl = 1];+ 1]/ 1]k 1]1 + 1]/ 1]k+ 1]j1];. 
(Ib) 

A unit operator I is a reduced operator as well.2 

]he above reduced operators, as well as operators Aij 
and Aij,kl' ~re sym~etric, Hermitian, and rea1.2 In addition, 
operators Aij and Aij,kl satisfy symmetry relations 

A A A A A 

Aij =AJi> Aij,kl = -Aij,lk =Akl,ij' (2a) 

and hence we define 

(2b) 

in order to generalize the definition (I) of reduced operators 
to arbitrary indices i, j,k, and I. This facilitates mathematical 
manipulations involving summations over different indices. 
In addition, (2b) implies 

A A 

R;;,kl = Rij,kk = 0, (3) 
A 

i.e., only operators Rij,kl with different indices i andj as well 
as different inl;lices k and I need be considered. 

Each symmetric operator can be represented as a linear 
combination of reduced operators I, Rij' and Rij,kl' and this 
representation is unique up to the symmetry relations (2b) 

A A 

(i.e., provided operators Rij and Rj; are considered to be one 
and the same operator, etc.)? For the sake of reference, and 
as suggested by the graphical representation of the above 
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A 

operators, we use the following}erminology: operators R;; 

are vertex operators, operators Rij(i=/=JI are bond operators, 
A A 

operators ~ij"l = - R}/.,j;(i=/=j) are vertex-vertex operators, 

operators R ik, jk = - R ;k,k)i =/= j =/= k ) are bond-vertex opera-
A 

tors, while operators Rij,k/(i=/=j=/=k =/=1) are bond-bond op~-
ator~ Analogous terminology is used to denote operatorsAij 
and A ij,kl' Accordingly, indices (i), (}I, (k ), and (I ) are referred 
to as vertices. 3 

Assume now that there are 2n (an even number) cre
ation and 2n annihilation operators, and partition the set 
B = [ij of 2n indices (vertices) i = l,oo.,2n into subsets B ° 
and B * containing n vertices each. We refer to the set BOas 
"source" and to the set B * as "sink."I,2 Given the partition 
B-+ [ B o,B *j, the set of all symmetric reduced operators I, 
Rij' and Rij,kl can be partitioned into "alte~ant" and "an
tialternant" operators. A reduced operator Rij is alternant if 
vertices (i) and (j) are of the opposite parity, and antialter-

A 

nant otherwise. Similarly, a reduced operator Rij,kl is alter-
nant if an even number among four vertices (i), (j), (k ), and (/) 
is source, and antiaIternant otherwise.2 A unit operator is an 
alternant operator as well. Further, each linear combination 
of reduced alternant operators is defined to be an alternant 
operator, while each linear combination of reduced antial
ternant operators is defined to be an antialternant operator.2 

An arbitrary symmetric operator can be now uniquely repre
sented as a linear combination of an alternant and an antial
ternant operator.2 

Let now 10) be a vacuum state 

1]; 10) = 0, i = l,oo.,2n, (4) 

and consider the n-particle space Xn spanned by all vectors 
I~,,) of the form 

I~,,) = 1]ii 1]J "'1]i~ 10). (5) 

Given the partitionB-+ [ B ° ,B *j , there is a unique splitting of 
the space Xn into complementary subspaces X: and X;; 
with special properties: these subspaces are of the same di
mension, and in connection with alternant and antialternant 
operators they satisfy2 the following theorem. 

Theorem 1 (the splitting theorem): (a) Let Oal be an al
ternant operator, and let 1// + EX n+ and 1// - EX n- . Then 

(6a) 
A 

(b) Let Onal be an antialternant operator, and let either 
1//1,1//2 EX n+ or 1//1,1//2 EX n-' Then 

(6b) 

Each state 1// + EX n+ , as well as each state 1// - EX n

has characteristic properties of 1T-electron eigenstates asso
ciated with neutral alternant hydrocarbons (AH), and hence 
we call these states "alternantlike.,,1.2 Normal operators, 
and in particular Hermitian operators, have the complete set 
of eigenstates.9 It follows that each Hermitian alternant op
erator has the complete set of alternantlike eigenstates.2 

Since ohservables are represented by Hermitian operators, 
the consideration of Hermitian operators alone is no restric
tion on the generality. These, as well as many other results 
follow in a straightforward manner from the splitting 
theorem, and they justify the above definition of alternant-
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like states and altemant and antialtemant operators. The 
actual construction of spaces X / and X;; can be found 
elsewhere. 1.2 

The splitting theorem was originally derived for the 
one-particle operators, I and then generalized to one- and 
two-particle symmetric operators. 2 We will now generalize 
this theorem to arbitrary one- and two-particle operators. 
Since an arbitrary operator can be represented as a linear 
combination of a symmetric and an antisymmetric operator, 
the generalization consists in finding all the antisymmetric 
operators satisfying the splitting theorem. Consider opera
tors B ij and B ij,kl 

Bij = .J=T(1/i+ 1/j -1// 1/i)' 
(7) 

which form a base in a space of all one- and two-particle 
antisymmetric operators. Operators (7) are Hermitian and 
antisymmetric, i.e., in the base (5) they satisfy 

A A 

(.1 v IBij 1.11')* = (.11' IBijl.1 y ), 

(.1 v IBij.k/l.1I')* = (.11' IBij,k/l.1 y ), 

(.1 v IBijl.1l') = - (.1I'IBijl.1 v ), 

(.1 y IBij.k/l.1/t) = - (.1I'IBij,k/l.1 y ). 

In addition, they satisfy symmetry relations 

(Sa) 

Bij = - Bji , Bij,kl = - Bij'/k = - Bkl.ij (Sb) 

to be compared with ~ymme~y relations (2a) satisfied by 
symmetric operators Aij and Aij,kl' In particular, relations 
(Sb) imply 

B .. =0, B" kl =B' kk =B ... =0. 
II II, 'J, I},I] 

(9) 

In conjuncture with symmetric operators (I b) antisymmetric 
operators (7) span the space of all one- and two-particle oper
ators. We will now construct antisymmetric reduced opera-

A A 

tors P out of operators B, similarly as symmetric reduced 
operators R are constructed out of operators A. 

Notice first that one-particle operators Bij already sa
tisfy properties (6). Namely, one can show that 

(IJI + IBij IIJI-) = (1JI-IBij IIJI +) = 0 whenever v~tices (i) 
and (j) ~e of the same parity, and (IJI t IBij IIJI t ) 
= (IJII-IBij 11JI 2-) = 0 whenever ver~ces (i) and (j) are of 

the opposite parity.3 Hence operators Bij with indices i andJ 
of the same parity have required properties of altemant oper
ators, while operators Bij with indices i andJ of the opposite 
parity have required properties of antialtemant operators. It 
follows that each operator Rij B kl has also definite symmetry 
properties with respect to complementary spaces X n+ and 
X n- , i.e., it satisfies either relation (6a) or relation (6b). For 
example. if both opera~rs Rij and Bkl satisfy (6a), and if 
IJI + EX n+, then (IJI -IB kl IIJI +) = 0 for an arbitrary state 
IJI- EX n- • and hence the state IJI' = B kl IJI + has no compo
nent in the space X n- , i.e., IJI' EX n+ . Similarly Rij IJI' EX n+ , 

and hence (IJI-JRijBkIJIJI+) =0. In the same way one 
A A A A 

finds (IJI+JRijBklllJl-) =0, i.e., RijBkl satisfies (6a). Us-
ing the anticommutation algebra of creation and annihila
tion operators 1/,.+ and 1/i one finds 

A A A A A 

Bij,kl = HAik Blj + Bki Aj/] (i=h=l=l =l=k). (lOa) 
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A 

It can now be easily shown that operator Bij,kl(i=l=J=I=k =1=1) 
satisfies (6a) if an odd number out off our vertices (i), (j), (k ), 
and (I) is source, and (6b) otherwise. Since further 

A A A A 

- Bij Rkk = 2Bik,jk + Bij' (lOb) 

operators Fik'ik = 2Bik.ik + Bij have also definite symmetry 
properties with respect to complementary spaces X n+ and 
X ;;, and hence antisymmetric reduced operators can be 
chosen to be 

A A 

Pij = Bij (i=/=J), 
A A 

Pij,kl = Bij,kl (i=l=J=/=k =/=1), (7') 
A A A 

Pik,ik = 2Bik'ik + Bij (i=/=J=/=k). 

In view of the symmetry relations (Sb) one can define 

Fij = - Fji , Fij,kl = - Fji,kl = - Fkl.ij (Sb') 

in order to generalize the definition (7') of antisymmetric 
reduced operators to arbitrary indices i,J, k, and I. Operators 
(7') are Hermitian and antisymmetric. In addition (Sb') im
plies 

F = 0 F. kl = F. kk = 0, F .... = 0, II ,", I}. 1),1] 
(9') 

and hence reduced operators (9') need not be considered. 
A A 

Each reduced operator P ij and P ij,kl satisfies either rela-
tion (6a) or relation (6b). Reduced operators satisfying rela
tion (6a) are defined to be altemant, while reduced operators 
satisfying relation (6b) are defined to be antialtemant. One 
finds that a reduced operator Fij is altemant if vertices (i) and 
(j) are of the same parity, and antialtemant otherwise. Simi
larly, a reduced operator Fij,kl is altemant if it contains an 
odd number of vertices of the same parity, and antialtemant 
otherwise. This rule is exactly opposite to the rule for re-

A A A 

duced symmetric operators ~ and Rij,kl' Hence if Rij is al-
temant (antialtemant) ~hen Pij is antialtemant (altemant), 
~nd vice versa. Also, if Rij.kl is altemant (antialtemant) then 
Pij,kl is antialtemant (altemant), and vice versa. 

The set of all antisymmetric reduced operators (7') is 
complete in the space of antisymmetric operators, i.e., each 
antisymmetric operator can be represented as their linear 
combination. In addition, this representation is unique up to 
the symmetry relations (Sb'). The first .£art of this statement 
0110ws from the fact that operators Bij,kl(i:j:.J=I=k =/=1) and 
Bik,jdi=l=J:j:.k) span the space of all two-particle antisymme
tric operators, and they can be represented as linear combi
nations of reduced operators (7') 

A A. 

Bij,kl = Pij,kl' bond-bond, 

(11) 
B'k 'k = l(F'k 'k - F .. ), bond-vertex, I.) 2 I.) I) 

while operators Fij = Bij span the space of all one-particle 
antisymmetric operators. The second part follows from the 
fact that operators (7) are linearly independent up to the sym
metry relations (Sb), and hence relations (7') imply that re
duced operators Fjj and Fij,kl are linearly independent up to 
the symmetry relations (Sb'). It follows that reduced opera
tors (ta) and (7') are complete and linearly independent in the 
space of all operators. One can now generalize the definition 
of altemant and antialtemant operators. By definition, each 
linear combination of reduced alternant operators (ta) and! 
or (7') is an altern ant operator, while each linear combination 
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of reduced antialtemant operators (Ia) and/o!. (1') is an an
tialtemant operator. Each altemant operator Oal is hence of 
the form 

+ A A 

+ L aif.kl Rij,kl + L aij,kl Pij.kl' (12a) 
i,j,k,l i,j,k,l 

while each antialtemant operator anal is of the form 

A + A 

+ L aif.kl Rij,kl + L aij,kl Pij.kl' (12b) 
i,j,k.1 i,j.k.l 

where a, aif, aij, aif,kl' and aij,kl are arbitrary coefficients, 
and the following convention concerning different summa
tions is used: double summations ~ij+ and~;; are performed 
over vertices (i) and (j) of the same and of the opposite parity, 
respectively. Quadrupole summation ~ijtl is performed over 
all sets of four vertices (i), (j), (k ), and (I) such that an even 
number of these vertices is source, while quadrupole summa
tion ~ijkl is performed over all sets of four vertices (i), (j), (k), 
and (I) such that an odd number of these vertices is source. 
Without loss of generality one can assume 

aij = ali' aij = - aft·, aif,kl = - aji,kl = a~I,ij' 
a'U.kl = - aj.,kl = - a%I,ij 

(I2c) 

in order to follow symmetry properties (2b) and (8b') of the 
correpsonding reduced operators. All altemant and antial
temant operators (12a) and (12b) satisfy relations (6a) and 
(6b), respectively. This completes the extension of the split
ting theorem to arbitrary one- and two-particle operators. 

In the above formulation of the splitting theorem, there 
is still one question which remains open. We have shown 
that altemant and antialtemant operators satisfy relations 
(6a) and (6b), respectively. It is, however, not yet clear 
whether or not altemant and antialtemant operators are all 
operators satisyfing these relations. In order to answer this 
question, let us define "weakly" altemant and "weakly" an
tialtemant operators. By definition, each operator satisfying 
(6a) is weakly altemant, while each operator satisfying (6b) is 
weakly antialtemant. Obviously, each altemant operator is 
also weakly altemant, while each antialtemant operator is 
also weakly antialtemant. The above question can now be 
formulated in the following way: Is each weakly altemant 
operator necessarily an altemant operator, and similarly, is 
each weakly antialtemant operator necessarily an antialter
nant ope~tor? 

Let 0 be a weakly altemant operator. Since the set of all 
reduced operators is linearly independent and complete, 
there is a unique decomposition 

(13) 
A A 

where Oal is an altemant operator, while Onal is an antialt-
emant operator. By definition, operator Q. satisfies (6a). 
Further, according to the splitting theorem, Oal also satisfies 
(6a), and hence anal should satisfy (6a) as well. However, anal 

is an antialtemant operator satisfying (6b), and one thus 
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finds that anal should vanish over the space X n • This does 
A A A 

not yet imply that Onal is zero, i.e., that 0 = 0al' Reduced 
A A ,.. A A 

operators R ij' R ij,kl' I, P ij' and P ij,kl are linearly independent 
provided the whole space X generated by the creation opera
tors 1]/ from the vacuum state 10) is considered. This space 
contains the vacuum state, all the one-particle states, all the 
two-particle states, etc. The n-particle spaceXn is the nontri
vial subspace of the space X, and reduced operators are not 
linearly independent on Xn alone. For example, the number 

A 

of particle operators N = ~i1]/ 1]; is constant over X n , i.e., 
A 

NIP = nIP, (14) 

whenever IP E X n • Hence the antialtemant operator anal 

= A (N - n) =J-t ~i RiO where A is an arbitrary constant, 
vanishes over X n • This example shows that an antialtemant 
operator vanishing over Xn is not necessarily zero. The prob
lem to find all weakly altemant operators thus reduces to the 
problem to find all antialtemant operators vanishing over 
X n • Similarly, the problem to find all weakly antialtemant 
operators reduces to the problem to find all altemant opera
tors vanishing over X n • This problem can be further simpli
fied, since one easily finds that if an operator a vanishes over 
X n , both its symmetric and its antisymmetric components 
should vanish over X n • Hence it is sufficient to find all sym
metric and all antisymmetric operators with the above prop
erties. In the Appendix we prove the following theorem. 

Theorem 2: (a) The necessary and sufficient condition 
for a symmetric altemant operator a ~I to vanish over Xn is 
that it is of the form 

a~1 = L Cj + L (Cj + Cj)RijJi 
i i<) 

(15) 

where Cj and Cij are arbitrary coefficients. 
(b) The necessary and sufficient condition for a symmet

ric antialtemant operator a ~al to vanish over Xn is that it is 
of the form 

a~al = CS I Rii + I Cif I Rjk,kj' (16) 
i i<j k 

where CS and Cij are arbitrary coefficients. 10 

(c) The necessary and sufficient condition for an anti
symmetric altemant operator a:1 to vanish over Xn is that it 
is of the form 

(17) 

where C ij are arbitrary coefficients. 
(d) The necessary and sufficient condition for an anti

symmetric antialtemant operator a ~al to vanish over Xn is 
that it is of the form 

(18) 

where the C if are arbitrary coefficients. 
From the above theorem, Corollary 1 now follows. 
Corollary 1: (a) Each weakly altemant operator is of the 

form 
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(19) 
A A A 

where Oal is an alternant operator, while O~al and O~al are 
antialternant operators whose general forms are given by 
relations (16) and (18), respectively. 

(b) Each weakly antialternant operator is of the form 

(ZO) 

where anal is an antialternant operator, while O~I and O~l 
are alternant operators whose general forms are given by 
relations (15) and (17), respectively. 

Corollary 1 answers the above question to find all oper
ators satisfying (6a) and all operators satisfying (6b). How
ever, what we obtained is in fact much more than is usually 
needed. Namely, operators a ~a1 and a ~al vanish over X n , 

and h~nce weakly alternant operator (19) and alternant oper
ator 0 81 have the same eigenvalues and eigenvectors in X n , 

i.e., as far as the space Xn is considered, these operators are 
identical. Hence we have the following theorem. 

Theorem 3: (a) Let the operator a be weakly alternant, 
i.e., let it satisfy 

A A 

(I{I+IO II{I-) = (I{I-IO II{I+) = 0, (Zla) 

for each I{I + EX:' and I{I- EX n- • Then there exists an al
ternant operator 0 81 such that 

A A 

Ol{l = 0all{l, (21b) 

whenever I{I E X n • 

(b) Let the operator a be weakly antialternant, i.e., let it 
satisfy 

(1{IIIOll{lz) =0, (ZIc) 

if either 1{I1,1{I2 EX n+ or I{IjJ 1{12 EX n- • Then there exists an 
antialternant operator anal such that 

A A 

components. The explicit form of this decomposition pre
sents a rationale for the intuitive picture where an arbitrary 
system is considered to be an alternant system perturbed by 
an antialternant perturbation. This picture leads to an effec
tive perturbation expansion with many interesting proper
ties.8 We will now answer the above questions for the general 
case of an arbitrary operator, which can be easily specialized 
to the case of Hermitian operators. 

An arbitrary one- and two-particle operator can be 
written in the form 

0= Il + L llij17j+ 17j 
ij 

+ L llij.kl17/17/17I17k' (2Za) 
kj,k< I 

wherell, Ilij' andllij,kl are arbitrary coefficients. Without loss 
of generality one can assume 

Ilij,kl = -Ilji,kl = - Aij,lk (22b) 

as implied by the fermion anticommutation relations. This 
permits the extension of the above summations to arbitrary 
indices. 

We will also use the notation 

Aij = Il if + A ij, Aij,kl = A if,kl + A ij,kl' (2Zc) 

where superscripts (s) and (a) refer to symmetric and to anti
symmetric components, respectively, of matrices !Aij J and 
!Aij,kl J: 

Il if = (Ilij + Aji )/2, Il ij = (Ilij -Iljj )/2, 

Il if,kl = (Il ij,kl + Il kl,ij )/2, 

Il ij,kl = (Ilij,kl -Ilkl,ij )/2. 

(22d) 

o I{I = 0 nal I{I, (2Id) These components satisfy 

whenever I{I E X n • 

According to the above theorem, as far as the space Xn 
is considered, alternant operators are all operators satisfying 
(6a), while antialternant operators are all operators satisfy
ing (6b). 

III. PARTITION OF AN ARBITRARY OPERATOR ON ITS 
AL TERNANT AND ANTIAL TERNANT COMPONENT 

In the next section it will be shown that all alternant 
systems are described by alternant and weakly alternant 
Hamiltonians. Further, using relations (12a), (16), (18), and 
(19), one can explicitly construct all alternant and weakly 
alternant Hamiltonians. These Hamiltonians are represent
ed as linear combinations of reduced operators. We have 
thus obtained an explicit and constructive answer to the 
problem of the formation of alternant systems. The inverse 
question is equally important: How can one recognize alter
nant and weakly alternant Hamiltonians, i.e., how can one 
decide whether or not a given Hamiltonian describes an al
ternant system? A Hamiltonian is usually not written in the 
form of the linear combination of reduced operators, and 
hence one cannot immediately answer this question. The re
lated but not identical question is to find a decomposition of 
an arbitrary Hamiltonian on its alternant and antialternant 
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A if = A j,., Il if,kl = Il ~/,ij = - A ij,kl' 

(22e) 
A ij = -Il ft' Il ij,kl = -Il kl,ij = -Il ft,kl' 

Since further 

(23) 

one obtains 

I [A A ] + I=T - L Il ij Bjj + L Il ij,kl Bij,kl . 
2 jJ kj,kd 

(24) 

A A 

Note that operators A and B are Hermitian, and hence the 
A 

operator 0 is Hermitian whenever coefficients A, Il if, and 
A if,kl are real, while coefficientsll ij and A ij.kl are imag!!.tary. 
Using relations (Ia) and (1'), one can express operator 0 as a 
linear combination of reduced operators 
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I A +- ~ A-~, .. RI··· 
2 ~. ~,I) ~JI 

I<J 

I A A } + -2 L L A- ~kJk PikJk + L A- ij,kl Pij,kl , 
k iJ i<j,kd 

(25) 

where the quadrupole summations ~ijkl are performed over 
mutually disjunct vertices (11, (j), (k ), and (I), i.e., only over 

'" bond-bond operators. Operator 0 can now be written in the 
form 

A A A 

0= Oal + 0nal' (26) 

where Oal is an altemant operator, while Onal is an antialter
nant operator 

1631 

Oal = A- + ~ {+ [A-:i + ~ ~ A- ij,ij ] 

- [ I ] A + ~ A-~. + - ~ A- sk·k R·· £.- I) 2 £.- I ,J IJ 
iJ k 

I A 

+ -2 t:.A- t,ij RijJi 
I<J 

I + A + A} 
+ -2 L L A- :kJk Rik,kj + L A- ij,kl Rij,kl 

k i#i i<j,kd 

+~ ~ {t [A-ij+ ~ ~A-~kJk]Pji 
I - A 

+ -2 L L A- ~,jk Pik,jk 
k iJ 

(27a) 

o aI = - ~ A- s. + - ~ A- ~. .. R·· A I{ [ I ]A 
n 2 7' /I 2 f 1),1) /I 

I - A - A} 
+ -2 L ~ A- :k,jk Rik,kj + .) A- ij,kl Rij,lk 

k I,J 1<1t<1 

I{-[ 1 ]A +~ 2 ~ A-ij +2 LA-~k,jk Pji 
I,J k 

1 + A + A} + - L L A- ~k,jk Pik,jk + L A- ij,kl Pij,kl . 
2 k i,j i<j,kd 

(27b) 
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In Eqs. (27) quadrupole summations ~ijkl and ~iik, are per
formed over mutually distinct vertices (i), Ul, (k ), and (I), i.e., 
over bond-bond operators. 

Operator Oal' is a sum of a symmetric and an antisym-
A 

metric component, and similarly operator Onal is a sum of a 
symmetric and an antisymmetric component. Symmetric 
components of Oal and Gnal involve only symmetric parts of 
maJ.rices {1u } and {A-ij,kl }, while antisymmetric components 
of 0 al and Onal involve only antisymmetric parts of matrices 
{A-ij} and {A-ij,kd. 

Relations (27) present a simple and efficient algorithm 
to obtain altemant and antialtemant components of an arbi
trary operator (22). In addition, since reduced operators are 
linearly independent, these relations automatically yield 
necessary and sufficient conditions for an operator (22) to be 
(weakly) altemant or (weakly) antialtemant. For example, 
according to Corollary 1, a necessary and sufficient condi-

A 

tion for an operator (22) to be weakly altemant is Onal 
A A 

= 0 ~a1 + O:a1' which is equivalent to the following set of 
conditions \0: 

(a) A- s. + l. ~ A- s ... = 2C s. 
/I 2 ~ I),IJ ' 

J 

(b) A- s. + l. ~ A- sk ·k = 0, 
IJ 2.or I,J 

i andj are of the same parity, i=/=j; 

(c) A- ij + ~ ~ A- ~k,jk = 0, 

i and j are of the opposite parity; 

(d) A- ~k,jk = 2Cij, 

i andj are ofthe opposite parity, i=/= j=/=k; (28) 

(e) A- ~k,jk = 2Cft, 

i andj are of the same parity, i=/= j=/=k; 

(f) A- ij,kl = 0, 

odd number of source vertices, i =/= j =1= k =1= I; 

(g) A- ij,kl = 0, 

even number of source vertices, i =/= j =/= k =/= I; 
where C, Cij = eji' and eij = - eft are arbitrary coeffi
cients. The above conditions do not contain coefficients A- ij (i 
andj are ofthe opposite parity), A- ij (i andj are of the same 
parity), A- ij,kl (even number of source vertices, i=/= j=/=k =/=/), 
and A- ij,kl (odd number of source vertices, i =1= j =/= k =/= I). 
Hence all these coefficients are completely arbitrary. In a 
similar way one obtains necessary and sufficient conditions 
for the operator (22) to be altemant. These conditions coin
cide with conditions (28) except for the conditions (28a), 
(28d), and (28e) which become 

1 
(a) A-~. +- LA-~··· =0; 

/I 2 j IJ,I) 

(d) A- :k,jk = 0, 
i and j are of the opposite parity; (28') 

(e) A- ~k,jk = 0, 
i andj are of the same parity; 

that is, coefficients e s, e~j' and eij in (28) are set to zero. 

Tomislav P. Zivkovic 1631 



                                                                                                                                    

~nalogously one obtains explicit conditions for the operator 
o to be weakly antialtemant and to be antialtemant, respec
tively. 
IV. AL TERNANT SYSTEMS 

Since altemantlike states have characteristic properties 
of 1T-electron eigenstates associated with neutral altemant 
hydrocarbons, it is natural to consider each Hamiltonian 
having the complete set of alternantlike eigenstates as de
scribing some alternant system. We will take this intuitive 
picture as a definition of alternant systems: A quantum sys
tem is "altemant" if it is described by some Hamiltonian 
having the complete set of alternantlike eigenstates. The 
completeness is here defined with respect to the space Xn . In 
view of this definition, we would like to find all Hamiltonians 
describing alternant systems. 

Consider the Hamiltonian operator ii written in the 
form (22). Since H is Hermitian, A. and symmetric coeffi
cients A. ij and A. ij,kl are real, while antisymmetric coefficients 
A. ij and A. ij,kl are imaginary. Further, each Hermitian opera
tor has the complete set of eigenstates in the space X n • From 
the splitting theorem and property (6a) of weakly altemant 
operators, it now follows that each Hermitian weakly alter-

A A A A 

nant operator H = Hal + 0 ~al + 0 ~al has a complete set of 
alternantlike eigenstates, i.e., according to the above defini
tion it describes some alternant system. In addition, weakly 
altemant operators are most general operators with such a 
property. Namely, if the operator 0 is not weakly aJternant, 
then there are some states IJI - EX n- and IJI + EX + such 
that ( IJI -10 IIJI + ) 0/= O. If now the operator 0 has at the same 
time the complete set of alternantlike eigenstates IJI; 

01Jl; = C; 1JIi> where lJIi EX n+ or lJIi EX n- , 

then the state IJI + can be expanded in terms of eigenstates 
lJIi E XA/+ , and using this expansion one obtains 
(IJI -10 IIJI +) = 0, contrary to the above expression. This 
proves Corollary 2. 

Corollary 2: The necessary and sufficient condition for a 
Hermitian operator ii to have the complete set of alternant
like eigenstates is that it is weakly alternant. 

In other words, as far as Hermitian operators are con
sidered, weakly alternant operators and only weakly alter
nant operators have the complete set of alternantlike eigen
states. Corollary 2 implies the following corollary. 

Corollary 3: Each quantum system which is described 
by some weakly alternant Hamiltonian is an alternant sys
tem. Also, only such systems which are described by weakly 
alternant Hamiltonians are alternant systems. 

If the Hamiltonian H is written in the form (22), then 
necessary and sufficient conditions for this Hamiltonian to 
describe an alternant system are explicitly given by relations 
(28). The interpretation of these conditions is straightfor
ward: conditions (28a) imply that the effective potential en
ergy of an electron is constant over all vertices (spin-orbitals) 
(i). Conditions (28b) imply that the real component of the 
effective resonance integral between vertices of the same par
ity should be zero. This is the generalization of the usual 
assumption that in an alternant system the resonance inte
gral vanishes between atoms of the same parity. Conditions 
(28c) imply that the imaginary component of the effective 
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resonance integral vanishes between vertices of the opposite 
parity. Conditions (28d) and (28e) refer to the real and imagi
nary components of three center integrals. Thus, according 
to the relations (28d), whenever vertices (i) and (;1 are of the 
same parity and k 0/= i 0/= j, coefficients A. :k,jk (which represent 
real components of three center integrals) are independent 
on the vertex (k ), i.e., A. :k jk = A. :k ',jk" Similarly, conditions 
(28t) and (28g) refer to real and imaginary components, re
spectively, of four center integrals. If the Hamiltonian His 
real, then conditions (28c), (28e), and (28g) referring to imagi
nary components of various integrals are automatically sat
isfied. Conditions (28a), (28b), (28d), and (28t) referring to 
symmetric coefficients A. ij and A. ij,kl were derived already 
elsewhere. 2, 10 However, conditions (28), as obtained in this 
paper, can be applied to an arbitrary Hamiltonian, and hence 
they encompass the most general definition of alternant sys
tems. As emphasized in the previous section, these condi
tions do not contain coefficients A. ij (i andj are of the oppo
site parity), A. ij (i andj are of the same parity), etc. Hence all 
these coefficients (integrals) can be set arbitrary. This is a 
very substantial generalization of the notion of alternant sys
tems. From the above discussion it is obvious that no further 
generalization is possible. 

One further point should be emphasized. Though each 
weakly alternant Hamiltonian describes some alternant sys
tem, in order to describe an arbitrary system it is sufficient to 
consider only alternant Hamiltonians. Namely, from 
Theorem 3 it follows that each alternant system can be de
scribed by some alternant Hamiltonian. According to 
Theorem 2, even the space of all altemant Hamiltonians is 

A A 

too large, since operators 0:1 and 0 ~ vanish over Xn , and 
hence they can be "extracted" from an arbitrary alternant 
Hamiltonian without altering eigenstates and eigenvalues. 

V. DENSITY MATRICES OF ALTERNANT SYSTEMS 

The importance of altemantlike states lies in the fact 
that these states have characteristic properties of neutral al
ternant hydrocarbons. 1,2 Hence these states can be associat
ed with alternant systems, as we did in the preceding section. 
We will now discuss properties of alternantlike states in 
more detail. In fact, we will find all one- and two-particle 
properties which can be expressed as expectation values of 
some observables. 

According to the splitting theorem, each alternantlike 
state IJI ± E X !- satisfies 

(29a) 
"'-

where Onal is an arbitrary antialternant operator. Since rela-
tion (29a) holds for all alternantlike states, it expresses some 
general property of these states. This property can also be 
considered to be characteristic, since it is in general not 
shared by arbitrary states IJI E Xn (unless, for example, 0 I .>::: A A na 

vanishes over Xn, in which c~e Onal = 0~a1 + O~al' etc). 
Each antialternant operator Onal is thus associated with 
some property common to all alternantlike states. Further, 
according to Theorem 2 each state IJI E Xn satisfies 

A A A A 

<IJIIO~I +O~ +0~a1 +0~a111J1) =0. (29b) 
A A. A A. 

Operators 0 ~I' 0:1, 0 ~a1' and 0 ~a1 are hence associated 
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with some properties common to all states 1/1 E Xn, and in 
particular to the alternantlike states 1/1 ± EX n± . 

One would like to know how general are relations (29), 
i.e., can one express each property common to all alternant
like states in this form? In the case of linear properties, the 
answer is affirmative. These properties can be expressed in 
the form I I 

A A 

AD + AI (1/110111/1) + A2(1/I10211/1) + ... = 0, (30a) 

where 0» O2,,,, are linear operators. Relation (30a) can be 
written in the form ( 1/110 11/1) = 0, where o = AD + A 101 + A20 2 + .... In particular, if 1/1 is an alter
nantlike state, one has 

(1/1 ± 10 11/1 ±) = O. (30b) 
Hence the problem to find all linear properties of alternan!,:: 
like states is equivalent to the problem to find all operators ° 
satisfying (30b) for an arbitrary alte~antlike state 1/1 ±. One 
can now show that if some operator ° satisfies (30b) for each 
alternantlike state 1/1 ± , then it satisfies 

(30c) 

for each pair 1/1 t and 1/1 2± of alternantlike states. But this 
last condition is exactly the definition of weakly antialter
nant operators, and hence according to Corollary 1 the oper-

A A A A 

ator ° = ° nal + ° ~I + 0:1 is the most general operator sa-
tisfying (30b). Each operator satisfying (30b) is hence a linear 
combination of operators satisfying (29a) and (29b). This 
shows that the set of all weakly antialternant operators en
compasses all linear properties common to alternantlike 
states. It is, in fact, sufficient to consider some complete set 
of linearly independent weakly antialternant operators, 
since otherwise the associated properties depend on each 
other. Consider first the relation (29a) referring to antialter
nant operators. Since each antialternant operator can be rep
resented as a linear combination of reduced antialternant 
operators, condition (29a) imposed on an arbitrary antialter
nant operator is equivalent to the set of conditions involving 
all reduced antialternant operators. These last conditions 
can be conveniently transformed into the set of conditions 
involving matrix elements of one- and two-particle density 
matrices. 

Define first matrix elements of one- and two-particle 
density matrices rand r, respectively, 12-14 

rij(l/I) = (1/I177/ 7/j11/l), 

rij,kl( 1/1) = (1/1177/77/ 77l77k 11/1) /2, 

(31a) 

(31b) 

where the state 1/1 is assumed to be normalized. We further 
use the notation 

rij = rij + rij, rij,kl =rij,kl +rij,kl' (32a) 

where superscripts (s) and (a) refer to symmetric and anti
symmetric components, respectively. We have 

rij =(rij +rji)/2= (1/1 IAij I 1/1)/2, 

r ij = (rij - rjj)/2 = [=-r (1/IlBjj 11/1)/2, 
A 

r ij,kl = (r ij,kl + r kl,ij )/2 = (I/IIA ij,lk 11/1 ) /4, 
(32b) 

rij,kl = (Fij,kl - r kl,ij)/2 = [=-r (1/1 IBij,kl I 1/1 )/4. 

Since matrices rand r are Hermitian, 
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r t = rji' r t,kl = rkl,ij' (33) 

symmetric and antisymmetric components coincide with 
real and imaginary components, respectively. From the rela
tions (1), (7), (29a), and (31) it now follows that 

(a) rii(1/I ±) = ~; 
(b) rij(I/I±) =0, 

i andj are ofthe same parity, i;;j= j; 

(c) rij(I/I±)=O, 

i andj are of the opposite parity; 

(d) r;k,jdl/l ±) = r ij(1/I ± )/4, 

i andj are of the opposite parity, i;;j= j;;j=k; 

(e) r~k,jdl/l ±) = r ij(1/I ± )/4, 

i andj are of the same parity, i;;j= j;;j=k; 

(f) rij,kl( 1/1 ±) = 0, 

odd number of vertices of the same 

parity, i;;j= j;;j=k ;;j=l; 

(g) rij,kl(1/I ±) = 0, 

even number of vertices of the same 

parity, i;;j=j;;j=k ;;j=l. 

(34) 

Relations (34) are satisfied by all alternantlike states 1/1 ± 

EX n± . They express common properties of these states, and 
they are characteristic in the sense that they are not satisfied 
by all states 1/1 E X n. 

In quantum mechanical treatment of molecular sys
tems one usually considers atomic orbits as "building 
blocks," and to each atomic orbital one associates one spin-a 
and one spin-/3 spin-orbital. 1,2 Within this model one can 
define spin-independent one- and two-particle density ma
trices P and P, respectively, as 

- a+ r /3 Pij -rij ij' 

Pij,kl = rij';l + r~l + r c'fl + r C,~I' 
where 

r ij = (1/11 a j+ aj 11/1 ) , r ff = (1/11 b / bj 11/1 ) , 

rij';l = (1/1 la/ a/ a1ak 11/1) /2, 

rij~l = (I/Ila/b/ blak ll/l)/2, 

rc,fl = (1/1 Ib j+a/a1bk 11/1)/2, 

rC,~1 = (I/Ilb/ b/ b1bk ll/l)/2, 

(35) 

(36) 

while a/ (a j ) and b / (b j ) are spin-a creation (annihilation) 
and spin-/3 creation (annihilation) operators, respectively. In 
accord with relations (32) one can now define symmetric and 
antisymmetric components of density matrices P and P as 

Pij = pij + pij, Pij,kl = Pij,kl + Pij,kl' 

where 
pij = (Pij +pji)/2, pij = (Pij -Pjj)12, 
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Since the total number of spin-orbitals is 2n, there are n spin
a orbitals Xi = wia and n spin-P orbitals Xi = Wi p, where 
the WI are orthonormalized atomic orbitals, while a and P 
are spin-a and spin-p states, respectively. 1.2 Source and sink 
vertices can now be defined in such a way that if Xi is source, 
then Xi is sink, and vice versa. In other words, the two spin
orbitals associated with the same atomic orbital Wi are of the 
opposite parity.2 By convention, the parity of the atomic 
orbital Wj is chosen to coincide with the parity of the corre
sponding spin-a orbital Xj (see Ref. 2). Within this picture 
relations (34) imply 

(a) Pu(tf/ ±) = 1; 

(b) pij(tf/ ±) = 0, 

i andj are of the same parity, i=l= j; 

(c) pij(tf/ ±) = 0, 

i andj are of the opposite parity; 

(d) P~k.jk(tf/±)=pij(tf/±)l2, 

i andj are of the opposite parity, i=l= j=l=k; 

(e) P~k,jdtf/±)=pij(tf/±)l2, (38) 

i andj are of the same parity, i=l= j=l=k; 

(f) Pij,kl(tf/ ±) = 0, 

odd number of vertices of the same 

parity, i=l= j=l=k =1=1; 

(g) Pij,ktltf/ ±) = 0, 

even number of vertices of the same 

parity, i =1= j =1= k =1= I. 

In connection with relations (34) and (38) a few points should 
be emphasized. 

(a) Indices i,j,k, and I refer to spin-orbitals in relations 
(34) and to atomic orbitals (i.e., a pair of spin-orbitals) in 
relations (38). Relations (38) are a consequence of relations 
(34), and they are valid within a particular though rather 
general model. Other similar models can be also formulat
ed,l and we give here relations (38) in order to make more 
transparent the physical content of relations (34). In any case 
relations (34) are more fundamental, and they contain all the 
relevant information. 

(b) In the treatment of neutral altemant hydrocarbons 
(AH's), and within the 1T-electron model where each carbon 
atom donates one 1T-electron to the system, the partition on 
sink and source vertices can be chosen to coincide with the 
usual partition on starred and unstarred carbon atoms. In 
this case relations (38a) express the uniform 1T-electron den
sity distribution over all carbon atoms, while relations (38b) 
express the vanishing of bond orders between atomic orbitals 
(and hence atoms) of the same parity.I,2 These are well
known properties of neutral AH's, and they are traditionally 
derived from the pairing theorem.5

-
7 These properties are 

common to all altemantlike states tf/ ± EX n±, and not just 
to particular eigenstates of selected altemant Hamiltonians, 
as usually considered by other authors.5

-
7 Properties (38a) 

and (38b) are derived from properties (34a) and (34b), respec
tively, which are more fundamental. Thus (34a) implies uni-
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form spin-a and uniform spin-P density of! over all spin
orbitals, while (34b) implies vanishing bond orders between 
all spin-orbitals of the same parity. Note that, e.g., relation 
(34b) contains more information than relation (38b), since 
according to (34b) real components of "cross" bond orders 
pf/ = (tf/ ± la/ bjltf/ ± > and~ = (tf/ ± Ib j+ajltf/ ± > van
ish between spin-orbitals Xi = wja and Xi = Wj P of the op
posite parity (the corresponding atomic orbitals Wi and Wj 

are then of the same parity), and this information is not con
tained in the relation (38b). Relation (34b) is thus more fun
damental. 

(c) Apart from relations (38a) and (38b), all other rela
tions in (38) express some properties which, as far as I know, 
were not obtained by other authors. All these properties, as 
well as the set of more basic properties (34), are common to 
all altemantlike states. Also, relations (34) express all the 
characteristic properties of altemantlike states, as far as one
and two-particle operators are considered. 

(d) If the state tf/ E Xn is real, then antisymmetric com
ponents r a and r a of density matrices vanish, and hence 
relations (34c), (34e), and (34g) are automatically satisfied. 
Remaining relations (34a), (34b), (34d), and (34f) refer to 
symmetric (i.e., real) components of density matrices. In the 
case of symmetric Hamiltonians it is sufficient to consider 
these relations alone, 2 unless there is some accidental degen
eracy which may lead to complex eigenstates. Even in this 
last case, it is always possible to choose the complete set of 
real eigenstates, i.e., to consider only symmetric components 
of density matrices. However, in a more general case when 
arbitrary ·complex states are considered, antisymmetric 
components r a and r a usually do not vanish, and all rela
tions (34) have a full physical content. The same is true for 
the spin-independent density matrices p and P. 

(e) If the state tf/ E Xn is a single-determinental function 
[as usually assumed in various self-consistent field (SCF) ap
proaches], then a two-particle density matrix r factor
izes2.13.14 

rij,kl = !(rik rjl - rilrjk)' 
and hence 

rij,kl =~(r:krj, +r~krft -r:,rjk -rilrlk)' 

rij,kl = ~(r~krj, + r :kr ft - r ilrjk - r:,r lk)' 

(39a) 

(39b) 

In this case relations (34d)-(34g) involving matrix elements 
of two-particle density matrices can be derived from rela
tions (34a)-(34c) involving matrix elements of one-particle 
density matrix. For example, if i =1= j =1= k =1= I and if, in addi
tion, there is an odd number of source vertices, then either i 
and k orj and I are ofthe same parity, and hence (34b) implies 
r :k r j, = O. Similarly, either vertices (i) and (I) or vertices (j) 
and (k) are of the same parity, and hence r :,r jk = O. Analo
gously (34c) implies r ~k r ft = r ilr lk = 0 and hence rij.k' 
= 0, in accord with the relation (34f). In a similar way all 

other relations involving matrix elements of a two-particle 
density matrix can be derived. Analogously spin-indepen
dent density matrices p and P can be treated. 

In conclusion, properties (34) and (38) are properties of 
all altemantlike states tf/ ± EX n±, and not only the proper-
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ties of some eigenstates of altemant Hamiltonians. In some 
special cases these relations simplify. Thus if the state '/I ± is 
real, relations (34c), (34e), and (34g) are automatically satis
fied since antisymmetric components ya and r a of density 
matrices are zero. Similarly, if the state '/I ± is a single-deter
minental function, then the two-particle density matrix r 
factorizes according to (39), and relations (34d)-(34g) can be 
derived from relations (34a)-(34c), i.e., they are not indepen
dent. However, in a general case all relations (34) and (38) are 
independent. Relations (34) contain all characteristic linear 
properties of altemantlike states. These relations are ulti
mately equivalent to the condition (29a) imposed on an arbi
trary antialtemant operator. 

Beside properties (34), which are derived from the rela
tion (29a) and which are characteristic in the sense that they 
are, in general, not shared by all states '/I E X n' there is an 
analogous set of properties which can be derived from the 
relation (29b), and which are shared by all states '/I E X n • 

Theorem 2 and the relation (29b) imply well-known relations 

L Yii = n, (40a) 
i 

2 +r:k,jk = (n - I)Yij, i=/=j, (40b) 

2 L r~k,jk = (n - l)y ij, (40c) 
k 

2 L rij,ij = (n - I)Yii' (40d) 
j 

The last three relations can be contracted into 

2 r rik,jk = (n - l)y ij' (4Oe) 
k 

Relations (40) are equivalent to the requirement (29b). The 
physical interpretation of these relations is straightforward. 
Thus relation (4Oa) expresses the fact that there are n parti
cles in the system. Concerning the relation (40d), note that 
2r ij,ij = ('/II7J / 7Jj + 7Jj 7J i I '/I ) is the so-called pair correlation 
function 12 which is the probability to find one particle at the 
vertex (i) simultaneously with another particle at the vertex 
(j). If one sums this probability over all vertices (j), and since 
there are (n - 1) remaining particles in the system, one 
should obtain (n - 1) multiplied by the probability Yii to find 
one particle at the vertex (i). This is exactly the content of the 
relations (40d). In the similar way relations (4Ob) and (4Oc) 
can be interpreted. 

In a sense relations (40) are trivial, since they can be 
easily derived from the definition (31) of density matrices 
and from thefactthat the operator N = I.7Ji+ 7Ji satisfies (14). 
However, we have shown here that the set of conditions (40) 
is equivalent to the requirement that an arbitrary operator 
A A A A A 

0= 0 ~I + 0 ~al + 0:1 + 0 :al vanishes over X n • This 
shows that relations (40) express the complete set of linear 
properties common to all states '/I E X n. In conjuncture with 
relations (34), relations (40) express the complete set oflinear 
properties common to all altemantlike states '/I ± EX n± . 
However, not all conditions (40) are independent on condi
tions (34). One easily finds that condition (40a) follows from 
conditions (34a), conditions (4Ob) involving vertices (i) and (}) 
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of the opposite parity follow from conditions (34d), while 
conditions (4Oc) involving vertices (I) and (}) ofthe same par
ity follow from conditions (34e). Independent states have 
only conditions (4Ob) and (4Oc) involving vertices (I) and (}) of 
the same and ofthe opposite parity, respectively, and condi
tions (4Od). We have thus obtained the complete set oflinear 
properties common to all altemantlike states. 

VI. SUMMARY AND CONCLUSION 

The main result of this paper is the generalization of the 
splitting theorem to arbitrary one- and two-particle opera
tors. This theorem is formulated in the configuration inter
action space Xn which is generated by n electrons moving 
over 2n orthonormalized spin orbitals. In brief, the theorem 
states that the spaceXn can be partitioned into complemen
tary subspaces X / and X n- such that matrix elements of 
"altemant" operators vanish between the states contained in 
different subspaces, while matrix elements of "antialter
nant" operators vanish between the states contained in the 
same subspace. As a consequence all the states '/I + EX n+ , as 
well as all the states '/1- EX n- (jointly called "altemantlike" 
states), have characteristic properties of 1T-electron eigen
states associated with neutral altemant hydrocarbons. In ad
dition, each Hermitian altemant operator has the complete 
set of altemantlike eigenstates, and this is particularly true 
for altemant Hamiltonians. 

In order to formulate the splitting theorem, one has to 
define the so-called "reduced" operators. These operators 
are building blocks of altemant and antialtemant operators, 
and they are given by relations (la) and (7'). Reduced opera-

A '" '" tors I, Rij' and Rij,kl [E9; (la)] ~re symmetric Hermitian, 
while reduced operators Pij and Pij,kl [Eq. (7')] are antisym
metric Hermitian. The notion of altemant and antialtemant 
operators, as well as the splitting X n ~ {X n+ ,x n- 1, depends 
on the partition B~ {B o,B * 1 of the set B containing all the 
vertices (i) (or likewise all the corresponding spin orbitals 
7Ji+ 10») into subsets B 0 and B * called "source" and "sink," 
respectively. Subsets B 0 and B * are required to contain the 
same number of elements. Once the partition B~{ B 0,B * 1 is 
fixed, each reduced operator is uniquely defined to be either 
altemant or antialtemant: a unit operator ], reduced opera-

'" tors Rij with ve~ces (i) and (j) of the opposite parity, re-
duced operators Pij wit~ vertices (i) and (j) of the same par
ity, reduced operators Rij,kl containing an even number of 
source vertices among four vertices (i), (j), (k ), and (I ), as well 
as reduced operators P ij,kl containing an odd number of 
source vertices among four vertices (I), (}), (k), and (I), are 

'" altemant. Reduced operators Rij ~th vertices (i) and (}) of 
the same parity, reduced operators P ij wit!:!. vertices (i) and (}1 
of the opposite parity, reduced operators Rij kl containing an . "-
odd number of source vertices, and reduced operators P ij,kl 
containing an even number of source vertices are antialter
nant. Each linear combination of reduced altemant opera
tors is now an altemant operator, while each linear combina
tion of reduced antialtemant operators is an antialtemant 
operator. Since the set of all reduced operators (la) and (7') is 
linearly independent and complete, an arbitrary operator 
can be uniquely written as a sum of an altemant and an 
antialtemant operator. This decomposition is explicitly giv-

Tomislav P. Zivkovi6 1635 



                                                                                                                                    

en by relations (27). From these relations one easily obtains 
necessary and sufficient conditions for an arbitrary one- and 
two-particle operator to be either altemant or antialtemant. 

According to the splitting theorem, matrix elements of 
altemant operators vanish between the states contained in 
different subspaces X n+ and X ;; . However, altemant opera
tors are not all operators with such a property. One hence 
defines "weakly altemant" and likewise "weakly antialter
nant" operators. Weakly altemant is each operator with 
vanishing matrix elements between the states contained in 
different subspaces, while weakly antialtemant is each oper
ator with vanishing matrix elements between the states con
tained in the same subspace. One finds that each weakly 
altemant operator is a linear combination of an altemant 
operator and an antialtemant operator vanishing over X n • 

Similarly, each weakly antialtemant operator is found to be 
a linear combination of an antialtemant operator and an 
altemant operator vanishing over Xn (Corollary 1). An ex
plicit expression of all operators vanishing over Xn is ob
tained (Theorem 2). Hence one can easily formulate neces
sary and sufficient conditions for an arbitrary operator to be 
either weakly altemant [Eq. (28)], or to be weakly antialter
nant. In addition, in the case of the Hermitian operators, 
weakly altemant and only weakly altemant operators have 
the complete set of altemantlike eigenstates. This property 
of weakly altemant operators suggests a natural definition of 
altemant systems: each quantum system which is described 
by some weakly altemant Hamiltonian is an altemant sys
tem. Also, only such systems which are described in this way 
are altemant. This definition is general in that it can be ap
plied to each Hamiltonian. Using relations (28) one can easi
ly verify whether a given Hamiltonian describes some alter
nant system or not. In addition, on the space Xn each weakly 
altemant operator coincides with some altemant operator 
(Theorem 3). Hence all operators describing altemant sys
tems can be constructed as linear combinations of reduced 
altemant operators. 

In conclusion to the above summary, the splitting 
theorem leads to a simple and constructive definition of al
temant systems. The role of reduced altemant operators is 
here crucial since they serve as building blocks of arbitrary 
altemant operators. However, the role of reduced anti alter
nant operators is equally important. Since matrix elements 
of these operators vanish between all the altemantlike states 
contained in the same subspace, these operators express 
some general properties of altemantlike states. It is conven
ient to express these properties in terms of conditions im
posed on matrix elements of one- and two-particle density 
matrices. One thus obtains the set of all one- and two-parti
cle linear properties characteristic of altemantlike states 
[Eqs. (34)]. Among other things, Eqs. (34) contain the gener
alization of the well-known properties of 1T-electron eigen
states associated with neutral altemant hydrocarbons, like 
uniform charge density distribution and vanishing bond or
ders between vertices of the same parity. In conjuncture with 
properties (40) which are common to all states rp E X n , Eqs. 
(34) complete the set of one- and two-particle properties 
common to all altemantlike states. It should be noted that 
there are some linear properties associated with three-parti-
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cle, four-particle, etc., operators, and they are expressible in 
terms of matrix elements of higher-order density matrices. 8 

However, relations (34) and (40) are complete as far as at 
most two-particle operators, or equivalently at most matrix 
elements of a two-particle density matrix, are considered. 

The results presented above are some far-reaching gen
eralizations of the characteristic properties of neutral alter
nant hydrocarbons, and they are not restricted to 1T-electron 
systems alone. The definition of reduced operators is com
pletely general, and any one- and two-particle operator can 
be split into its altemant and antialtemant component. Con
cerning the space of states, we are restricted here to the CI 
space X n • This is not the most general CI space. However, 
beside 1T-electron systems, it is flexible enough to describe 
rather complicated l1-electron systems. In addition, using 
the notion of dummy vertices, all the results obtained in this 
paper can be generalized to arbitrary finite-dimensional CI 
spaces, including some infinite-dimensional spaces.8 Note 
that the notion of altemant and antialtemant operators, as 
well as the splittingXn-[X n+, X n-j depends on the parti
tion B-[B o,B * j. This flexibility in the notion of altemant 
and antialtemant operators, and altemantlike states is use
ful, since the partition B- [ B o,B *j can be chosen in such a 
way as to fulfill a particular purpose. For example, one can 
wish to minimize the antialtemant component of the Hamil
tonian operator. In this case the altemant component of the 
Hamiltonian can be treated as an unperturbed Hamiltonian 
and the antialtemant component as a perturbation. This 
leads to a rather efficient perturbation expansion with many 
interesting properties.8 In particular, in the case of 1T-elec
tron systems of altemant hydrocarbons the partition 
B_ [B o,B *j always can be chosen to coincide with the usual 
partition on starred and unstarred atoms. In this case the 
antialtemant component of the Hamiltonian operator van
ishes, etc. 
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APPENDIX: PROOF OF THEOREM 2 

The proof of this theorem consists of two parts. First we 
show that conditions (15)-(18) are sufficient for the operators a ~t - a ~at to vanish over the space X n • Next we show that 
these conditions are also necessary. 

(a) We show that the conditions are sufficient. Accord
ing to the relation (15) the operator 'O~t is as required a sym
metric altemant operator, since it is a linear combination of 
reduced symmetric altemant operators. Similarly operators a ~at' 'O:t, and a ~at' as given by relations (16), (17), and (18), 
are symmetric antialtemant, antisymmetric altemant, and 
anti symmetric antialtemant, respectively. 

Using the anticommutation algebra of fermion opera
tors 17/ and 170 one finds that relations (15)-(18) are equiva
lent to 

" [ " + "],, O~t =2 ~CiRii +? CijAij (N-n), 
I 1<] 

(AI) 
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A [ - A]A o ~al = 2 C S + L. C ij Aij (N - n), 
I<} 

(A2) 

A [- A] A O~ =2 t:. CijBij (N-n), 
l<} 

(A3) 

A [+ A ] A o ~al = 2 L. Cij Bij (N - n). 
I<} 

(A4) 

Since (N - n) tf/ = ° for each state tf/ E Xn , all the above oper
ators vanish over X n • This proves that conditions (15)-( 18) 
are sufficient. 

(b) In order to prove that conditions (15)-(18) are neces
sary we proceed in a few steps. An arbitrary operator 0 can 
be written in the form 

o = A + L Aij 11,.+ l1j 
ij 

+ L Aij,kll1/l1/l1l11k' 
kj.k<1 

(AS) 

In the first step we show that the requirement that this oper
ator vanishes over Xn implies that it contains no bond-bond 
operator, i.e., lhat Aij,kl = ° whenever i=/= I=/=k =/=1. Hence 
each operator 0 vanishing over Xn can be written as such a 
linear combination of reduc~d operat~rs which does not con-
tain bond-bond operators Rij.kl and Pij,kl' A A A 

In the next step we consider operators 0 ~1' 0 ~al' 0 ~1 , 
and 0 ~al represented as linear combinations of appropriate 
reduced operators. For example, operator 0 ~1 is a linear 
combination of reduced symmetric alternant operators ex
cluding bond-bond operators, etc. The requirements 
O~lIAy) = 0, O~alIAy) = 0, O~lIAy) = 0, and O~alIAy) 
= 0, where lAy) EXn are some selected vectors in the space 

X n , lead to the set of conditions involvin; coefficients in the 
corresponding expansions of operators 0 ~1' 0 ~al' 0 ~1' and 
o ~al in terms of reduced operators. These conditions are 
sufficient to fix operators 0 ~al' 0 ~1' and 0 ~al in the forms 
(16), (17), and (18), respectively. Concerning the operator 
() ~1 , one further step is needed since the conditions obtained 
are rather implicit. This step is accomplished by mathemat
ical induction reasoning from the general n-particle to the 
general (n + I)-particle case. 

(b 1) Step one: The space Xn is spanned by vectors 

lAy) = Ivl,vz,""vzn ), 

where 

Lv,.=n 

(A6) 

(A7) 

and Vi = 1 if the orbital Xi is occupied, while Vi = ° other
wise,z,ls Vectors (A6) with the condition (A 7) are the same as 
vectors (5) written in a slightly modified notation. One can 
show thaes 

11/ I .. ·,vk,· .. ) = ( - I)zk(1 - vk)I ... ,vk + 1, .. ), 

11k I .. ·,vk,· .. ) = ( - I)zkvk I""vk - 1, ... ), 

where 

(A8) 

~k=VI+V2+'''+Vk_l' (A9) 

The vanishing of the operator 0 over the space X n implies 
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(AlO) 

for each vector (A6) satisfying (A7). In particular 0 lAo) = 0, 
where 

lAo) = I1,I, ... ,I n ,O,O, ... ). (All) 

Consider the action of the operator l1i+ 11/ 111 11k (i =/= j=/= k =/=/) 
on the vector lAo). Relations (A8) imply 

11/11/ 11111k lAy) 

= ± 11, ... ,1,01,1, ... , 1,0k' 1, ... , In ,0, ... , 1,.,0, ... ,0, Ij,O, ... ) 

= + IAlk .. ) - . -'.} (All') 

whenever I,k<n and i,j > n. None of the other operators con
tained in the expressioJl (AS) creates the state IAI,k~i,j) from 
the state lAo). Hence 0 lAo) = ° implies Aij,kl = 0 whenever 
i =/= j =/= k =/= I, I,k<n and i,j> n. The last two conditions are 
irrelevant, since the state A 0 can be replaced by some other 
state Ay This leads to the condition Aij.kl = ° whenever 
i=/= j=/=k =/=1. 

(b2) Step two: Consider as an example the antisymme-
A 

tric alternant operator 0 ~1' This oper~tor is ~linear combi-
nation of reduced alternant operators P ij and P ij,kl' and since 
it is required to vanish over X n , the first step implies that it is 
of the form 

A {PijIA o), 
Pik,kj lAo) = _ Pij lAo), 

k<n, 

k>n, 

where 

(AI2) 

i<n, j>n, 

j<n, i>n, 

otherwise, 
(A13) 

(AI4) 

IAi~) = I 1, ... , 1,0,., 1, ... , In ,0, ... ,0,Ij,0, ... ). (AIS) 

In particular, PijlAo) = ± FTIAi~j) whenever i<n and 
j> n. Since vertices (i) and (j) are required to be of the same 
parity, none of the remaining reduced operators contained in 
(AI2) creates the state IAi-j) from the state lAo), and hence 
the condition 

(AI6) 

implies A ij = ° whenever i<n andj> n. With an appropriate 
replacement ofthe vector lAo) with some other vector lAy) 
EXn one finds A ij = 0. The first term in (AI2) is hence zero. 
Relations (A13), (AI4), and (AI6) further imply 

n 2n 

L A ~k,jk - L A ~k.jk = 0. (A 17) 
k=1 k=n+1 

If the vector 1..10) is replaced with the vector IA l~n + I ), the 
analogous relation reads 

n + I 2n 

L A ~k,jk - L A ~k,jk - A ~l,jl = O. 
k=2 k=n+2 

(AI?') 

Relations (AI7) imply A ~I,jl = A rn + l,jn+ 1 which is easily 
"'-

generalized tOA ~k,jk = Cij. Operator O~ is hence necessar-
ily of the form (17). In a similar way relations (16) and (18) 
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can be derived. Concerning the symmetric alternant opera-
/".. 

tor 0 ~ the same reasoning leads to the conclusion that 0 ~I is 
necessarily of the form 

A /".. 

o ~I = A + I A t,ij Rij,ji 
i<j 

+ I + Cij I Rik,kj' (A1S) 
i<j k 

where the coefficients Cij are arbitrary, while coefficients A 
and A t,ij ~ aij are required to satisfy the condition that the 
operator 0 " 

A A 

0' =,1, + I aij Rij,ji> 
i<j 

vanishes over Xn ' 

(AI9) 

(b3) Step three: It remains to show that the vanishing of 
the operator (AI9) over Xn implies 

2n 
A = I Ci , aij = Ci + Cj , i,j<.2n, (A20) 

;=1 

where the Ci are arbitrary. The proof goes by induction, 
From relation (AS) it follows that 

Rij,pl..::1 v ) = (2Vi - 1)(2vj - 1)I..::1 v )' i=/=j. (A21) 
A 

Hence 0 '1..::1 v) = ° implies 
2n 

A + I aij f.ti f.tj = 0, 
i<j 

where 
2n 

f.ti = 2v; - 1 = ± 1, I f.t; = 0. 
i=1 

(A22) 

(A22') 

Relations (A22) should hold for all possible choices of 2n 
integers f.ti satisfying (A22'). If n = 1 relations (A22) imply 
A - a 12 = 0, and hence the general solution can be written in 
the form (A2I), i,e., a l2 = C I + C2 and A = C I + C2 ' The 
case n = 2 leads to the set of conditions 

A + a l2 - a 13 - a 14 - a 23 - a 24 + a 34 = 0, 

A - a 12 + a 13 - a 14 - a 23 + a 24 - a 34 = 0, 

,1,- a 12 - a 13 + a l4 + a 23 - a24 - a 34 = 0, 

which is equivalent to 

(A23) 

,1,= a l4 + a 23 = au + a24 = al2 + a 34. (A23') 

In (A23') coefficients a 14, a 23, a 13, and a 12 can be chosen 
arbitrary, and relations (A23') then determine coefficients A, 
a24' and a 34. However, one easily finds that relations 

CI + C2 = a 12, CI + C3 = a 13, 

C I + C4 = a 14' C2 + C3 = a 23 
(A23") 

have the solution in unknowns C I , C2, C3, and C4 for an 
arbitrary choice of coefficients a 12' a 13' a 14' and a 23. Hence 
one finds that ,1,= .IC; and a ij = Ci + Cj , where the C; are 
arbitrary, contains all solutions to (A23). Similarly the case 
n = 3 can be treated to show again that (A20) is the most 
general solution. However, with the increase of n the algebra 
becomes quite involved, and in order to show that each solu
tion to (A22) can be written in the form (A20), we proceed by 
induction, 

Assume that for some n > 3 each solution to (A22) can be 
written in the form (A20), and consider the case n' = n + l. 
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According to (A22) coefficients A and aij satisfy 
2n + 2 

A + I aij f.ti f.tj = 0, 
i<j 

(A22") 

for all f.t; (i = 1, ... ,2n + 2) such that f.ti = ± 1 and .I~n + 2 f.ti 
= 0. In particular, (A22") should hold for all sets of(2n + 2) 

integers f.ti = ± 1 satisfying the following conditions: 
2n 

f.t2n+I=1, f.t2n+2=-I, I f.ti =0, 
i= 1 

2n 
f.t2n+1 = -1, f.t2n+2 = 1, I f.ti =0, 

;=1 

2n + 2 

f.tl = 1, f.t2 = - 1, I f.ti = 0, 
i=3 

2n + 2 

f.tl = - 1, f.t2 = 1, I f.ti = 0. 
i= 3 

(A24a) 

(A24b) 

(A24c) 

(A24d) 

Inserting integers f.ti satisfying conditions (A24a) and (A24b) 
into (A22") one obtains 

2n 
A + I aij f.ti f.tj 

2n 
+ I (ai,2n + 1 - a i,2n + 2 )f.ti - a 2n + 1,2n + 2 = 0, 

;=1 

2n 
A + I aij f.ti f.tj 

i<j 

2n 
- I (a;,2n + I - a i,2n + 2 )f.ti - a 2n + 1,2n + 2 = 0, (A25) 

;=1 

and hence 
2n 

A - a 2n + I.2n + 2 + I aij f.t; f.tj = 0, 
j<j 

2n 

I (ai,2n + I - a i,2n + 2),ui = 0. 
i=1 

(A26a) 

(A26b) 

According to (A24) integersf.t; in (A26) satisfy the conditions 
(A22'), and hence (by assumption) the general solution to 
(A26a) can be written in the form 

2n 
,1,- a 2n + 1,2n+2 = I Co aij = Ci + Cj , i<.2n, 

;=1 

(A27) 

where the C; are arbitrary. In a similar way relations (A23c) 
and (A24d) lead to the relations 

2n +2 
,1,- a l 2 + I aij f.t; f.tj = 0, 

3 

2n+2 
I (a;,1 - a;,2),ui = 0. 
;=3 

(A2Sa) 

(A2Sb) 

Relation (A2Sa) is again of the type (A22), and hence each 
solution to this relation can be written in the form 

2n + 2 

A-a 12 = I C;, aij=C;+C;, 3<.i<2n+2, 
i=3 

(A29) 

where the C; are arbitrary. Combining (A27) and (A29) one 
obtains 

Ci + c; = C; + C;, 3<'i,j<.2n, (A30) 
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which implies Cj = C;(3<i<2n). Since C2n + I and C2n + 2 

are not fixed by the relation (A27), we can as well write 
C2n + 2 = C 2n + 2 and C2n + I = C 2n + I • Relations (A27) and 
(A29) now imply that the coefficients aij are necessarily of 
the form aij = Cj + Cj whenever either 1 <i,j<2n or 
3<i,j<2n + 2. This includes all coefficients aij except for 
coefficients a l ,2n+P a l ,2n+2' a 2,2n+I' and a 2,2n+2' After 
some algebra one finds that these coefficients are also given 
in the form Cj + ~ and finally one derives A. = .IC;. which 
proves that for each n, a general solution to (A22) is of the 
form (A20) with C j arbitrary, 
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Finite-dimensional representations of the Lie superalgebra sl(1,3) in a 
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In a series of two papers all finite-dimensional irreducible representations of the special linear Lie 
superalgebra sl(I,3) are constructed. Explicit formulas for the generators in an orthonormal 
Gel'fand-Zetlin basis of the even subalgebra gl(3) are given. This paper develops a background for 
constructing the representations. Expressions for the transformation properties of the basis under 
the action of the generators are written down within all typical sl(I,3) modules. 

I. INTRODUCTION 

In this paper and the one that follows l we study all 
finite-dimensional irreducible representations (IR's) of the 
Lie superalgebra sl(I,3). For any such representation we 
write down explicit formulas for the transformations of the 
corresponding sl(I,3) module ( = representation space) Vun
der the action of the algebra. To this end we consider Vas a 
representation space of the even subalgebra gl(3) C sl( 1,3) and 
represent it as a direct sum of its irreducible gl( 3) submodules 

VI' 

(1.1) 

As a basis r l within every ~ we choose the Gel'fand-ZetIin 
basis and define an orthonormal basis 

F=uFI = {.t;li= 1,2, .... ,n} 
I 

(1.2) 

in V, which will be also called a Gel'fand-Zetlin basis (GZ 
basis). Within every irreducible sl( 1,3) module V we compute 
the matrix elements 

(1.3) 

of the sl(I,3) generators Ek • More precisely, we write down 
the transformation properties of the GZ basis under the ac
tion of the generators, 

n 

Ek.t; = L (a k )ji fj. (1.4) 
j= 1 

The algebra sl(I,3) is an example, one of the simplest 
examples, of a basic Lie superalgebra (LS), i.e., (1) it is simple, 
(2) its even subalgebra is reductive, and (3) its Killing form is 
nondegenerate. All basic Lie superalgebras (LS's) are by now 
classified.2 First of all, every simple Lie algebra (LA) is a 
basic LS, since in this case (2) and (3) are consequences of (1). 
The basic LS's that are not Lie algebras (LA's) resolve into 
four countable classes [A (m,n), B (m,n), ern), and D (m,n)], 
two exceptional LS's [F(4) and G (3)], and a one-parameter 
family of exceptional LS's [D(2,I;a)]. In these notations, 
sl(I,3) = A(O,2). 

The structure of the basic LS's resembles in many re
spects the simple LA's. Every such algebra A can be repre
sented as a direct-space sum 

A =N- (fJH(fJN+ (1.5) 

-) Present address: Institute of Nuclear Research and Nuclear Energy, boul. 
Lenin 72, 1184 Sofia, Bulgaria. 

ofits Cartan subalgebraH, which is the Cartan subalgebra of 
the even part, and the subalgebras N - and N + spanned on 
the negative and the positive root vectors, respectively. The 
root vectors ea are in one-to-one correspondence with their 
roots a, which are elements from the dual space of H:aeH *. 
The correspondence ea~ is determined from the relation 

(1.6) 

where [ , ~ denotes the product inA. One defines in a natu
ral way such concepts as simple roots, canonical basis, Car
tan matrix, etc.2 

In the last years much attention has been paid to the 
representation theory of the basic LS'S.3-7 Several important 
(mainly classification) results have been proved. Neverthe
less, the results in this direction are far from being complete. 
An essential new feature of the representation theory is that 
the finite-dimensional modules of a basic LS A are not neces
sarily direct sums of irreducible (Le., simple) A modules. 
Apart from the algebra B (O,n), every basic LS has indecom
posable (i.e., not fully reducible) representations. Examples 
of such representations are available [see, for instance, Ref. 
7; in Ref. 1 we also consider some indecomposable represen
tations ofsl(I,3)]. However, at present there exists no theory 
to tell us how to construct all indecomposable representa
tions. Even the power of these representations is not known 
(i.e., how many of them do exist). In contrast to this, the 
structure of the irreducible representations is much better 
understood. The biggest success in this direction is the full 
classification of all finite-dimensional IR's for any basic LS.3 

All such representations are with highest weight. The 
known-for-the-LA's method of induced representations is 
generalized in a natural way for LS's and gives all finite
dimensional irreducible representations. In particular, let 
V (A ) be an A module with a highest weight A, induced from 
the irreducible module Vo(A ) of the even subalgebra Ao CA 
with the additional requirement that Vo(A ) is annihilated by 
all positive root vectors of A (see Sec. IV). Then, every irredu
cible finite-dimensional A module V (A ) with highest weight 
A either (1) coincides with V(A ) or (2) is a factor module of it. 
In case (1), i.e., ifV(A ) = V(A ), the representation is called 
typical. In case (2), V(A ) is indecomposable. The factor mod
ule V(A) = V(A )il(A ) with respecttothe maximal (nontri
vial) invariant subspace I(A ) is simple. The corresponding 
irreducible representation is said to be nontypical. One can 
give also an independent [of the particular space V(A )] defin-
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ition of the typical representations: The irreducible finite
dimensional A module V (A ) is typical if 

(A + p,a)#O, for all odd roots obeying (a,a) = O. 
(1.7) 

Here ( , ) is the Killing form on A and p is the half sum of all 
even positive roots minus the half sum of all odd positive 
roots. An equivalent statement is that V(A) is typical if it 
splits within any finite-dimensional irreducible representa
tion (V (A ) is always a direct summand]. Because of this prop
erty, the structure of all typical representations turns out to 
be much simpler. In Ref. 3, Kac, who introduced the above 
classification, has established several other properties of the 
typical representations. Nevertheless, the representation 
theory of the IR's and even the theory of the much simpler 
typical representations is far from being complete. In parti
cular, the important (from a physical point of view) problem 
to compute the matrix elements (1.3) of the generators has 
been solved only for certain representations or for some low
er~rank LS's.5,6 A systematic study of all typical and nonty
pical IR's (and of some other indecomposable representa
tions) is available only for the LS sl(I,2) (see Ref. 7). 

In the present paper and in Ref. 1, we make a further 
small step toward the solution of the general representation 
problem. We study all finite-dimensional IR's of the LS 
sl(I,3), decompose them with respect to the even subalgebra 
gl(3), and write down the representations of the generators 
(1.4) in the GZ basis (1.2). 

In Sec. II we recall the definition of the LS sl( 1,3) and 
list some ofits properties, which can be found in Refs. 2 and 3 
or are a consequence of the results contained therein (see also 
Ref. 6). The general representation theory ofthe even subal-

I 

C 
aOl a02 

~) C 0 0 

~+(~" a w all a 12 a 13 _ 0 all a 12 
a20 a21 a22 a23 - 0 a21 a22 an a20 
a30 a31 a32 a33 0 a31 a32 a33 a30 
\. I \. I \.. - -1(1,3) = 10(1,3) $ 

With respect to the usual operations between matrices, I( 1,3) 
is a linear space, which is a sum of its linearly independent 
subspaces 10(1,3) and 11(1,3). The mapping 
1(1,3)XI(I,3)~I(I,3), which is a linear extension of the rela
tion 

[a,b] = ab - (- I)ap ba, 

'Vaela (I,3), belp (I,3), a, f3 = 0,1, (2.2) 

turns 1(1,3) into a Lie superalgebra with an even subalgebra 
10(1,3) and an odd part 11(1,3). 

LeteAB,A,B = 0,1,2,3 be a matrix with I on theA th row 
and the B th column and zero elsewhere. All these matrices 
constitute a basis in 1(1,3). The Killing form ( , )' of 1(1,3), 
restricted to its Cartan subalgebra 

H' = lin.env.{eM IA = O,I,2,3} (2.3) 

is degenerate and reads 
(e AA ,eBB)' = 4gAB - 2( - 1 )aA + aB

, (2.4) 
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gebra gl(3) is well known. Here we shall need, however, some 
particular topics of it. They are collected in Sec. III, where 
we also introduce the notation. Using the technique of the 
induced representations, in Sec. IV we introduce the main 
representation space V([mh), which carries all finite-dimen
sional IR's ofsl(I,3). In a basis that arises in a natural way, 
the induced basis, we write down the representations of the 
generators (1.4) and select those of them that are simple. This 
solves the problem to construct all typical representations 
within some basis. The induced basis is, however, not con
venient for computing matrix elements (1.3), since on the 
level of Sec. IV, the scalar product between the vectors of the 
induced basis is not known, the metric is given in terms of the 
GZ basis. Moreover, as it will become clear, the vectors from 
the induced basis have, in general, nonzero projections in 
more than one gl(3)-irreducible submodule of V([m]3)' 
Therefore, this basis is inconvenient for specifying the gl(3) 
submodules. These submodules, on the other hand, will play 
an important role in the determination of the nontypical 
IR's.l Therefore, in Sec. V we pass to the orthonormed GZ 
basis, which is by construction gl(3)-reduced. In Sec. V A we 
decompose the induced sl(I,3) modules into irreducible gl(3) 
submodules and derive relations between the induced and 
the GZ basis. In Sec. V B representations of the generators 
are given in the GZ basis. 

II. THE LIE SUPERALGEBRA 81(1,3) 

We consider sl(I,3) as a subalgebra of the general linear 
LS l( 1,3). The latter can be defined as the set of all 4 X 4 
matrices 

aOl a02 ~m) 0 0 
0 0 o . (2.1) 

0 0 0 

-- I 
11(1,3) 

where 

ao = 1, a1 = a2 = a3 = 0, (2.5) 

and 

gAB = (- It' 8AB . (2.6) 

The special linear LS sl(I,3) is a suba1gebra of 1(1,3), 
consisting of all matrices (aAB )EI(1,3), such that 
aoo - all - a22 - a33 = 0, i.e., 

sl(1,3) = (alaE1(1,3), tr ga = O}. (2.7) 

The grading on sl(I,3) is the one induced from 1(1,3). As a 
Cartan subalgebra H of sl( 1,3), we choose 

H=lin.env·{gAAeAA -gBBeBB IA,B=O,I,2,3}, (2.8) 

Then sl(1,3) can be represented as a direct sum of its sub
spaces 

sl(1,3) =N- $H$N+, (2.9) 
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where 

N+ = lin.env.{eAB~A <B = 0,1,2,3j, 

N- = lin.env.{eAB IA >B = 0,1,2,3j, 

(2.10) 

(2.11) 

are subalgebras spanned on all positive root vectors e AB' 
A <B = 0,1,2,3 and on all negative root vectors eAB , 
A >B = 0,1,2,3, respectively. OnH, the form ( , )' coincides 
with the Killing form ( , ) ofsl(I,3). Since the second term in 
(2.4) vanishes on H, we neglect it and write 

(eAA,eBB ) = 4gAB . (2.12) 

This equality defines a nondegenerate bilinear form on H', 
which restricted to H coincides with the Killing form of 
sl(I,3). 

Choose as a basis in H' the matrices 

(2.13) 

As an ordered basis in the conjugate space H' we take the 

dual to (2.13) basis of linear functionals 

(2.14) 

i.e., bydefinition~(EB) = OAB,A,B = 0,1,2,3. Then therela
tion 

J (h) = (f,h), VhElf', (2.15) 

defines one-to-one correspondence/~J between H' and H '. 

If/;~J;o i = 1,2, then 

determines a nondegenerate bilinear form of A': 
(~,~) = gAB/4. 

(2.16) 

(2.17) 

The correspondence [following from (1.6)] between the root 
vectors and their roots is 

eAB~ -~, A =l=B = 0,1,2,3. (2.18) 

For the linear functional p, defined in (1. 7), one obtains 

p = - ~Eo + ~EI +!~ - ~c. (2.19) 

In particular 

(p,EO - Ek) = (k - 1)/4, k = 1,2,3. 

The matrices 

eo = eOI' 

to = elo, 

e l =e I2 , 

II =e21 , 

e2 = e23, 

fz = e32, 

ho = eoo + ell' hI = ell - e22, h2 = e22 - e33 

(2.20) 

(2.21) 

generate sl( 1,3) and satisfy the relations ([x, y] = xy - yx; 
{x,yj =xy+yx) 

{ei,Jj j = t3ijh;o [h;ohj ] = 0, 

[h;oej ] = aijej , [h;oJj] = - aij Jj, i,j = 0,1,2. 
(2.22) 

The Cartan matrix A = (aij)' carrying all information about 
the structure of the LS, reads 

1642 
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(2.23) 

III. SOME PROPERTIES OF gl(3) AND NOTATION 

The significance of the LA gl(3) for the representation 
theory ofsl(I,3) stems from the observation that it is isomor
phic to the even part ofsl(I,3). The matrices 

Eij = eij + oijeooesl(I,3), i,j = 1,2,3, 

constitute a basis in the even subalgebra 

(3.1) 

~13)1 ± gAAaAA = oJ 
a23 A=O 

a33 

° 
a22 

(3.2) 

of sl( 1,3) and satisfy the W ey I commutation relations of gl( 3): 

[Eij,Ekl ] = OjkEiJ - o/iEkj . (3.3) 

Therefore, the mapping 

Eij = eij + oijeOO~ij' i,j = 1,2,3 (3.4) 

defines an isomorphism of the even subalgebra sI0(1,3) on 
gl(3). 

Turn now to the representations of gl(3). Throughout 
the paper we use the Gel'fand and Zetlin notation for the 
finite-dimensional IR's of gl(n) (see Ref. 8), accepting also the 
abbreviations of Ref. 9. Every such representation is labeled 
by a lexical n-tuple 

(3.5) 

i.e., by n in general complex numbers m ln ,m2n , ... ,mnn' 
which have the same imaginary part, and min - m i + 1,71 are 
non-negative integers: 

Imm ln = Imm2n = •.• =Immnn , 

(3.6) 
min - m i + l,neZ+, i = 1,2, ... ,n - 1. 

The representations, corresponding to different n-tuples 
[m] 71 =1= [m'] 71 are, in general, inequivalent. Every irreduci
ble gl(n) module 

(3.7) 

corresponding to a representation [m] 71' is a direct sum of 
nonequivalent irreducible gl(n - 1) submodules, 

V([m]n) = 2: ffi V([m]n_ I)' 

The sum in (3.8) is over all [m]n_ I such that 

Immi,n_1 =!mm ln , i=I,2, ... ,n-l, 

(3.8) 

(3.9) 
Re(min - mi,n _ I )eZ+, Re(mi,n _ I - m i + 1,71 )eZ+ . 

On the ground of this observation and taking into account 
that every irreducible gl(l) module V(m ll ) is one dimension
al, Gel'fand and Zetlin have introduced an orthonormal ba
sis in V ( [m ] 71 ), known now as the Gel'fand-Zetlin basis. 8 In 
the case of gl(3), every basis vector, also called a Gel'fand
Zetlin pattern (GZ pattern) 

m13 m 23 m33) [m b ) 
m l2 m 22 = [mlz =I(mh), 

mll m l1 

(3.10) 

is labeled by six numbers [m13,m23,m33]=[mb, [m I 2,m22 ] 

=[mlz, and mil> indicating to which gl(3) module V([m]3)' 
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gl(2) submodule V ([m )2), and gl( 1) submodule V (m 11) the vec
tor (3.10) belongs, respectively, i.e., by construction 

[m br [m]2 V(m l1 )C V([mlz)C V([m]3)' 

mil 

(3.11) 

The numbers m 13' m23, m33 are fixed and label V ([ m b). The 
basis vectors (3.10) within the same V([mb) are distin
guished by m12' m22, mil> which assume any values consis
tent with the "betweenness" condition9 

1m mij = const, 
Re(mi,j + I - mij )EZ+, Re(mij - m i + I,j + I )EZ+. (3.12) 

By r([mb) we sometimes denote the set of all GZ-basis 
vectors in V( [m b), i.e., all GZ patterns (3.10). 

The dimension of V ( [m ] 3) is given with the relation 10 

Dim V([mb) 

= ~(mI3 - m33 + 2)(m23 - m33 + l)(ml3 - m23 + 1). 
(3.13) 

For instance, V([k, k, k]) is a one-dimensional space with a 
basis vector 

k k 

k (3.14) 

k 

The gl(3) module V([O, - 1, - 1]) is three-dimensional and 
has a basis 

where 

0, - 1, - 1) 
-~3k' -1 , k= 1,2,3. 

~Ik - 1 

St. ~ = {I, for i<J, 
I,ll 1 fi . . -, or I>], 

and 

(3.15) 

(3.23) 

The space V([ - 1, - 1, - 2)) is also of dimension 3 with a 
basis 

-1, - 1, - 2) 
- 1'~3k' - 2 , k = 1,2,3. 

-1-~lk 

(3.16) 

Throughout the paper we shall use also the following 
abbreviations: 

[m+C]n=[m]n +c= [mIn +c,m2n +c, ... ,mnn +c], 
(3.17) 

[m ]n± i = [mIn ± ~1i,m2" ± ~2i' ... ,m"" ± ~"i]' (3.18) 

[m]n + cj = [mIn + ~ljC,m2n + ~2jC,,,, ,mnn + ~njc]. 
(3.19) 

For instance, 

[ - 1, - 1, - 1 F = [ - 1, - 1, - 1 ] + 11 = [0, - 1, - 1], 

[m - In = [m 12 - l,m22]' 

Let 

() (x) = {I, for x;;;oO, 
0, for x<O. 

(3.20) 

Then 

[m]n ± ()(x)j = [mIn ± ()(x~lj'''' ,mnn ± ()(xl~nj]' 
(3.21) 

By the construction of the GZ basis in any sl(I,3) mod
ule V, it is clear that the representation of the even generators 
Eij,i,j = 1,2,3 within any gl(3) submodule V([mhl of Vwill 
be given with the known expressions for Eij, considered as 
gl(3) generators in V([mh) (see Ref. 8): 

(3.22) 

The Cartan subalgebra (2.8) is also a Cartan subalgebra 
of gl(3). Choose as a basis in H the generators 

Eii = eii + eoo, i = 1,2,3, (3.25) 

andletE 1,E 2,E 3 bethedual to (3.25) basis inH. From (3.22) 
lij = mij - i. (3.24) one derives, for any h = l:~ = I 5 iEii , 
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[m h) [m h) 
h [mb =..i(h) [mlz , 

mil mil 

(3.26) 

with 
..i = milE 1+ (m12 + m22 - m ll )E2 

+ (ml3 + m 23 + m33 - m l2 - m22)E3. (3.27) 

Hence, every GZ pattern is a weight vector and the corre
spondence weight vector~weight is 

[mb'r 
[mlz milE 1+ (m12 + m22 - m ll )E 2 

mil 
+ (ml3 + m 23 + m33 - m l2 - mzzlE 3

• (3.28) 

The vector 

m l3 m 23 m33) 
X A = ml3 m 23 

ml3 

(3.29) 

is annihilated by all positive root vectors Eij, i <j = 1,2,3, 

EijXA = 0, kj = 1,2,3. (3.30) 

Therefore, X A is the highest weight vector of V([mh) and 
3 

XA~A = Lmi3 E i 

i=1 

gives the corresponding highest weight. 

(3.31) 

For later use the representations of gl(3) in the tensor 
product spaces 

V([c,c,c]) ® V([mh), 

V([O, -1, - I])® V([mh), 

V([ - 1, - 1, - 2]) ® V([m]3)' 

(3.32) 

(3.33) 

(3.34) 

will be of particular importance. In general, any gl(3) module 
V([m'b) ® V([m"b) is reducible ll

: 

V([m']3) ® V([m" h) = L Ell V([mb)· (3.35) 

This is not always the case. The gl(3) module (3.32) is irredu
cible, 

V([c,c,c]) ® V([mb) = V([m + chi, (3.36) 

and all vectors 

c, c, C) [m h) [m + Cb) 
c,c ® [mlz = [m+cb 

c mil mil + c 

(3.37) 

constitute a GZ basis in this space. The spaces (3.33) and 
(3.34) are reducible: 

3 

V([O, - 1, - 1])® V([mb) = L Ell V([m - 1];), (3.38) 
i=1 

3 

V([ -1, -1, - 2])® V([mh) = L Ell V([m - Ib- i
). 

i=1 

(3.39) 

It is understood that the terms V([m - 1 U i) in (3.38) and 
(3.39), corresponding to nonlexical 3-tuples [m - 1 ]F, 
have to be deleted from the sum. As an orthonormed basis in 
(3.38), one may choose either the tensor basis 

0, - 1, - 1) [m]3) 
-83k , -1 ® [mb, k= 1,2,3, 

81k - 1 mil 

(3.40) 

or the union (1.2) of the GZ bases 

[m - Ig) 
[mh in V([m - Ig), 
mil 

i =1,2,3. (3.41) 

The coefficients relating the tensor basis (3.40) with the GZ 
basis (3.41) are by definition Clebsch-Gordan coefficients 
(CGC's) of gl(3): 

k = 1,2,3. (3.42) 

Proposition 1: The CGC's in (3.42) are equal to zero if mil ¥:m ll , mil - 1; mi2 ¥:m I 2, m12 - 1; m;2 ¥:mw m22 - 1. 
More precisely, 

0, - 1, - 1) [m b) (0, - 1, - 1 [m b 3 9(2-k)+ I 

- 83k , - 1 ® [mb =.L .L - 83k , - I;[mb 
8

1k 
-1 mll 1=1 J=I 8lk -1 mil 

[m - Ig ) [m - Ig ) 
[m-IJz+8(2-k)j [m-l]2+8(2-k)j. 

m ll +81k -1 m ll +8 Ik -I 

(3.43) 
Proof: Consider first a vector 

0, - 1, - 1) [m]3) 
- 1, - 1 ® [mlz . 

-1 mll 

(3.44) 

According to (3.11) and (3.37) 

0,-1,-1) [m b) 
- 1, - 1 ® [m]2 = V( - I)® V(m ll ) = V(mll - I)C V([ - 1, - I])® V([mlz) 

- 1 mil 

= V([m -llz)C V([O, - 1, - I])® V([mb). (3.45) 
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Therefore, the CGC's in (3.42) are zeros ifmil :;6mll - 1, mi2 :;6m12 - 1, m~2 = m22 - 1. Hence, fork = 3, Eq. (3.42) reduces 
to (3.43): 

0, -·1, - 1) [m]3) 3 (0, - 1, - 1 [mb [m - Ig) [m - Ig) 
-1, -1 ® [mlz = i~1 -1, -1 ;[mlz [m -llz [m -llz . 

- 1 mil - 1 mil mil - 1 mil - 1 

(3.46) 

Consider the case k = 1,2 in (3.42). Then 

0, - 1, - 1) [m b~ 
0, - 1 ® [mlz V(OIk - 1) ® V(mll)C V([O, - 1]) ® V([m]2)C V([O, - 1, - 1]) ® V([mb). 

Olk - 1 mil 

(3.47) 

Taking into account the decompositions 

V(Olk - 1) ® V(m ll ) = V(mll + Olk - 1), 

(3.48) 
V([O, - 1])® V([mlz) = V([m 12 -1,mzzl)Etl V([m I2,m22 -1]), 

one concludes that for k = 1,2, (3.40) is a linear combination of vectors 

[m-1]; ) 
[m - Ig , i = 1,2,3, j = 1,2, k = 1,2, 

mil +olk-l 

(3.49) 

i.e., 

0, - 1, - 1) [m b) (0, - 1, - 1 [m ] 3 [m - 1]; ) [m - 1]; ) 3 2 

0, - 1 ® [m lz = L L 0, - 1 ; [m lz [m - 1 g [m - 1 g . 
Olk -1 mil i=lj=1 olk- l mil mil +Olk -1 mil +olk-l 

(3.50) 

The above equality coincides with (3.43) in the case k = 1,2, and this completes the proof. 
Multiplying on the left both sides of (3.43) with 

1,1,IL 1;1 rV([I,I,I]) (3.51) 

and, taking into account (3.37), one derives the following property of the CGC's: 

(

0, - 1, - 1 [mb [m - 1]; ) ( 1,0,0 [mb [mg ) 
-o3k,-I;[mlz [m-llz+0(2-k)j = 1-03k ,0;[mlz [m]2+0(2-k)j . 

Olk - 1 mil mil + Olk - 1 Olk mil mil + Olk 

(3.52) 

Therefore, (3.43) can be written also as 

0, - 1, - 1) [m b) 3 8(2-k)+ 1 (1,0,0 [mb 
-o3k,-1 ® [mb =i~1 j~1 1-03k ,0;[mb 

Olk - 1 mil Olk mil 

(3.53) 

In the particular representations we consider, the CGC's are products of gl(3)- and gl(2)-scalar factors l2 

( 

1,0,0 [mb [mg ) 
1-03k ,0;[mb [mlz+O(2-k)j 

Olk mil mil + Olk 

(
1,0,0 [mbl[m g )(1-03k ,0[m]21[m]2+ 0 (2-k)J) 

= 1-03k ,0;[m]2 [mb+O(2-k)j Olk ;m ll mll+o1k . 
(3.54) 

The gl(3)-scalar factors (i.e., isofactors) read13 

(
I,O,O;[mbl[mg)= l"i3=1(lk2 -li3 _1)1

112
, 

0,0 [mlz [m]2 llk""i=dlk3 -/."3) 
(3.55) 

(
1,0,0. [mb 1 [m g ) = S(" ~ I lli""j= dlk2 -/."3 - l)ll~""i= 1 (lk3 -Ifl) 1

112
. 

1,0'[mlz [mH l,J ll~""i=dlk3-/."3)lli""j=d/k2-lfl-l) 
(3.56) 

The gl(2)-scalar factors [i.e., the gI(2) CGC's] are 
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(
l,O;[mhl [mH) = lip. -ilJ + 1 11/2, 
° mlJ mil 112 -122 

(3.57) 

(
I,O;[mh I [mH ) = SU,I) I n~ h= I (/k2 -III) 1112 
I mil mil + 1 112 -/22 

(3.58) 

All other scalar factors vanish. 
The relations (3.54)-(3.58) show that the CGC's are real numbers. Since, moreover, the tensor basis (3.40) and the GZ 

basis (3.41) are orthonormal, one can immediately invert the relation (3.43) 

[m -IH) ( 1,0,0 [mb [mJ;) 3 8(2-k)+ I 

[m-IJz =k~1 i~t I t53k ,0;[mlz-8(2-k)i [mlz 
mil - 1 t5 lk mil - t5 lk mil 

0,-1,-1) [mb ) 
X -t53k ,-1 ® [mlz-8(2-kV. 

t5 lk - 1 mil - t5 lk 

In the gI(3) module (3.39), we also introduce an orthonormal tensor basis (see 3.16) 

-1,-1,-2) [m b) 
1,t53k - 2 ® [m12 ,k = 1,2,3, 

-l-t5 tk mil 

and a GZ basis 

[m - lb-
I
) 

[mlz ' 

mJl 

i = 1,2,3. 

Then in a similar way as in the Proposition 1, one proves the following. 
Proposition 2: The tensor basis in the gl(3) module (3.39), expressed in terms of the GZ basis, reads 

-1, - I, - 2) [m b) 3 8(2 k)+ 1(0,0, - 1 [mb [mb i ) [m - lL-
1 

) 

- 1,t53k - 2 ® [m12 = i~1 i~1 0,t53k - l;[mlz [m]2 - 8(2 - k)i [m - llz - 8(2 - k)i . 

- 1 - t5 tk mil - t5 lk mil mil - t5 lk mil - t5 lk - 1 

The inverse relation 

[m - Ih- i
) (0,0, - 1 [mlJ [m]3 i) -1, - 1, - 2) 3 8(2-k)+1 

[m-llz = ~ .~ O,83k 1;[mlz+8(2-k}j [mlz -1,83k -2 ® 
k-I J-I {: {: 

mil - 1 - - - Ulk mil + Ulk mil - 1 - 81k 
In this case the CGC's are also products of gl(3)- and gl(2)-scalar factors 

( 
0,0, - 1 [m b I [m] 3 I 

= 0,t53k - 1;[mlz [mlz - 8(2 

where (Ref. 12, p. 153) 

1646 

(
0,0, -1.£mbl [m 13-

1
) 

0,0 '[mlz [mlz I 
n~=dlk2 -113) 1112 

n~oFi=dlk3 -113) , 

(
0,0, -1.£mb I [m]3-') = _ S(i ~ I n~ oFi= dlk2 -113)n~oFi !llk3 -Ip. + I} 1112 
0,-1'[m]2 [mb- J ,j n~oFj=dlk2-~1.+1)n~yfl=dlk3-/j3) , 

(
0, - \[mh I [m]2-

j
) = 11)1. - ill 1

112, ° mil mil 112 -/22 

(
0, - \[mhl [mb-

j 
) = _ SU,})I n~ yfj= dlk2 -Ill + 1) /1/2. 

- 1 mil m ll 1 112 -122 
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(3.64) 
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(3.68) 
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All other gl(3)- and gl(2)-scalar factors vanish. 
We already have a partial answer to the representation 

problem. Relations (3.22) give representations of the even 
generators in the GZ basis of any sl( 1,3) module V. It remains 
to determine V to be a sl(I,3)-irreducible module, to decom
pose it into irreducible gl(3) submodules V([mh), 
V([m'h),···,i.e., 

V= V([mb)eV([m'b)e .. ·, (3.69) 

and to determine expressions for the odd generators in the 
GZ basis in V. In the next section we perform the first step in 
the above program: we introduce the sl(I,3) modules which 
carry all irreducible representations. Moreover, we find ex
pressions for all generators, however, in another basis-the 
induced one. 

IV. INDUCED REPRESENTATIONS 

Let 

P+ = lin.env.{eoklk = 1,2,3}Csl(I,3), (4.1) 

and let P be the subalgebra, which is a direct sum of the 
subspaces P + and slo(I,3) = gl(3), 

(4.2) 

Following the method developed in Ref. 3, we construct here 
the representations of sl( 1,3) induced from representations of 
its subalgebra P. To this end consider a finite-dimensional 
irreducible gl(3) module Vo([mh) and extend it to aPmodule, 
assuming 

(4.3) 

Denote by U and Up C U the universal enveloping algebras 
ofsl(I,3) andP, correspondingly. Let 

(4.4) 

be the factor space of U ® Vo([mh) with respect to the sub
space 

/([mb) = lin.env.{gp ® v - g®pvlgeU, peUp }, (4.5) 

i.e., 

V([mb) = U® Vo([mb)I/([mb). (4.6) 

The space V([mb) is equipped with a structure of an sl(I,3) 
module in a natural way: 

g(u®v)=gu®v, gesl(I,3), ueU, veVo([mb). (4.7) 

From the Poincare-Birkhoff-Witt theorem,3 it follows that 
U is a linear span of all elements of the form 

g = (elO)1I1 (e20)112 (e30)113 p, peUp, 0., O2, 03 = 0,1. 
(4.8) 

The restriction 0 = 0,1 comes from the observation that 
(eiOf = ° in U. Since, for any g defined in (4.8) and 
veVo([mb), 

g ® v = (e lO)1I1 (e20)112 (e30)113 P ® V 

= (e lO)1I1 (e20)112 (e30)113 ®pv, 

one concludes that 

1647 

V([m b) = lin.env. {(e lO)1I1 (e20)112 (e30)113 ® vi 

ve Vol [m] 3)' 0., O2, 03 = 0,1 }. 
(4.9) 
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Let TC Ube the subalgebra spanned on all polynomials 
of the generators elO, e20' e30, 

T = lin.env. {(elO)1I1 (e20)112 (e3o)1I3 10., O2, 03 = 0,1}. (4.10) 

The relation (4.9) shows that as a linear space the sl(I,3) mod
ule V([m b) is isomorphic to the tensor product of T and 
VO(m 3 ), i.e., 

(4.11) 

As one possible basis in V ([ m ] 3)' one may choose the vectors 

10., O2, 03;(mh) = (e lO)1I1 (e20)112 (e30)113 ® I(mh)o, (4.12) 

with 0., O2, 03 = ° or 1 and 

[mb) 
I(mh)o= [m]2 eF([mb) 

mil 0 

being an arbitrary GZ pattern from the gl(3) module 
Vo([mb)· 

The space V ([ m] 3) is always considered as a Z2-graded 
space 

V([mb) = Vo([mb)e V.([mb) (4.13) 

with an even subspace Vo([m b) Crespo an odd subspace 
V.([mbll, spanned on all vectors (4.12) for which 
O. + O2 + 03 is an even (resp. an odd) number. 

We call the basis (4.12) an induced basis. The represen
tations of the sl(I,3) generators in this basis read·4 

(i,j,k = 1,2,3) 

e/o 10., O2, 03;(mh) = ( - 1)111 + ... + II, (1 - 0/) 

eo/ 10., O2, 03;(mh) 
3 

X 10., ... ,0/ + 1, ... ,03;(mh), 

= L 0k( _1)1I1 + ... +lIk - 1 

k=. 

X 10., ... ,Ok _. ,0,Ok+. , ... ,03;Ek/(mh) 

+ 0/( - 1)111 + ... + 11,( ± Ok) 
k".,/=. 

X 10., ... ,0/_. ,0,0/+. , ... ,Odmh), 

Eij 10.,02,03;(mh) 

==(eij + 8ijeoo)10.,02,03;(mh) 

= 10.,02,03;Eij(mh) 

- 8ij(0. + O2 + 03 - 0/ HO.,02,03;(mh) 

- OJ(l- 0i)( - 1)II,+ ... +lIj 

X 10., ... ,0/ + 1, ... ,Oj - 1, ... ,03;(mh)· 

(4.14) 

A representation ofsl(I,3), defined by Eqs. (4.14), is said 
to be induced from the representation [mb of gl(3). This 
representation is either irreducible, and in this case it is typi
cal representation, or it is indecomposable. In the latter case, 
V ([ m] 3) contains an unique maximal invariant subspace 
O=;!':l([mb)=;!':V([mb). The representation of sl(I,3) in the 
factor space V ([ m ] 3)11 ([ m ] 3) is irreducible. All such repre
sentations are called nontypical.3 In this way one may con
struct all irreducible representations. First, however, one 
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has to determine allI([mb), which turns out to be a rather 
nontrivial task. The difficulty comes from the circumstance 
that the vectors (4.12) from the induced basis have, in gen
eral, nonzero projections both on I ([ m ] 3) and on its orthog
onal complement V([mb)eI([mb). In order to specify 
I([mb), we shall choose another basis with the property 
that every basis vector lies either in I ([ m] 3) or is orthogonal 
to it. To this end, observe that as a gl(3) module, V([mb) is 
completely reducible. Therefore, both I( [m b) and 
V ([ m ] 3)e1( [m] 3) are gl(3) invariant. Decompose them into 
irreducible gl(3) submodules VI,1 = 1, ... ,n: 

k n 

I([mb) = L ill VI' V([mb)eI([m b) = L ill VI' 
1=1 I=k+l 

(4.15) 

Therefore, 
n 

V([mb) = L ill VI (4.16) 
1=1 

and if r l is a GZ basis in VI' then the basis r = ulrl in 
V([mb) will have the required properties. In the next sec
tion we perform the decomposition (4.16), choose the basis 
r, and write down the representation (4.14) in this basis. In 
the case of nontypical modules V ([ m b), this will simplify 
considerably the determination of the maximal invariant 
submodules I( [m b)· Moreover, the vectors r = u7 = k + I r l 

will give a basis in the irreducible sl(1,3) module 
V([m b)/I([m b). Here we first prove a criterion for the 
irreducibility of the induced representations. 

Proposition 3: The sl(1,3) module V([mb) is typical iff 
m 13 #O, m 23 # 1, m33#2. 

Proof: One can show in a straightforward way that all 
modules, corresponding to m 13 #O, m 23 # 1, m33#2, are ir
reducible. 14 It is not simple, however, to prove the inverse. 
Therefore, we shall use a general criterion for the irreducibi
lity (Proposition 2.9 in Ref. 3) stating (in our case) that the 
induced sl( 1,3) module V ( [m ] 3) is irreducible iff 

(A +p,C;O_C;k)#O, for all k = 1,2,3. (4.17) 

Here C;O - ~ are the odd positive roots (2.18), P is given with 
the Eq. (2.19), and A is the highest weight of the gl(3) module 
VO([m]3)' From the Gel'fand-Zetlin formulas (3.22), one 
derives that any Cartan element h = ~: = 1 S i Eu acts on the 
highest weight vector (I is the unity in U) 

xA = iO,O,O;XA) = I®xA> xAeVo([mb), (4.18) 

as 

hXA = it/imi3XA = ctlmf3C;)(h).XA' (4.19) 

Therefore, as an element from H I (with a basis 2.14) A reads 

A = m13c;1 + m 23c + m33~' (4.20) 

Inserting (4.20) in (4.17) and, taking into account (2.17), 
(2.19), and (2.20), one obtains 

(A + p,c;o -~) = (k - m kJ - 1)/4, k = 1,2,3. (4.21) 

The right-hand side differs from zero if and only if 
mkJ #k - 1, k = 1,2,3, which completes the proof. 

In order to relate these results with the Kac classifica
tion, we recall (Ref. 3, Proposition 2.3) that the finite-dimen-
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sional IR's of sl(1.3) are labeled with three numbers 
(aO,al,a2), where a o is an aribtrary complex number and 
aJoa2 are arbitrary non-negative integers. These numbers are 
the eigenvalues of the Cartan elements ho, hJo h2 [see (2.21)] 
on the highest weight vector (4.18). Since 

ho = Ew hI = Ell - E22, h2 = E22 - E33, (4.22) 

from (3.22) one can deduce 

ao = m 13, a l = m13 - m 23, a2 = m23 - m 33· (4.23) 

We conclude that the typical representations of sl(1,3) have 
in the Kac notation the signature 

(aO,al,a2) = (m 13.m 13 - m 23,m23 - m 33), 

v. REPRESENTATIONS OF sl(1,3) IN A GZ BASIS 

A. Structure of V([mh) with respect to 91(3) 

(4.24) 

Consider V([mb) = T® Vo([mb) as a gl(3) module. 
Since 

[Eij.(e lO)8, (e20)82 (e30)03] 

= {jjl OleiO(e20)82 (e30)83 + {jj2 02(e lO)8, eiO (e30)83 

+ {jj3 03(elO)8, (e20)82eiO. (5.1) 

the subspace T of U is invariant with respect to the adjoint 
repsentation of U, restricted to gl(3). 

[gl(3),T] CT. (5.2) 

Therefore, T can be considered as a gl(3) module. Since, 
moreover, for every gegl(3) and t® veT® Vo([mb) 

g(t®v) = (adg)t®v + t®gv, (5.3) 

the representation D T .. Va of gl(3) in T ® Vol [m b) is a tensor 
product of the adjoint representation DT of gl(3) in Tand its 
representation [m] 3 in Vol [m] 3)' 

D T " Va =DT ® [mlJ. (5.4) 

The gl(3) module Tis reducible. Each one from its sub-
spaces 

TI = lin.env. ((elO)0(e20)0(e30)0=1}, 

T2 = lin.env. (eIO,e20.e30}, 

T3 = lin.env. (e lOe20• elOe30, e20e30 }, 

T4 = lin.env. (elOe20e30J 

is gl(3) invariant and 

T = TI ill T2 ill T3 ill T4· 

(5.5) 

(5.6) 

It is a straightforward computation to show that every sub
space Ti is irreducible. The Gel'fand-Zetlin labels for each 
space and the corresponding basis reads 

0. - 1, - 1) 
0, - 1 = e20, 

-1 
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0, -1, -1) 
- 1, - 1 = e30; 

-1 

(5.7) 
- 1, - 1, - 2) 

T3 = V([ -1, -1, - 2]): -1, -1 =eJOe20, 

-1 

-1, -1, -2) 
- 1, - 2 = e JOe30, 

-1 

- 2, -2, -2) 
T4 = V([ - 2, - 2, - 2]): - 2, - 2 = eJOe20e30' 

-2 
Thus, Dr is a direct sum offour gl(3) irreducible representa
tions, 

Dr = [0,0,0] e [0, - 1, - 1] 

e [ - 1, - 1, - 2] e [ - 2, - 2, - 2]. (5.8) 

The corresponding gl(3) module Tis a direct sum of its irre
ducible submodules, 

T= V([O,O,O]) e V([O, - 1, - 1]) 

e V([ - 1, - 1, - 2]) e V([ - 2, - 2, - 2]). (5.9) 

Inserting (5.9) in (4.11), we have 

V([mb) = D) eD2 eD3 eD4, (5.10) 

where 

D) = V([O,O,O]) ® Vo([mb), 

D2 = V([O, - 1, - 1]) ® Vo([mb), 

D3 = V([ -1, -1, - 2])® Vo([mb), 

D4 = V([ - 2, - 2, - 2]) ® Vo([mb). 

(5.11) 

The subspacesD) andD4 are gl(3) irreducible and, according 
to (3.36), 

V([O,O,O]) ® Vo([mb) = V([mb), 
(5.12) 

V([ - 2, - 2, - 2])® Vo([mb) = V([m - 2b)· 

ThedecompositionofD2 andD3 was already given [see (3.38) 
and (3.39)]: 

3 

V([O, - 1, - 1])® Vo([mh) = L e V([m - Ig), (5.13) 
i=) 
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3 

V([ - 1, - 1, - 2])® Vo([mh) = L e V([m - 1b- i
). 

;=1 

(5.14) 

Inserting (5.12H5.14) in (5.10), we finally conclude that the 
induced sl(I,3) module V([mb) is a direct sum of (no more 
than) eight gl(3)-irreducible submodules, 

3 

V([mb) = V([mb) Ell L Ell V([m -lg) 
;=1 

3 

Ell L Ell V([m - 1]3- i
) Ell V([m - 2b). 

;=1 

(5.15) 

In order to tum V ([ m] 3) into a Hilbert space, we intro
duce a natural metric in it: within every irreducible gl(3) sub
module V([m'b), entering in the sum (5.15), we choose as a 
basis an orthonormal Gel'fand-Zetlin basis F([m'b) and 
extend the metric on V( [m ]3) assuming that the sum (5.15) is 
orthogonal. [This is in fact a unique possibility if one requires 
that the Hermitian operators on each V([m']3) remain Her
mitian on V( [m] 3)' For instance, the vectors from different 
irreducible submodules in (5.15) correspond to different 
eigenvalues of the second-order Casimir operator of gl(3) 
and, therefore, have to be orthogonal.] Then the union 
F([mb) of the GZ bases of all V([m'b) constitute an ortho
normal basis in V([m]3)' which also will be called a GZ 
basis. 

Since V([mb) is a direct sum of inequivalent gl(3) sub
modules, the decomposition (5.15) is unique. Therefore, if 
V([mb) is nontypical, each direct summand in (5.15) is ei
ther a subspace ofI( [m h) or is orthogonal to it. The maxi
mal invariant subspace I([m h) is an orthogonal sum of 
gl(3)-irreducible submodules V([m'b) from the decomposi
tion (5.15). 

In view of(3.37) and (5.7), one can write down immedi
ately the relation between the GZ basis and the induced basis 
in V([m]3) and V([m - 2h): in V([mb), 

[m b) [m b) 
[mb = l® [m]2 ; 

m l1 m ll 0 

(5.16) 

in V([m - 2b), 

[m -2b) [m b ) 
[m - 2b = elOe20e30 ® [mb . 
m l1 - 2 m ll 0 

(5.17) 

To write down the relations in V([m - 19), note that ac
cording to (5.7) 

0, -1, -1) 
ekO = - D3k , - 1 , k = 1,2,3. 

D)k - 1 

(5.18) 

Inserting (5.18) in (3.59) and (3.53), we have 

(5.19) 
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The inverse relation reads 

(mb) 3 8(2-kl+ I( 1,0,0 [mb 
ekO ® [mh = ;~l j~1 1 - <53k ,0;[mh 

m ll 0 <5lk m l1 
In a similar way, taking into account that 

-1, -1, - 2 ) 
e~eqo = - 1, - 1 - ()(p + q - 4) , 

-I-()(p+q-5) 

one obtains from (3.62) and (3.63) 

[m-. I];;) 
[m-2h 
mll-I 

p<q = 1,2,3. 

3 1+O(P+q_4l \ 0,0, -1 [m]3 [m)3-) 
= L e~eqO .L 0,-O(p+q-4);[mh+()(p+Q-4V [mb ® 

p<q=l J=l -O(p+q-S) mu+O(p+q-S) mil 

[m b) 
epOeqo ® [m)z 

mll 0 

[mlJ ) 
[mb+()(p+q-4)j, 

mil + ()(p + q - S) 0 

31+8(P+9- 41\ 0,0,-1 [mh [m];; ) [m-l]3-
i 

) 

=j~l j~l 0,-8(p+q-4);[mh [mh-8(p+q-4V [m-Ih-8(p+q-4)j, 
- - -()(p+q-S) m ll ml1-0(p+q-S) m ll -O(p+Q-S)-l 

wherep<q = 1,2,3. 

B. Transformation properties of the gl(3)-lrreducible submodules under the odd generators 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

The representations of the even generators of sl( 1,3) in the G Z basis are given with the relations (3.22). We now proceed to 
derive expressions for the odd generators. This task can be solved in different ways. One may use the circumstance that 
e l = (e]OJeZO,e30) is a gl(3)-tensor operator [see Tz in (S.7)]. So is the triple e2 = (eOI ,e02,e03) and it transforms as a [1, 1,0] vector. 
Therefore, (Wigner-Eckart theorem) the matrix elements of the odd generators are products of the corresponding CGC's and 
the reduced matrix elements 

(5.24) 

One may try to compute these 128 coefficients. Although this number can be reduced from symmetry considerations, it is still 
too big and in any case in the calculations one has to go back to the induced basis, i.e., to use the relations (S.19) and (5.20) and 
(5.22) and (S.23). Here we proceed in another way, which will lead directly to expressions for the odd generators in the GZ 
basis. 

1. The subspace V([m}:J 

Consider the action of the positive root vectors eOk on an arbitrary basis vector (S.16) from V([m)3)' Since, by definition 
[see (4.3)], 

[m]3) 
eOk (m]2 = 0, 

mJl 0 

k = 1,2,3, (S.2S) 

and, according to (4.S) 

( 
[m

b)) [m
b) 

eOk 1 ® [m]2 = 1 ®eOk [m]z = 0, 

mll 0 m ll 0 

(S.26) 

we conclude that the generators eOk annihilate V ([ m] 3): 

[m 13) 
eOk [m b = 0, k = 1,2,3. 

mil 

(S.27) 
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For the negative root vectors ekO we must have from (5.16) 

[mb) ( [mb) ) [m
b

) ekO [mb = ekO 1 ® [mb = ekO ® [mb 
mll mll 0 mll 0 

(5.28) 

Therefore, the result is given with the right-hand side of the relation (5.20). Representing the CGC's according to (3.54) and 
inserting the explicit expressions (3.55)-(3.58) for the scalar factors, one obtains 

[mb) 3 2 1 Il2 I 1)1 I 3 (I I 1112 [m-1];) e
lO 

[mb = L L S(i,J1S(j,I) k",j= d k~ - 11 (k2 - i3 ~ I)Ilkt= I k3 - j2) [m - 1]1 , 
i= I j= I (/\2 -/22 - J + 1)(/12 -122 - J + 2)Ilk "'i= I (/k3 -li3 ) 

mil mil 

e20 (m]: =± ±S(i'Jll(/j2-/Il+l!Ili"'j=I(/k2-li~-I)~i"'i=dlk3-lj2)11I2 [m-l]1 , 
em] ) (m - 1];) 

i= I j= I (1\2 -/22 - J + 1)(/12 -122 - J + 2)Il" ",i= I (lk3 -li3 ) 
mil mil - 1 

[m b) 3 1 Il2 (I - /. - 1) 1112 (m - 1];) 
e30 [mb =L \=1 k2 13 [m-l]z . 

i=1 Il"",i=dlk3- li3) I mil m 11 -

The above relations show that V([mb) is not an invariant subspace and in fact 
3 

ekO V([mb)C L ED V([m - 1];). 
i=1 

2. The subs paces V([m - 1]3) 

Consider first the generator e30. From (5.19) we have 

[m - 113) (1,0,0 [mb [m 13t e30 [m - Ib = - "tl itl 1,0 ;[m]z-i [m]z kO e30® 
m 11 - 1 6\k mil - 61k m 11 

Using (5.23) one derives that for k = 1,2 

ekO e30 ® [m]z-i = ± ± 0, - 1 ;[mb- i 
[m lJ ) (0,0, - 1 [mb 

~ 1=1)=1 ~ ~ mil - Ulk 0 - U2" m 11 - Ulk 

Insert the last equation in (5.33): 

[m - 113) (1,0,0 [m]3 2 2 3 2 

e30 [m - 1]z = - L .L L.L 1,0 ;[mb-
i 

1 
k=I,=I/=lj=1 {j ~ 

mil - Ik mil - UI" 

[m 13 ) 
[m]z 

mil 

(

0,0, - 1 [mlJ [m]3-
1 

) [m - 1]3-
1 

) 
X 0, - 1 ;[ m b- i [m ] 2 - 1 i - U [m - 1] 2 - 1 i - U . 

- {j2k mil - {jlk mil - 1 mil - 2 

The summation over i, j, k can be carried out (Appendix A) and gives 

[m - 113) 3 3 1 Ili= dlk2 -li3 _ 1) 11/2 [m - I h-
/
) 

e30 [m-lb = L L Esli 3 [m-2]z . 
1 1=li=1 Il k",i=d/k3 -li3 ) -2 mil - mil 

We recall that lij = mij - i;Esli is an antisymmetric tensor with Em = 1. 

1651 

Using the commutation relation ekO = [ek3 ,e30 ], one derives from (3.22) and (5.36) 

[m - 113) 3 3 2 

elO [m - lIb = I~I i~lj~1 EsliS(i,j)S (j,1) 
mll -

Xl (ls3 -IJ2 + 1).(//3 -lj2 )Ili",j= lyk2 - :11)(/k2 -li3 - 1) 1112 
(/12 -/22 - J + 1)(/12 -/22 - J + 2)Ilk "'i= 1 (h3 -li3 ) 
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[m - 1]3
/
) 

[m -2H . 
mll -l 
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(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 
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Write down Ek3 I(mh)o, k = 1,2,3 in the following compact form [see (3.22)]: 

[mb) 1+1I(2-k) ([mb) [mb ) 
Ek3 [m]2 = j~1 ak3 [m]2 [mlz+O(2-k)j , 

mll 0 mll mll + Dlk 0 

where 

a{3(~:~:)=su'1)1 rn=d/k3 -/j2)Ili;o<j=d
/
k2 -Ill) 1

112

, 

(/12 - 122 - j + 1)(/12 -122 - j + 2) 
m ll 

(
[mb) ([mb) a~3 [mlz =a33 [mlz = 113 + 123 + 133 -/12 -/22 + 3. 
m ll m ll 

Then 

The summation over i, j, k is carried out in Appendix B and gives 

[m-1
g

) 1"2 (I _I _1)1112 [m]3) 
eQ3 [m _ llz = (ls3 + 1) \= I k2 s3 [m]2 . 

1 "k;o<s=I(/k3 -ls3) m ll - m ll 

The commutation relations 

eOk = [eQ3,e3k ], k = 1,2,3, 

together with (3.22) and (5.44) yield 

eOI ~:= ~~:)=(lS3 + 1) ± S (s,j)SU, 1) 1 Ili;o<j=dlk2 -~II + 1)(/k2 -ls3 ~ 1)Ilit =dlk3 -lj2 + 1) 1112 
1 j= I (112 -/22 + J - 1)(/12 -122 + J - 2)Ilk ;O<S= I (lk3 -ls3) mll -

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

[mb ) 
[m]2- j 

mll -1 
(5.46) 

(5.47) 
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3. The subspaces V([m - 1]3-? 

Let ApqEVo([m]3) and 
3 3 

Ix) = L e~eqO ®ApqE L Ell V([m - Ib- i). 
p<q=1 i=1 

(5.48) 

Then 
3 

ekO Ix) = L EkpqeJOe20e30 ®ApqEV([m - 2b)· (5.49) 
p<q= 1 

Applying the generator ekO to the left- and the right-hand sides ofEq. (5.22) and using (5.49), one has 

[m-113-
i
) 3 

[m - Ilz = L EkpqeJOe20e30 

1 
p<q=1 

m l1 -

1+//(P+q_4)( 0,0, -1 [mb [mb-i) [mb ) 
® '~I 0,-8(p+q-4);[mlz+8(p+q-4V [mlz [mlz+8(p+q-4)1 

J- -8(p+q-5) ml1+8(p+q-5) m l1 mlJ+ 8 (p+q-5) 0 

(5.50) 
'Taking into account the defining relations (5.17) for the GZ basis in V( [m - 2 b) and inserting in (5.50) the explicit expres
sions for the CGC's, which follow from (3.64)-(3.68), we obtain 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

Turn now to the generators eOI' e02' e03. The transformation properties of the vector (5.48) under e03 can be easily derived 
from the corresponding induced representation (4.14): 

3 3 

eo3 lx> = L S(p,q)e~ ®(Dq3 -Eq3)ApqEL Ell V([m _1]i). 
p#q=1 i=1 

Considering as Ix> in the above relation the GZ-basis vector (5.22), we have 

m - 2 3 1 +//(p+q-4) [ 1] - i) 
e03 [m - Ilz = L S(p,q)e~ ® .L 

1 
p#q= 1 J= 1 ml1 -

( 

0,0, - 1 [mb 

X 0,-8(p+q-4);[mb+8(p+q-4)1 

-8(p+q-5) ml1+8(p+q-5) 

which, in view ofEq. (5.41), gives 

(5.55) 

[m - Ib-i) 3 1 +//(p+q-4) 1 +//(2-q) [([mb )] 
e03 [m-llz = L .L L S(p,q) Dq3 -a;3 [mlz+8(p+q-4)1 

m
l1

-1 p#q=1 J=I r=1 m l1 +8(p+q-5) 

( 

0,0, - 1 [mb [m]3- i

r X 0,-8(p+q-4);[mlz+8(p+q-4V [mlz ~® 

-8(p+q-5) ml1+8(p+q-5) m l1 

[mb ) 
[mlz + 8(p + q - 4)1 + 8(2 - q)' 

m l1 +8(p+q-5)+D1q 0 

(5.57) 
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This relation gives the result in terms of the induced basis. In order to write it in the GZ basis, we use the inverse relation (5.20), 
which in the particular form we need it, reads 

[mb ) 
ePJ® [mb+fJ(p+q-4)j+fJ(2-q)' 

m ll +fJ(p+q-5)+{jlq 0 

( 

1,0,0 [mb [mJ; ) 
3 /:/(2-p) + I 

= L L 1 - {j3P'0; [m b + fJ (p + q - 4)j + fJ (2 - q)' [m b + fJ (p + q - 4)j + fJ (2 - q)' + fJ (2 - p)! 

s= I != I {jlp m ll + fJ(p + q - 5) + {jlq mil + fJ(p + q - 5) + {jlq + {jIP 

[m - Ig ) 
X [m-lb+fJ(p+q-4)j+fJ(2-q)'+fJ(2-p)! . 

mil + fJ(p + q - 5) + {jlq + {jlp - 1 

(5.58) 

Inserting (5.58) in (5.57), we finally obtain 

[m - 1] 3- ) 3 3 I + /:/ ( P + q - 4) I + /:/ (2 - q) I + /:/ (2 - p) [ ( [m b )] 
eQ3 [m - 1]2 = L L L L L S(p,q) {jq3 - a;3 [mb + fJ(p + q - 4)j 

m
ll
-l p#q=ls=1 j=1 r=1 !=I mll+fJ(p+q-5) 

( 

0,0, - 1 [mb [m]3-
i
) 

X 0,-fJ(p+q-4);[mb+fJ(p+q-4)j [mb 

- fJ (p + q - 5) mil + fJ (p + q - 5) mil 

( 

1,0,0 [mb [mB ) 

X 1 - {j3p,0;[mb + fJ(p + q - 4)j + fJ(2 - q)' [m]2 + fJ(p + q - 4)j + fJ(2 - q)' + fJ(2 _ p)! 

{jIP m ll + fJ(p + q - 5) + {jlq m ll + fJ(p + q - 5) + {jlq + {jIP 

[m - IB ) 
X [m-lb+fJ(p+q-4)i+fJ(2-q)'+fJ(2-p)!. 

mil + fJ(p + q - 5) + {jlq + {jIP - 1 

The summation in (5.59) gives (Appendix C) 

[ 1] - i) m - 3 3 3 1 n3 (I - I) 1112 
e03 [m -lb = - L L (li3 + l)€iSj 3 k=1 k2 j3 

1 s=lj=1 nk#j=d/kJ -li3 ) m ll -

[m -IB) 
[mb . 

mil 
From this result and the commutation relations (5.45) one derives the representations of eOI and e02 in the GZ basis, 

[m-1]3-
i
) 3 3 2 

eOI [m - lIb = - S~I/~lj~l€is/(//3 + l)S(/,j)S(j,I) 
m ll -

Xl (/s3 -1,2 + 1)(/i3 -1'2)n~#j= d/k2 -Ill + 1)(lk2 -1/3) 1112 

(/12 -/22 + j - 1)(/12 -122 + j - 2)n~#I= d/kJ -//3) 

Xl (/s3 -1,2 + 1)(/i3 -1,2)(/,2 -/ll )m#j=d/k2 -//3) 1112 

(/12 -122 + j - 1)(/12 -122 + j - 2)n~ #1= I (lk3 -//3) 

4. The subspace V([m - 213) 

[m - 1];) 
[mb-' , 

m ll -1 

[m -IB) 
[m]2-' . 

m ll 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

From (5.17) one immediately concludes that V([m - 2b) is annihilated by the negative root vectors ekO ' k = 1,2,3, 

[m -2b) 
ekO [m - 2b = 0, k = 1,2,3. (5.63) 

m ll - 2 
Consider e03' The relations (5.17) and (4.14) yield 
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[m-2b) 3 3 [m b) 
e03 [m-2h = L LEpqrepOeqO®(Er3-2I5r3) [mh 

2 p<q=lr=1 m l1 - m l1 0 

(S.64) 

Acting on Vo([m h) with E r3 according to (S.4I) and expressing afterwards the induced basis in terms of the GZ basis (S.23), we 
have 

[m-2b) 3 3 3 1+//(2-r) 1+//(2-r) [([mb) 1 
e30 [m - 22h = I~I r~1 p<~= 1 i~1 i~1 Epqr a!3 [m] 2 - 2I5r3 

m l1 - mil 

( 

0,0, - 1 [mb [mb- I 
) 

X 0, - 8(2 - r);[mb + 8(2 - r)i [m]2 + 8(2 - r)i - 8(2 _ r)i 
- 81r m l1 + 81r m l1 

[m - 1]3-
1 

) 

X [m-Ih+8(2-r)i-8(2-r)i . 

ml1 -1 
The summation over p, q, r,j, i yields (Appendix 0) 

[m-2
b) 3 1 n~=tllk2 -113) 1112 

e03 [m -2h = L(//3 + 1) -3-----
2 1=1 IIk¥I=I(lkl -//3) m l1 -

This result together with the commutation r~lation ekO = [ek3' e30 ] gives eOI and e02: 

[m - 2b) 3 2 

eO! [m - 22h = 1~!i~yI3 + I)S(/,j)SU,I) 
m ll -

(S.6S) 

(S.66) 

(S.67) 

[m - 1]3-
1
) 

[m - Ilz-i . 

m l1 -1 
(S.68) 

For any admissible triple [m 13, m 23, m 33 ] the formulas (S.27), (S.29)-(S.31), (S.36)-(S.38), (S.44), (S.46), (S.47), (S.SI)
(S.S3), (S.60)-(S.62), and (S.66)-(S.68), derived in this section, together with the expressions (3.22) for the even generators define 
a representation of the Lie superalgebra sl( 1,3) in an orthonormal Gel 'fand-Zetlin basis. This representation is irreducible and 
hence typical if and only if (Proposition 3) 

m 13 #O, m 23 # 1, m33#2. (S.69) 

In this case m 13, m 23, m33 are the coordinates of the highest weight in the basis E 1, E2, E 3, dual to (3.2S). 
If one of the conditions (S. 69) is not fulfilled, the representation is indecomposable. The sl( 1,3) module V ( [m b) contains a 

maximal invariant subspace I ([ m] 3)' such that its orthogonal complement is not an invariant subspace. In this case the factor 
module V ([ m b)lI ([ m] 3) carries an irreducible nontypical representation of sl( 1 ,3). The representations of the generators for 
the nontypical case in a GZ basis will be given in Ref. 1. 
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APPENDIX A: DERIVATION OF EQ. (5.36) 

In order to perform the summation in (S. 3 S), we first observe that the sum of all terms on the right-hand side, correspond
ing to i = j = 1,2, vanishes. This is a consequence of the Wigner-Eckart theorem and the decomposition (3.S0), since (eto, e20, 
e30) is a (0, - 1, - I)-tensor operator under gl(3) [see T2 in (S.7)]. One comes to the same conclusion considering the second
order Casimir operator C2 of gl(2)Csl(I,3): 
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C2 = HE12E21 + E21E12 + ~(Ell - Ed2]. 

This operator commutes with e30 and e03' 

[C2,e30 ] = [C2,e03 ] = 0. 
From (3.22) one derives 

[m - IE) 
[m-1]2 ' 
mll -1 

Since both sides of (S.3S) have to correspond to one and the same eigenvalue of C2 , one concludes that 

(

1,0,0 [mb [mE) (0,0, - 1 [m]3 [m]3-
/

) 
ktl 1,0;[mlz-

i 
[mlz O,-l;[mlz-

i 
[m]2- 2i =0, i=1,2. 

81k m ll - 81k m ll - 82k m ll - 81k m ll - 1 

Therefore, (S.3S) reduces to 

[m - IE) (1,0,0 [mb [mE) (0,0, - 1 [mb [m]3-
/

) [m - 1]3-) 
e30 [m - llz = - It I itl ktl 1,0 ;[mlz-

i 
[mlz ~ - 1 ;[m]2-

i 
[m - llz [m - 2lz . 

m ll - 1 81k m ll - 8\k m ll 82k m ll - 81k m ll - 1 m ll - 2 

(AI) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

Replacing in (A6) the CGC's according to (3.S4) and (3.64) as products of gl(3)- and gl(2)-scalar factors and taking into 
account the identity 

~ (1,0 [mlz-
i I [m]2)(0, - 1 [m]z-i I [m - 1]2) '-1 

~ . . =(-1)' 
k=1 81k 'm ll -81k m ll -82k 'm ll -8\k m ll -1 ' 

(A7) 

which follows from (3.57), (3.SS), (3.67), and (3.6S), we obtain 

(AS) 

From (3.S6) and (3.66) one derives that 

(
l,o,o.[m b I [mE) _ '1 IILM= dmk2 - ms3 - k +s - l)IIk #s= I (mk3 - m,"2 - k + i + 1) 1112 

'[ ] -i -S(S,I) 2 3 ' 
1,0 m 3 [m]2 IIk#i=dmk2 -m,"2 -k+i)IIk#s=l(mk3 -ms3 -k+s) 

(A9) 

(
0,0, - 1.[m]3 I [m]3-

1 
) __ S(/3 _ '1 (m,"2 - ml3 - i + 1- l)II~#,= dmk3 - 8)jm22 - 82i m l2 - k - i + 4) 1112 ° l' [ ] - i -, I) 3 • , - m 2 [m - llz (ml2 - m22 + l)IIk#l= dmk3 - ml3 - k + l) 

(AW) 

Inserting (A9) and (AW) in (AS) and writing down the sum over i = 1,2, explicitly after some transformations we obtain 

[m - 1 g) ~ 1 (mr3 - m l2 - r + 2)(mr3 - m22 - r + 3) 1112 
e30 [m - 1]2 = ~ 

1 
I#s= I (mr3 - ms3 - r + s)(mr3 - m/3 - r + l) m ll -

X {S(S,1)S(/,2)lms3 - m22 - s + 311m/3 - m12 -I + 21 

Im I2 -m22 + 111m13 -ms3 -1+sl 

_ S(s,2)S(/,1)lms3 -m12 -s+2I1m/3 -m22 -1+3 1 } 

Iml2 - m22 + 111m/3 - ms3 -I +sl 

[m - 19) 
[m-2]2 ' 
m ll - 2 

(A11) 

where r=fs and r=f I. It is a straightforward computation to show that the expression in the curly brackets is equal to Eslr ' Thus, 
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[m-1 B) 3 I( 2)( )11/2 [m-1
g) " mr3 -m I2 -r+ mr3 -m22 -r+3 

e30 [m - 1]2 = £.. Eslr [m - 2b 
1 

1=1 mr3 -ms3 -r+s)(mr3 -m/3 -r+l) 2 
m ll - mu-

3 / ll2 ( k 1) /1/2 [m - 1 g) _ " k=1 m k2 -mr3 - +r-
- £.. Eslr 3 [m - 2lz . 

1=1 llk#r=dmkJ -mr3 -k+r) 2 m ll -

Writing (A12) in terms of lij = mij - i, one immediately obtains (5.36). 

APPENDIX B: DERIVATION OF EQ. (5.44) 

Consider the sum (5.43). The vectors 

[m - IB) [mb ) [mb ) 
e03 [m - Ilz, m 12 - l,m22 + I, m 12 + l,m22 - I 

mil - I mil mil 

(A12) 

(Bl) 

are eigenvectors of C2 (A 1), corresponding to different eigenValues. Therefore, the second and the third vectors in (B 1) may 
enter the sum (5.43) only with zero coefficients. Hence, this sum reduces to 

[m - IB) { (1,0,0 [mb [m
g, ([mb ) 

e30 [m - Ilz = ktljtl 1,0 ;[mlz-
j 

[m]2 "3 [mlz-
j 

mil - 1 {ilk mil - {ilk mil mil - {ilk 

(

1,0,0 [mJ3 [m
gr ([m]3)} [m]3) 

+ 0,0 ;[m]2 [mb 33 [mJ2 [m]2' 

° mll mil mil mil 

(B2) 

Insert in (B2) the expressions for the COC's in terms of (3.54) and (3.55)-(3.58). After some transformations one obtains 

[m -1];) / llL dlk2 -ls3 _ 1) /112 [mb) 
e03 [m-1lz = 3 (/13+/23+/33-/12-/22+3+..:1s) [m]2 , 

m 1 "k#s=dlk3-ls3) m 
II - 11 

(B3) 

where 

..:1
s 

= S(s,I)llli #s= d/kJ -/12 + 1)1 + S(s,2)I"i #s= dlk3 -/22 + 1)1 . (B4) 

112 -/22 
According to (3.9), all/ij = mij - i have one and the same imaginary part. Hence, without loss of generality, we may assume 
that the lij in (B4) are real numbers. Consider..:i I' Le., the case with s = 1. From (3.9) we know that the mij in the basis vector 

[m - 1 B) ml3,m23 - l,m33 - 1) 
[m-lJz = m I2 -1,m 22 -1 

mil - 1 m ll -l 

obey the inequalities 

ml3>m l2 - 1;~m23 - l>m22 - l>m33 - 1, 

which in terms of lij = mij - i reads 

/13 + 1>/\2>/23 + 1>/22 + 1>/33 + 2. 

Therefore, 

A _ (/12 -/23 - 1)(/\2 - 133 - 1) + (/23 -/22 + 1)(/22 -/33 - 1) -I + I -I -I - 2 
-'11- - 12 22 33 23 • 

112 -/22 
In a similar way, considering s = 2,3, one shows that 

..:is = 112 + 122 - 113 - 123 - 133 + Is3 - 2. 
Inserting (B6) in (B3), one obtains (5.44). 

APPENDIX C: DERIVATION OF EQ. (5.60) 

Denote by C[(mh,s,p,q,j,rIJ the coefficients in (5.59), 

(B5) 

(B6) 

C [(mh,s,p,q,j,r/] =S(P,q)[{i
Q
3 - a;3(~:~: + O(p + q - 4)j)](0, _ ~'~; ~ ~ _ 4);~:~: + O(p + q _ 4)j ~:~:_i) 

mll+O(p+q-5) -O(p+q-5) m ll +O(p+q-5) mil 
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+ stl{;:!:: + ;:}:, + ;=}~,}e[(mb,s,p,q,j,r,J] 
r= I /= I 

[m-l]3 ) 
m l2 + l,m22 - 1 

mu 

[m); ) 
ml2 - l,m22 + 1 
m ll 

+ stl{P+~=3 + P=~ + q=~2 }e [(mh,s,p,q,j,r,J] 
r7'/= 1,2 /7'j= 1,2 rh= 1,2 
j= I q=3 p=3 

r= I /= I 

[m -1 13 ) 
[mh . 

mll 

(C2) 

Applying once more the relations (A2) and the considerations of Appendix A, we conclude that the coefficients in front of the 
vectors 

[m - 113 ) 
m l2 + l,m22 - 1 and 

mll 

[m-l13 ) 
m 12 - 1,m22 + 1 

mil 

in (C2) vanish. Represent the rest of the sum as 

[m - 1]3-') [m - 113) 
e03 [m - Ih = stl [mh {p=~ e [(mh,s,p,3,j,I,J] + P7'f;, 1,2e [(mh,s,p,q,l,r,f] 

mll - 1 m ll /7'j= 1,2 r7'/= 1,2 

+ ._~ c I(m),,s, l,q, j,r, l] }~,t, 
'7', = 1,2 

To compute 

II = L e [(mh,s,p,3,j,I,J1. 
P= 1,2 
/7'j = 1,2 

note that according to (5.42) 

1 - a33 [mU = 112 + 122 -/13 -/23 -/33 - 1. 
(

[m
b ) 

m ll +Olk 

for any j,k = 1,2. Therefore, 

2 2 (1,0,0 [m]3 
IJ=(I+iI2+i22-iI3-i23-i33)L L 1,0;[m+lh-' 

'=Jk=1 Olk mll+l-o
lk 

[mH )(0,0, -1 [mb 
[m + 1 h 0, - 1 ; [m + 1 h- i 

m ll + I -02k m ll + l-Olk 

This sum has already been carried out in Appendix A, relation (A6). The result is 

I 3 / II~=dik2-~3) /1/2 II = ( 13 + 123 + 133 -/12 -/22 - 1) L Esij 3 • 

j=J IIk7'j=d1k3 -1j3) 

(C3) 

(C4) 

(C5) 

[m]3-
/
) 

[mh . 
m ll 

(C6) 

(C7) 

Inserting in I2 + I3 the expressions for the cac's (3.54)-(3.58) and (3.64)-(3.68), one obtains, after some transforma
tions, 
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I +I = Ill~=dlk2 -~·:dII/2 
2 3 (/12-/nllll~;06;=dlk3 -1;3)ll~ .. s=dlk3 -ls3W12 

X {S (s,2) 1(/'3 -/d(/."3 -/12)(/."3 -/22)I-S(i,2)1(/."3 -/d(/.3 -/d(ls3 -/dl 

+S(i,l)I(I."3 -/22)(/'3 -/d(IS3 -/dl-S(s,1)/(/.3 -/d(liJ -/d(/;3 -/nlil. (e8) 

Observe that II + I2 + I3 is antisymmetric with respect to i and s. Therefore, the sum in (e3) is over all s#i. Summing 
together (C7) and (C8) for i = 1, s = 2; i = 2, s = 3; i = 3, s = 1, and taking into account the "betweenness" condition (3.12), 
we have 

I + I + I I. = _ (/ + 1) / (/12 - 133)(/22 -/33) /112 
I 2 3 • = I, • = 2 33 (I _ I )(1 I) , 

13 33 23 - 33 

I + I + I I. = _ (I + 1) / (/12 - 113)(/22 - ll3) /112 
I 2 3 • = 2. S = 3 13 (/ _ / )(1 I) , 23 13 33 - 13 

I +I +I 1._ _ = -(I + 1)/ (112-/23)(/22-/23) /112. 
I 2 3 • - 3, • - I 23 (I _ I )(1 I) 

13 23 33 - 23 

In a unified form all three relations (C9)-(C11) read 

3 1 ll~= dlk2 - ~"3) 11/2 
II +I2 +I3 = - L Eisj(/j"3 + 1) 3 • 

i= I llk .. i= dlk3 -lj"3) 

Inserting (e12) in (C3), one obtains (5.60). 

APPENDIX D: DERIVATION OF EQ. (5.66) 

Consider the sum (5.65). As in Appendix A, we conclude that the vectors 

enter the sum with zero coefficients. The nonzero terms yield 

[m-2b) 3 3 3 1+/1(2-r) [([m b) 1 
e30 ~~I-=-22Jz = I~I p<~= I r~1 i~1 Epqr at3 ~~IJ2 - U r3 

( 

0,0, - 1 [m]3 [m]3- /) [m - 1 ]3- /) 
X 0,-8(2-r);[m]2+ 8 (2-r)i [m12 [m-1Jz . 

- 61r mil + 61r mil mil - 1 
Inserting here the expressions from (5.42) and the eGC's (3.64)-(3.68), after some calculations we obtain 

[m-2b) 31 ll~=d/k2-//3) 1112 [m-1 13-
/
) 

e30 [m-2Jz =L 3 (/13+/23+/33-/12-/22+1+.:i/) [m-1]2 ' 
m 2 1=1 llk"l=d1k3 -//3) 

11- m ll -1 

where 

.:i
l 
= S(/,l)llli .. 1= dlk3 -/dl + S(/,2)llli "1= d /k3 -/zzli . 

/12 -/22 
Using the "betweenness" condition (3.12) on easily derives from (03) 

.:i l = /12 + 122 + 1/3 - 113 -/23 -/33' 

Inserting (04) in (02), one derives Eq. (5.66). 

(e9) 

(elO) 

(Cll) 

(e12) 

(D1) 

(02) 

(03) 

(04) 

IT. D. Paley, "Finite-dimensional representations ofthe Lie superalgebra 
sl( 1,3) in a GeI'fand-Zetiin basis. II. Nontypical representations" (in prep
aration). 

zin, J. Nucl. Phys. 29, 857 (1979), 30, 605 (1979); T. D. Paley, J. Math. 
Phys.21, 1293 (1980); J.-P. Hurni and B. Morel, J. Math. Phys. 23, 2236 
(1982); 24, 157 (1983). 

2V. G. Kac, Adv. Math. 26, 8 (1977); Commun. Math. Phys. 53, 31 (1977). 
3V. G. Kac, Lecture Notes Math. 676, 597 (1978). 
4Seealso L. Ross, Trans. Am. Math. Soc. 120, 17 (1965); G. Hochschild, Ill. 
J. Math. 20,107 (1976); D. Z. Djokovic and G. Hochschild, Ill. J. Math. 
20, 134 (1976); D. Z. Djokovic, J. Pure Appl. Aig. 9, 25 (1976); F. A. Bere-

1659 J. Math. Phys., Vol. 26, No.7, July 1985 

~ A. Pais and V. Rittenberg, J. Math. Phys. 16, 2062 (1975); M. Scheunert, 
W. Nahm, and V. Rittenberg, J. Math. Phys. 18, 146, 155 (1977); M. Bed
nar and V. F. Sachl, J. Math. Phys. 20,367 (1979). 

6J'. D. Palev, J. Math. Phys. 22, 2127 (1981), 21, 1293 (1980); T. D. Paley 
and O. Ts. Stoytchev, Preprint JINR E5-82-54, 1982. 

Tchavdar D. Palev 1659 



                                                                                                                                    

7M. Marcu, J. Math. Phys. 21,1277 (1980). 
81. M. Oel'fand and M. L. Zetlin, Doklay Akad. Nauk SSSR 71, 825 (1950). 
~e follow some terminology and notation, accepted in J. D. Louck, Am. 
J. Phys. 38, 18 (1970). 

IOH. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New 
York, 1931), pp. 383,391; see also Ref. 9, p. 10. 

"A very useful prescription for decomposition of tensor representations 

1660 J. Math. Phys., Vol. 26, No.7, July 1985 

into a direct sum of irreducible representations can be found in Ref. 9, p. 
18. 

12See, for instance, A. U. Klymik, Matrix Elements of the Clebsch-Gordan 
Coefficients of Representations of Groups (Naukova Dumka, Kiev, 1979), 
pp.67, 163 (in Russian). 

130. Baird and L. Biedenham, J. Math. Phys. 4, 1449 (1963). 
14T. D. Palev and O. Ts. Stoytchev, C. R. Acad. Bulg. Sci. 35, 733 (1982). 

Tchavdar D. Palev 1660 



                                                                                                                                    

Scattering theory for long-range systems at threshold 
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Scattering theory is discussed for long-range systems around threshold, taking into account 
explicitly the possibility of zero-energy eigenstates of the underlying SchrOdinger Hamiltonian. 
Low-energy expansions are derived for the scattering amplitude in the different cases. The 
Coulomb-modified scattering length and effective range parameter are defined directly in terms of 
the scattering amplitude. Explicit formulas for these quantities are provided. No spherical 
symmetry of the interaction is assumed. 

I. INTRODUCTION 

This paper continues the study, started in Ref. 1, oflow
energy quantities like the scattering length and effective 
range parameter, in terms of the threshold behavior of the 
scattering amplitude, for Schr6dinger Hamiltonians with 
general, nonspherically symmetric interactions. In Ref. 1, 
the short-range case has been treated extensively, allowing 
zero-energy resonances and zero-energy bound states of the 
Hamiltonian. However, for Coulomb plus short-range inter
actions, only a brief illustration has been given of how the 
short-range discussion can be extended, by presenting a de
finition and explicit formula for the Coulomb-modified scat
tering length in the generic case (i.e., the case without zero
energy resonances and zero-energy bound states). 

The aim of this paper is to provide a complete treatment 
of the Coulomb-modified low-energy quantities for non
spherically symmetric interactions (including the possibility 
of zero-energy eigenstates). Such an extensive study is appro
priate since, as is well established by now, these low-energy 
parameters play a fundamental role in the discussion of 
many (low-energy) phenomena in different branches of phys
ics. For earlier discussions in this connection we refer to 
Refs. 2 and 3, to the Introduction of Ref. 4, and more recent
ly to Refs. 5 and 6 for the definition and use of these param
eters in two- (and n-) dimensional spherically symmetric sys
tems. 

It turns out that the details of the study presented here 
are very different from the short-range treatment. 1 In parti
cular, as we will describe below, the threshold behavior (and 
consequently the case distinctions) ofthe long-range system 
is totally distinct from its short-range counterpart. Further
more, in the long-range cases we obtain low-energy expan
sions, e.g., for the scattering amplitUde, which are asympto
tic in nature, whereas in the short-range cases analytic 
expansions have been derived. 1 

Let us finally describe the main results of our paper. In 

alOnderzoeksleider Nationaal Fonds voor Wetenschappelijk Onderzoek 
(N.F.W.O.), Belgium. 

blOn leave of absence from Instituut voor Theoretische Fysica, Universiteit 
Leuven, B-3030 Leuven, Belgium. 

01 Alexander von Humboldt Research Fellow. 
dlOn leave of absence from Institut fiir Theoretische Physik, Universitiit 

Graz, Austria. 

Sec. II we derive the low-energy asymptotic expansions of 
the pure Coulomb Green's function and wave function, us
ing the results of Ref. 7 and Ref. 8, respectively. Section III 
discusses in detail the threshold behavior of repulsive and 
attractive Coulomb plus short-range (nonspherically sym
metric) systems. This behavior is very different from the one 
in pure short-range systems. 1 Indeed, besides the generic 
case, the repulsive Coulomb system shows the phenomenon 
of getting automatically a threshold bound state when the 
short-range part of the potential has a critical coupling 
strength. For attractive Coulomb systems we discuss, again 
besides the generic case, the possibility of having a threshold 
resonance. Threshold bound states are excluded in this case. 

In Sec. IV we expand the transition amplitUde and scat
tering operator near threshold in all relevant cases. The low
energy expansions we obtain are asymptotic expansions in 
k 2, in contrast with the short-range cases, where analytic 
expansions in k are possible. 1 

In Sec. V we find the appropriate generalization of the 
definition of the Coulomb-modified scattering length and 
effective range parameter for nonspherically symmetric in
teractions in all relevant cases. This definition is directly re
lated to the threshold behavior of the scattering amplitUde. 
We also give and discuss explicit formulas for these low
energy quantities in terms of the interactions. Finally, the 
Appendix briefly sketches a proof of some technical results 
on the exceptional set of positive energy eigenstates, needed 
in the low-energy expansions of Sec. IV. 

II. LOW-ENERGY EXPANSION OF PURE COULOMB 
QUANTITIES 

Let the potential V be a real-valued measurable func
tion belonging to the Rollnik class R, i.e., 

I d 3xd 3yW(x)llx-yl-2W(y)l<oo. (2.1) JR6 

As in Ref. 1 we define the short-range Hamiltonian Hs in 
L 2(JR3) by the method of quadratic forms9 

Hs = Ho+ V, (2.2) 

where Ho denotes the kinetic energy operator 

Ho = - Ll, on .9(Ho) = H 2.2(JR3), (2.3) 
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with resolvent 

Gk = (Ho - k 2)-I, 1m k>O. (2.4) 

V = u·v, v(x) = iV(xW 12
, 

u(x) = v(x)sgn V(x) 

turns out to be useful. 

(2.8) 

The Coulomb Hamiltonian He is defined by We first discuss the kernel of the Coulomb resolvent, 
Gy,dx,y). 

with 

Lemma 2.1: (a) Let 1m k> 0, k:j= - irl2n, n = 1,2 ... ; 
then for all rEJR, Gy,k(X,y) is a Carleman kernel. In particu
lar, Gy,k(X,')E L I(JR3)nL 2(JR3). 

Gr,k = (He _k2)-I, Imk>O, 

k :j= - irl2n, n = 1,2, ... , (2.6) 

the Coulomb resolvent. Our general long-range Hamilton
ian H is finally given as the form sum 

(b) Assume that kE n + = (ZEq - 1T12 < arg Z < 31T12l 
for r> ° and kED _ = (ZEq - 31T 12 < arg Z < 1T 12l for 
r<O. Then for all x:j=y the function Gy.dx, y) has the fol
lowing asymptotic expansion with respect to k 2 near k 2 = 0; 

(2.7) 

In the following, a splitting ofthe short-range interaction V 
according to 

gy,o(x, y) = Gy,o(x, y) 

rEJR\{Ol, x:j=y, kEn ± for r~O. 

The first two coefficients are explicitly given by 

{ 

[(2rx_)1/2Il((2rx_)1/2)Ko((2rx+)1/2) + (2rx+)1/2Io((2rx_)1/2)KI((2rx+)1/2)], r> 0, 

= (41Tlx - y/)-I - (i1T12)[(2Irlx_)1/2Jl((2Irlx_)I12)H~)((2Irlx+)1/2) - (2Irlx+)1/2Jo((2Irlx_)I12) 

XH\1)((2Irlx+)1/2)], r<O 

[we note thatgo,o(x, y) = (41Tlx - yl)-l] and 

gy,2(X, y) = - [2(lxl + ly/)Io((2rx_)1/2)Ko((2rx+)1/2) + (x+x_)1/2Il((2rx_)1/2)Kl((2rx+)1/2) 

(2.9) 

(2.10) 

(2.11) 

+ (2x+lr)1/2Io((2rx_)1/2)Kl((2rx+)1/2) - (2x_Ir)I/2II((2rx_)I/Z)Ko((2rx+)1/Z)]l121T, r> 0, (2.12) 

gy,2(X, y) = - i[2(lxl + lyl)Jo((2Irlx_)1/2)Ho((2Irlx+)1/2) + (x+x_)1/2J1((2Irlx_)I/Z)HIII)((2Irlx+)I12) 

_ (2x+/lrl )1/2Jo((2Irlx_)1I2)H\I)((2Irlx+)1/2) - (2x_/lrl)I/2J1((2Irlx_)1I2)Hbl )((2Irlx+)1IZ)] 124, r < 0. 

Here J., (z)(I., (z)), etc., denote the (modified) Bessel functions of order v (Ref. 10) and 

x± = Ixl + I yl ± Ix-yl· 

(2.13) 

(2.14) 

Proof: Part (a) is a result of Ref. 11 [cf. estimate (4.1)]. To prove part (b) we first recall the explicitly known expression for 
Gy,k(X, y) (Ref. 8) 

Gy,dx, y) = (41Tlx - yl)-1(2(x+ -x_)(x+x_)-IF~)(k,x_/2)G~)( - k,x+/2) 

(2.15) 

where l2 

F\O)(k,r) =,J+ leik'IFI(1 + 1 + ir12k;21 + 2; - 2ikr), 1=0,1, ... , (2.16) 

is real for kEJR and entire with respect to k 2EC and 

G\O)( - k,r) = r(21 + 2)-IF(1 + 1 + irl2k )(2ie- i7rk )21+ Irl+ leik'U(1 + I + ir12k;21 + 2;2ie- i7rkr), 1= 0,1,... . (2.17) 

Here IFI (a; fJ;Z) (U (a; fJ;Z)) denotes the (ir)regular confluent hypergeometric function.1O Introducing Lambert's irregular 
Coulomb wave function G 10)(k,r) (Ref. 7) 

G\O)(k,r) = G\O)( - k,r) - 221r(21 + 2)-2IF(1 + irI2k)I-2Ir(1 + 1+ irl2k Wrk21h (r,k )F\O)(k,r), 1=0,1, ... , (2.18) 

where 

h (r,k) = If/(irI2k) -In(ilr/l2k) - ik Ir (2.19) 

[If/(Z) is the digammafunction lO
], one infers that G\O)(k,r) (likeF\O)) is real for kEJR and entire with respect to k 2Ec' Insertion of 

Eq. (2.18) into (2.15) finally yields 
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Gy.k(x, y) = (41rlx - yl)-1{2(x+ - X_)(X+x_)-IF~)(k,x_/2)G~)(k,x+/2) 

- 3- I(k 2 + YI4)F\0)(k,x_/2)G~)(k,x+/2) + 3F~)(k,x_/2)G\0)(k,x+/2)J 
+ (41TIX - yl)-Iyh (y,k )(2(x+ -X_)(X+x_)-IF~)(k,x_/2)F~)(k,x+/2) 

- 3- I(k 2 + yI4)[F\0)(k,x_/2)F~)(k,x+/2) - F~)(k,x_/2)F\0)(k,x+/2)] j 

=G~~(x, y) + yh (y,k)G~.Ux, y), x#y. 

• • 10 Using the asymptotIc expanSIon 

h (y,k) _ _ ~ B2n (2k liy)2n + {O, .r> 0, (2.21) 
k---+D n-=-I 2n - l1T, Y < ° 

(B2n = the Bernoulli numbers), which is valid near k = ° for 
kElI ± ' y~O, and the fact that the curly brackets in Eq. (2.20) 
are entire with respect to k 2EC, we prove expansion (2.9). 
Equations (2.10)-(2.13) give the first coefficients in this ex
pansion. 0 

Remark 2.2: (a) The computation of these coefficients 
(2.10)-(2.13) is straightforward but long and tedious, such 
that we have omitted further details here. Equations (2.10) 
and (2.11) correct an error in formulas (4.20) of Ref. 1 and 
(2.7) of Ref. 13. 

(b) We have excluded the short-range case y = ° in 
Lemma 2.1(b). This will also be done in almost all of what 
follows since this case has been dealt with completely in Ref. 
1. 

Given Lemma 2.1 we are able to state the following. 
Lemma 2.3: Assume e2aJxl VER for some a> 0. Then for 

all yE R and 1m k> - a, k # - iy/2n, n = 1,2, ... , UGy,kV is 
a Hilbert-Schmidt operator in L 2(K3). Moreover, if kE n ± 

for y~O, uG y.k v has an asymptotic expansion in k 2 near 
k 2 = ° valid in norm, viz., 

UGy,kV - f (ik)2nry.2n' YER'dOj, 
k---+Dn .= ° 

kElI ± for y~O. (2.22) 

Here r 2 , n = 0,1, ... , are Hilbert-Schmidt operators in y. n 

L 2(R3) with kernels given by [cf. Eq. (2.9)] 

ry.2n (x, y) = u(X)gy,2n(X, y)v( y). (2.23) 

Proof Let 1m k> - a, k # - iy/2n, n = 1,2, .... First 
we note that 

lim(41Tlx - yl)Gy,dx, y) = 1, (2.24) 

which easily follows from (2.15) using Wronskian relations 
for the confluent hypergeometric functions. 10 

Second, the curly bracket in Eq. (2.15) is uniformly 
bounded as long as x ± vary in compact domains. Therefore, 
it suffices to consider x ± -+ 00. For this region, a simple ex
tension of the bound (B9) of Ref. 6 implies [replace (B7) of 
Ref. 6 by a(E,y,k 2r) = p(y,k 2,r) + CKg I (alak 2)P(y,k 2,rW 
+ c~ I (azlak 2 ar)P(y,k 2,rW, E>O] 

IHIO)(k,rli 
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<const(l,y,Ko,Ro,E)exp{ (1 + E}Ko(r - Ro) + (lyI/2Ko) 

X In(rlRo)J , YEK, E>O, Ik21<~, 
Ko> 0, r>Ro> 0, (2.25) 

J. Math. Phys .• Vol. 26, No.7. July 1985 

(2.20) 

I 
where HIO) denotes F~O), (alak2)F~0), G~O), or (alak2)G~0). 
Thus Eq. (2.20) tells us that UGy,kvEflJ 2{L 2(K3)) for k in the 
open sphere of radius a centered at zero in C. Standard Bessel 
function estimates 10 for k # ° then yield uG y.k VEflJ 2(L 2(R3)) 
for 11m k I <a. Combining this with the estimate (4.1) of Ref. 
11 in fact shows uG kVEflJ 2(L 2(R3)) for all 1m k> - a, 

~ . 
k # - iy/2n, n = 1,2, .... Moreover, the explicit expanSIon 
of F~0)(k,x_/2), G~0)(k,x+/2) around k 2 = ° in terms of 
(modified) Bessel functions if y<O (y>O) [cr., e.g., Eqs. 
(Al)-(A6) of Ref. 14] and standard Bessel function esti
mates 10 prove r y,2n EflJ 2(L 2(R3)) for all n = 0,1, .... Finally, 
the Hilbert-Schmidt operators uG~~v and uG~~v [cf. Eq. 
(2.20)] are seen to be norm analytic with respect to k 2 around 
k 2 = ° by taking, e.g., matrix elements with C o(R3) func
tions. These facts together with the asymptotic expansion 
(2.21) complete the proof. 0 

Having found an appropriate expansion for the Cou
lomb resolvent G k we still have to expand the Coulomb y, 

scattering wave functions If/ f around k = 0. These are de
fined by (cr., e.g., Refs. 1 and 13) 

If/ c- (k,co,x) = e - 11"Y/4k r (1 + iy 12k )eik",'X 

X IFI( - iy/2k;1;ik (Ixl - coox)), 

(2.26) 
If/ c+ (k,co,x) = If/ c- (k, - co,x), coES 2, k #0 

(S 2 is the unit sphere in R3. We then state the following: 
Lemma 2.4: Let e2alxl VE R for some a > 0. Then 

{

UIf/ c- (k,co), 

e11"Y/4k r (1 + .!L. ) - I YER, 

2k vlf/ c+ (k,col, 

(2.27) 

defines two analytic functions in L 2(R3) with respect to k 
around k = 0. In particular, 

e11"Y/4k r (1 + iy 12k l -11f/ c- (k,co,x) 

= Io([2r!lxl - cooXW/2) + { Ixllo([2y!ixl - coox)] 1/2) 

- [2(lxl - coox)/y] 1/2I I([2y(lxl - coox)] 112) 

- [(Ixl- coox)/2]I2([2r!lxl- cooX)]1/2)}ik 

+ O(k2), y>O, 

e11"Y/4kr(1 + iy/2k )-llfr c- (k,co,x) 

= J o([2lyl!ixl - wx)] 1/2) 

+ { Ix lJo([21yl!lxl - coox)] 1/2) 

(2.28l 

- [2(lxl - coox)llylF/2JI([2lyl(lxl - cooxW/2) 

+ [(Ixl - wx)/2]J2([2Iyl(lxl - coox)] 1/2)}(ik l 
+ 0 (k 2), y < 0, (2.29) 
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and similarly for 1[/ / [using (2.26)]. 
Proof Using the expansion 15 

IFI( -l/a;l;az) 

= Jo((4z) I 12) + fa" ± ( -w'r(1 + v + ,u)-I 
,,=1 1'=1 

with 

Cll = 1, C21 = 2, C22 = 3, etc., (2.31) 

where Eq. (2.30) defines an entire function with respect to a 
and z, we immediately obtain Eq. (2.28) and (2.29). To prove 
analyticity we note that e2alxl VeR for some a > 0 implies 
e2a'lxl VeL I(R3

) for all a' < a such that it suffices to get an 
appropriate bound for (a lak )IFI( - irl2k; l;ikS) as 
S- + 00, S> O. By Kummer's transformation and differen
tial properties for IFI(a; P;Z) (Ref. 10) one obtains 

~ IFI( - irI2k;l;ikS) = rs -leiks/2F'g)(k,S 12). (2.32) 

Hence the estimate (2.25) implies 

IIFI( - irI2k;l;ikSli 

<,c'(r,Ko,Ro) + Irl (S dS,(S,)-lleikS'/2F'g)(k,S'/2)1 
JRo 

<,c(r,Ko,Ro,E){ 1 + (S - Ro)lrlR o-leKoS/2 exp[(l + E) 

X Ko(S - Ro) + (Irll2Ko)ln(S IRo)] j, 
(2.33) 

Similar arguments work for (alak )IFI by differentiating 
(2.32) with respect to k. Analyticity in the weak (and hence in 
the strong) sense of the vector-valued functions (2.29) now 
simply follows from Eq. (2.27) by taking matrix elements 
with CO' (R3

) functions using the above bounds and dominat
ed convergence. 0 

III. ZERO-ENERGY STATES IN COULOMB SYSTEMS 

In this section, we study the behavior of the long-range 
systems defined by (2.7) at the zero-energy threshold, allow
ing explicitly for zero-energy bound states and zero-energy 
resonances of H. This will give us the different cases that are 
possible in these systems. 

To discuss bound states of H, we see that, recalling the 
resolvent equation 

(H - k2)-1 = Gy.k - Gy.kV(UGy.kv + l)-luGy.k, 

k2€W(H), Imk>O,k# -irI2n, n= 1,2, ... , (3.1) 

it is natural to consider the transition operator 

(UGy,kV + 1)-1, 1m k> 0, 

k # - irl2n, n = 1,2.... . (3.2) 

In particular, for k-o one has to study the eigenvalue - 1 
ofuGy.ov. 

Let VeR and assume 
uGy.oV¢y = - ¢y, for some ¢yeL 2(R3 ), reR. (3.3) 
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Then we first state Lemma 3.1. 
Lemma 3.1: Assume VeL I(R3

) for r>O and in addition 
(I + Ix11/2)VeL I(R3)forr<0. If one defines 

tPy(x) = (Gy.oV¢y)(x), reR, (3.4) 

then for all yeR, tPyeL ~oc (R3
) and 

[-..1 + rlxl-I + V(x)]tPy(x) = 0, (3.5) 

in the sense of distributions. 
Proof Let r>O. Since Ko(r) and rK I (r) are monotonical-

ly decreasing in r> ° (Ref. 10), viz., 

d 
-Ko(r) = -KI(r)<O, r>O, (3.6) 
dr 

d 
-[rKI(r)] = -rKo(r)<O, r>O, (3.7) 
dr 

we immediately get from (2.10) 

gy.o(x, y)<,(41Tlx - yl)-I(2rx_)1/2[/1((2y.c)1/2) 

XKo((2rx_)1/2) + lo((2rx_)1/2)KI((2rx_)1/2)] 

= (41Tlx-yl)-1 =go.o(x, y), r>O, (3.8) 

where we have used the Wronskian relation between Ko and 
10 (Ref. 10). Thus the first part of Proposition 2.1 in Ref. 4 
directly applies and tPyeL ~oc (R3

), r>O. 
For r < 0 we note that standard Bessel function esti

mates 10 applied to Eq. (2.11) yield 

Igy.o(x, y)1 <,c'lx - yl-I [I + XI~4] 
<,c(1 + Ix1 1/4)lx - yl-I(1 + lyI I/4). (3.9) 

So one can again follow the first part in the proof of Proposi
tion 2.1 in Ref. 4 step by step. Since VtPy = - vtPyeL I(R3

), 

VtPy defines a distribution and Eq. (3.5) is proved as in the 
short-range case r = 0. 0 

A more detailed investigation for repulsive Coulomb 
systems leads to Lemma 3.2. 

Lemma 3.2: Assume r>O and let VeR, (1 + Ixl l H) 
X VeL I(K3

) for some E> O. Then tPy, VtPyeL 2(R3
) (the deri

vative is understood in the sense of distributions). In addition 
tPyeg(H) and 

HtPy =0, (3.10) 

i.e., tPy is a zero-energy eigenstate of H. 
Proof From Eq. (2.14) we have that 

x+>2Iyl, x_<,2I x l, if Ixl<'lyl, 

(3.11) 
x+>2Ixl, x_<,2Iyl, if Ixl>lyl. 

Next, we note the following properties of the modified Bessel 
functions. First 

lo(r) >/1 (r), Ko(r)<,KI(r), r> ° 
and, second, we recall Eq. (3.6) and 

d 
-[r/l(r)] = r1o(r) >0, r>O. 
dr 

Using this information in Eq. (2.10) one derives 
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By Lemma 3.1 it suffices to takeO<c<lxl (c large enough). From Eqs. (3.4) and (3.14) we get 

ItPy(x)l..;;; r d 3y Igy.o(x, y)lv( y)\cfoy( y)I«217'Ix - y\)-11 d3y(4rlx\)1/2Io((4rIYW/2)K1((4rlxW/2)v( y)lcfoy( y)\ 
JR' lyl';lxl 

+ (217'1x - y\)-I r d3y(4rly\)1/2Io((4rlxW/2)K1((4rIYW/2)v( y)lcfoy( y)l=tPI.y(X) + tP2.y(X). 
Jlyl;;.I,,1 

Next we split up tPI.y into 

tPI.y(x) = (217'Ix\)-1 r d 3y(4rlxW/2Io((4rlyW/2)K1((4rlxW/2)v( y)lcfoy( y)1 + (217')-1 r d 3y [ Ix _ yl-I 
JI*I"I Jlyl.;lxl 

- Ixl-I](4rlxW/2Io((4rlyW/2)K1((4rlxW/2)v( y)lcfoy( Y)I==""I~~(x) + tPi.y(x). 

From the fact thaeo 

!!.[r(1 +brIH)KI(r)] = -rKo(r)+b(2+E)rIHKI(r)+brHKj(r) 
dr 

.;;; -rKo(r) +br+E[KI(r) +Kj(rl] <0, for r;>2+E, E,b>O 

[since KI(r) + K; (r) < 0, r> 0], we obtain 

""I~~(X) = {217'1XI [1 + b Ixl(\ H)l2] }-I r d 3y [ 1 + b Ixl{1 H)/2](4rlxW/2Io((4rlyW/2)K1((4rlxW/2)v( y)\cfoy( y)1 
JI*I"I 

,,;;;c'lxl-{HE)ld d 3y[ 1 + b lyliI H)l2]V( y)lcfoy( y)l, 
JR' 

where we have used 

r1o(r)K I (r).;;;const. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

By Schwarz' inequality and the hypotheses on V the integral in (3.18) exists and hence ""II.~ is L 2 near infinity. In order to treat 

""~~ we start from 

r d 3x l""I~~(xW.;;; r d 3X(4r)-I{ r d 3y Ilx - yl-I - lxi-II (4rlyWI2Io((4rlyW/2)KI((4rlyl)1/2)v( y)lcfoy( Y)I}2 
JIXI;;.c JI"I;;'c JIYI';lxl 

';;;c"r d 3X{r d3yllx_YI-I_IXI-llv(y)lcfoy(y)I}2, (3.20) 
Jlxl;;.c JR' 

where we have employed (3.7) in the first inequality and the estimate (3.19) in the last ineqUality. Interchanging the order of 
integrations in Eq. (3.20) by Fubini's theorem and observing that 

r d 3x Ilx - yl-I - lxi-II I Ix - Zl-I - lxi-II ';;;constlyII/2IzI 1/2, (3.21) 
JR' 

finally proves that also ""I~~ is L 2 near infinity. Next we split up tP2.y into 

tP2.y(X) = (217' Ix l)-11 d 3y(4rIYW I2Io((4rlxl)1/2)K1((4rlyl)1/2)v( y)lcfoy( y)1 + (217')-11 d 3y[lx - yl-I 
lyl;;.lxl lyl;;.lxl 

-lxl-I](4rlyW/2Io((4rlxl)1/2)K1((4rlyl)1/2)v( y)lcfoy( Y)I==""i.~(x) + ""i,~(x). (3.22) 

Employing the monotonic decrease of r - E K I (r), viz., 

!!.[r-EKI(r)] <0, r>O, E;>O, (3.23) 
dr 

we derive 

1665 

""21.~(X) = (217'Ixl)-1 r d 3y lyl(1 + E)/2 Iyl- (I + E)/2(4rlyi)1 I 2Io((4r I x i)1/2)KI((4rly 1l1/2)V( y)lcfoy( y)1 
JIYI;;.lxl 

<c'lxl- 1 r d 3y Iyjll H)l2Ixl-EI2Io((4rlxl)1/2)K1((4rlxl)1/2)v( y)\cfoy( y)1 
Jlyl;;.lxl 

.;;;c" Ixl- (3 + E)/21 d 3y IYI(I + E)12V( y)lcfoy( y)l, 
R' 
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where the bound (3.19) has been used in the last inequality (3.24). Thus tP~~ is L 2 near infinity. The prooffor 7f}i.~ is similar, us
ing inequality (3.20) and Eqs. (3.6) and (3.19). Next we sketch the proof ofVtPyEL 2(K3

). From Eqs. (2.10) and (3.4) we get 

(VtPy)(x) = (41T)-1 r d 3y{ Ix - yl-3(y - x)Ay(x, y) + Ix - yl-I(VxAy)(x, y)}=(V7f};))(x) + (VtP~))(x), (3.25) 
JR' 

where 

Ay(x, y) = [(2rx_)1/211((2rx_)1/2)Ko((2rx+)1/2) + (2rx+)1/21o((2rx_)1/2)KI((2rx+)I/2)]v( y)tPy( y). (3.26) 

Since 

IAy(x, y)l<v( y)ltPy( y)l, (3.27) 

by the estimate (3.8), we obtain from Fubini's theorem and a special case of Riesz' composition formula 

.Ld 3x I(V7f};))(xW«41T)-2L.d 3y d3z v( y)v(z)ltPy( Y)lltPy(z)IL,d 3x Ix - yl-2lx - ZI-2 

= C L.d 3y d3
z v( y)ly - ZI-IV(z)ltPy( y)lltPy(z)l<c'IIVIIR IItPyll~ < 00. (3.28) 

Thus V7f};)EL 2(K3). Next we note 

IVxAy(x, Y)I<2r{1o((2rx_)1/2)Ko((2rx+)1/2) + (x+lx_)1/211((2rx_)1/2)K1((2rx+)1/2)Jv( y)ltPy( y)1 

<c[lln(1 yi}1 + l]v( y)ltPy( y)l, 

where Eqs. (3.6), (3.7), (3.11), 

d 
-1o(r) = 11(r) > 0, r>O, 
dr 

1o(r)Ko(r) <c [1 + Iln(r) I ],r > 0, 

and l6 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

have been used. Inequality (3.29) proves VtP~)EL ~oc (K3). To show that VtP~) is L 2 near infinity we assume Ixl >c > 0 and insert 
Ko(r)<KI(r) into (3.29). From Eq. (3.11) and the monotonicity properties mentioned before we obtain 

I V7f};)(x) I <r r d 3y (21Tlx - yi}-I (1o((4rlyl)I/2)KI((4rlxW/2) + (lxI/IYW/211((4rIYI)I/2) 
J1Y1<lxl 

XKI((4rlxW/2)jv( y)ltPy( y)1 + r r d 3y(21Tlx - YI)-I{1o((4rlxl)I/2)K1((4rIYW/2) 
J1Y1>lxl 

+ (lyl/lxW1211((4rlx W/2)K1((4rlyl)I/2)jv( y)ltPy( Y)I==(VtP~))I(x) + (VtP~)b(x). (3.33) 

From now on one can follow directly the proof of tPy is L 2 

near infinity using the monotonic increase of r-I1I(r): 

(3.34) 

The arguments that tPyE.f»(H) parallel those in Corollary 
11.8 of Ref. 9. 

Remark 3.3: Lemma 3.2 shows that for repulsive Cou
lomb systems, only a threshold bound state is possible if the 
short-range potential V has a critical strength (cf. Refs. 17 
and 18 for the notion of criticality). This phenomenon of 
getting automatically a threshold eigenstate of H has also 
been observed in two-electron systems. 19 In the special case 
of a spherically symmetric V it has been announced in Ref. 
20. For the time decay of wave functions see Ref. 21. 

For attractive Coulomb systems we note the following. 
Lemma 3.4: Let VER and assume that V has compact 

support. If r < 0 then tPyd- 2(R3). 

Proof: We first note the (rather crude) estimate 
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IJ21 + I ((4Irlr')1/2)HW+ I ((4Irlr)I/2)1 

{ 
(4IrI2rr')I+ 112 (Irlr,)I+ 112 } 

<c r(21 + If + (Irlr)31+3/2 ' 

1=0,1,2, ... , r' <r, 

which follows from 10 

(3.35) 

IJv (x)l<r(l + v)-I(x/2t, v> - 1/2, x>O, (3.36) 

and a similar estimate on IH ~)(x) I based, e.g., on the integral 
representation 8.4.219 in Ref. 22. The estimate (3.35) proves 
the absolute convergence of the angular momentum expan
sion of the full Coulomb Green's function at zero energy, i.e., 

00 1 

Gy,o(x, y) = hT(lxllyi}-1/2 L L J21 + I ((4Irllyl)I/2) 
1=0 m= -I 

XHW+ I ((4IrllxW/2) Y1,m(roy) Y1,m(rox), 

r < 0, Iyl < Ixl (3.37) 

(Y1,m denote the spherical harmonics). Insertion ofEq. (3.37) 
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into Eq. (3.4), interchanging summation and integration, 
which is allowed by the Lebesgue dominated convergence 
theorem [use estimate (3.35) and the fact that supp Vis com
pact], yields for x outside supp V 

co I 

tPy(x) = L L cl,m Ixl- 1/2HW+ I ((4IrllxWI2) 
I=Om=-1 

X Y1.m(rox), Ixllarge enough, (3.38) 

Cl,m = i1T r d 3y lyl-1/2J21 + I ((4IrllyI)I/2) 
Jsupp v 

xvI Y)tP y( y) Y1,m(ro y )' 

Further, if XR (Ixl) denotes the characteristic function ofthe 
closed ball centered at the origin of radius R > 0, we infer 
from Lemma 3.1 thatXRtPyEL 2(R3

) for allR > O. In particu
lar, 

Since 10 

I HW+ I ((4Irlr)1/2) 12;;;'1T- 1(lrlr)-1/2, r> 0, (3.40) 

IIXRtPylb has no limit as R-",oo unless all c1,m = O. This 
proves tPyfiL 2(R3

). 0 
According to Lemmas 3.1, 3.2, and 3.4 we now intro

duce the following case distinction for Coulomb systems 
(r#O) assuming VEL I(R3)nR for r>O and in addition 
(1 + Ixll/2)VEL I(R3

) for r<O. 
Case L' uGr,ov has no eigenvalue - 1 (i.e., no tPr ex

ists). 
Case II: r> 0 and there exist N linearly independent 

functions tPr,jeiiJ(H),j = 1, ... ,N. 
Case III: r < 0 and there exist N linearly independent 

functions "'r,jEL ~oc (R3),j = 1, ... ,N which are not in L 2(R3
). 

Remark 3.5: (a) Clearly case I is the generic one. In 
particular, if r> 0 and V;;;oO then only case I occurs. 

(b) Since uGr,o v is Hilbert-Schmidt for all reR the num
ber N in cases II or III is certainly finite. In case II, H has a 
zero-energy bound state of multiplicity N. 

(c) In case III zero is a limit point of negative discrete 
eigenvalues of H (and 0 is not the endpoint of a spectral gap 
of H). This means that the techniques developed in Refs. 1,4, 
18, and 23-29 do not apply directly. So a careful investiga
tion is needed, going far beyond the methods used in this 
paper. Because of this we restrict ourselves in the following 
to the cases I and II. 

IV. EXPANSION OF THE TRANSITION AND 
SCATTERING OPERATOR 

Knowing the threshold behavior for the Coulomb-type 
systems we are considering in detail, we now expand the 
transition operator (3.2) and the scattering amplitude. 

To do this we first have to study the exceptional set 'fj 1" 

reRgiven by 

'fj l' = {k 2;;;'0luGr,k VtP = - tP, for some tPEL 2(W) 

and k;;;oO}, yeR. (4.1) 
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As a first characterization of 'fj l' we state the following. 
Lemma 4.1: If VeR then for all reR, 'fj l' is a compact 

subset of [0,00 ) with Lebesgue measure zero. If in addition 
e2alxl VeR for some a> 0, then 'fj l' is discrete (i.e., 0 is the 
only possible accumulation point of 'fj l' in [0,(0)) and hence 
the singular continuous spectrum of H is empty. 

Proof For completeness we essentially repeat the argu
ments of Ref. 1: As discussed in Refs. 30 and 31, 'fj l' is a 
closed set of Lebesgue measure zero which contains the sin
gular continuous spectrum of H. Boundedness of 'fj l' then 
follows from a Klein-Zemach-type result.9 ,31 If e2alxlVeR, 
one infers from Lemma 2.3 that UGr,kv is Hilbert-8chmidt 
and analytic in the half-plane 1m k> - a cut along the non
positive real line and along 

{keq Re k = 0, - adm h;;O, for r>O 
and - a,Im k, - r/2, for r<O}. 

An application of the analytic Fredholm theorem32 then 
proves discreteness of 'fj r' 0 

A priori Lemma 4.1 does not rule out the fact that 0 is an 
accumulation point of 'fj r' In case I, however, DE'fj l' such 
that the closedness of 'fj l' indeed implies that 0 is not an 
accumulation point. Hence [O,k ~ ] n'fj l' = 0 for 0 < ko 
small enough. For case II we introduce the following. 

Assumption A: Zero is not an accumulation point of 'fj r 
in case II. 

This assumption is supposed to be valid throughout the 
rest of the paper. 

Remark 4.2: If V is spherically symmetric and 

LRdrrW(r)1 + LX> dr W(r)1 < 00, forsome R>O, 

then 'fj rn(O, 00 ) = 0 using ordinary differential equation 
(ODE) techniques.33 Finally, assuming e2a1xl VeR for some 
a> 0, one can follow Ref. 34, Chap. X (cf. also Ref. 35) to 
prove that only 0 <k ~e'fj l' isa positiveeigenvalueofH. This 
is sketched in the Appendix. In a second step one uses well
known results on the absence of positive eigenvalues of H 
(see e.g., Refs. 32,36, and 37) to show the validity of assump
tionA. 

As a first result we expand the transition operator. 
Lemma 4.3: Let e2alxl VeR for some a> 0 and assume 

case I or II. Then (uGr,ov + 1 + E)-I, E>Ohas anoTm-con
vergent Laurent expansion around E = 0, viz., 

(uGr,ov + 1 + E)-I = E-IPr + i (- EtT~+ 1, E>O, 
m=O (4.2) 

where P l' is the projector onto the eigenspace of uG 1',0 v to the 
eigenvalue - 1, i.e., 

with 

Pr = 0, in case I, 

P
r 

= f (~y,j,·)tPr,j, in case II, 
j= I (tPy,j'tPr) 

uGr,ovtPy,j = - tPr,j' 

~r,j = (sgn V)tPr,j' dim Pr = N, 

(~r,i'tPr,l) = 0, for j#i, 

(~r,j'tPr,j)#O, 1 <'j,i<.N. 
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The reduced resolvent T1' is given by 

Ty = (uGy.ov + I)-I, in case I, (4.6) 

T1' = n -lim(uG1'.ov + 1 + £)-1(1- Py), in case II. 
E---+O 

00 

(UG1'.k V + 1)-1 - L (ik)2nty.2n' 
k->O n= -M 

o < / k I < ko small enough, 

kEll ± for y<i:O, (4.8) 

(4.7) 

Proof; One can follow the proof of Lemma 3.1 of Ref. 4 
where the case y = 0 has been treated in detail step by step. 0 

where M = 0 in case I and M = 1 in case II. The first coeffi
cients are given explicitly by 

and 

tr,o = (uGy,ov + 1)-1 = T1" 

tr,2 = - Trry,2 Tr, in case I 

N 

(4.9) 

(4.10) Lemma 4.4: Let e2alxl VER for some a> 0 and suppose 
assumption A is fulfilled. Moreover, assume the existence of 
the inverse of the N XN matrix (~1'./y.2f/;1'./)' 1<j,k,N 
[denoted by (~1',r1'.2f/;1')X I] in case II. Then, for 
(O,k ~ )n~ l' = 0,0 < ko small enough, (UG1'.kV + 1 )-1 has the 
following asymptotic expansions in cases I and II valid in 
norm: 

ty, -2 = L (~y,rY,2f/;y)X I(~y,/,.)f/;y,j' in case II. (4.11) 

N 

j,l= I 

Proof; It suffices to consider case II. By Lemma 4.3 we 
obtain 

{l-Py [1 +ry,2]l-lpy = L (~y,r1"2f/;1')i'I(~r,/,.)f/;y,j (4.13) 
j,l= I 

has been used in the last step. Clearly all higher-order coefficients ty,2n' n = 0,1, ... , can be derived along these lines. 0 
Next we introduce the on-shell scattering matrix in L 2(S 2) associated with H, denoted by S (k), k > 0, k 2tt~ r' Let 

SC(k)=r(!+(L2+!)"2+iyI2k) k>O (4.14) 
r(~ + (L2 + !)1/2 - iyl2k) , 

be the pure Coulomb on-shell scattering operator38
,39 where L2 represents the square of the angular momentum operator. 

Then S (k ) can be written as 

S(k)=SC(k)+ PC(k), k>O, k2tt~r' (4.15) 

where TSC(k), k> 0, k 2tt~ l' is a trace class operator in L 2(S2) (continuous in trace norm with respect to k for k 2E!:~ y) with 
kernel given by the Coulomb modified scattering amplitudefSC(k,ro,ro') (Ref. 13), viz., 

(TSC(k )f/; )((l)) = - (217'ij-1 k r dOJ' !,C(k,ro,ro')f/; (ro'), f/;EI. 2(S z), (4.16) 
JS2 

(4.17) 

SinceSC(k) is explicitly known [Eq. (4.14)] we only have to study the remainder term inS (k), viz., TSC(k). The asymptotic 
expansion of its kernelf sc near the threshold k = ° is obtained from the following. 

Theorem 4_5: Let e2alxl VER for some a > ° and suppose assumption A holds. Assume that (~r,r 1',2 f/;y)X I exists in case II. 
Then, for (O,k ~ )n~ l' = 0, 0 < ko small enough, we get the following asymptotic expansions in cases I and II: 

- (41r)(17'ylk )-I(e7Tf'lk - It(1 - ~Y/2k VSC(k,(l),ro') _ f (ik )YSCn(ro,ro'), ° < Ik I <ko small enough, 
r(1 + zyl2k) k->O n= -M 1', 

kEll ±' for Y<i:O, 

where M = 0 in case I and M = 2 in case II. The first coefficients in case I read 

f~o(ro,ro') = (v1o([2y(lxl + ro-x)] I/Z),T1'ulo([2y(lx'l - ro'-x')] 1/2)), y>O, 

f~o(ro,ro') = (vJo([2Iyl(lxl + WX)] 112),TyuJo([2Iyltlx'l - ro'-X')] 1/2)), y<O, 

f~tlro,ro') = (V( IXllo([2ytlx/ + WX)] liZ) - y-l[2y(/xl + WX)] 1IZI I([2y(/x/ + WX)] liZ) 

1668 

- 2- 1 [ixl + wx]Iz((2r(lxl + rooX)J1 IZ )j,T1'ulo([2y(lx'l- ro"X')J1/2)) 

+ (vlo([2yOxl + ro-xjp I2),Tyullx'IIo([2y(ix'l- ro'ox')] liZ) 
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1";'1 (ro,ro') = (v( IxlJo([2lrl(lxl + rooX)] 1/2) - Irl- I [2lrl(lxl + rooX)] 1/2JI([21rl!lxl + rooX)] 1/2) 

+ 2- 1[lxl + roox]J2([2lrl!lxl + rooXJP /2)},Ty uJo([2Irl(lx'l- ro'ox')] 1/2)) 

+ (vJo([2Irl(lxl + rooXJP/2),Tyu( Ix'IJo([2lrl!lx'l- ro'oX')] 1/2) - r- 1[2Irl(lx'l- ro'oX')] 1/2 

XJI([2Irl(lx'l - ro'oX')] 1/2) + 2- 1 [IX'I - ro'ox']J2([2Irl(lx'l - ro'oX')] 1/2)}), r < O. 

In case II we have 
N 

f~~ -2 (ro,ro') = I (¢y,ry,d>y)j/I(¢Y.l,ulo([2r(lx'l - ro'ox')] I 12))(v1o([2r!lx I + rooXJP /2 ),¢y,j)' 
j,l= I 

N 

f~_I(ro,ro') = I (¢y,ry,2¢Y)X 1((¢y,I,U( Ix'IIo([2r(lx'l- ro'ox'JP/2) - r- I[2r(lx'l- ro'ox'W l2 

j,l= I 

XII([2r( Ix'i - ro'ox')] 1/2) - 2 -I [Ix'i - ro'ox' ]I2([2r(lx'l - ro'ox')] 1/2) 1 )(v1o([2r(lxl + roox)] 1/2),¢y) 

+ (¢Y,I,ulo([2r(lx'l - ro'ox')] 1/2))(V( Ixllo([2r(lxl + roox)] 1/2) 

(4.21) 

(4.22) 

(4.23) 

- r- I [2r(lxl + roox)j1/2II( [2r(lxl + roox)] 1/2) - 2- 1 [Ixl + roox]I2( [2r(lxl + rooxJP/2) },¢y,j) J. (4.24) 

Proof Expansion (4.18) follows from Lemmas 2.4 and 4.4 and Eq. (4.17). The coefficients (4.19)-(4.24) are directly 
obtained after inserting Eqs. (2.28), (2.29), and (4.9)-(4.11) into (4.17). 0 

Remark 4.6: Obviously, assuming that for all Irl < E, E small enough, we are in case I, the expressions for f~n (ro,ro') 
derived in Theorem 4.5 tend to the corresponding short-range quantities I as r-o. 

Vo COULOMB-MODIFIED LOW-ENERGY PARAMETERS 

We now want to find the generalization of the Coulomb-modified low-energy parameters to the nonspherically symmet
ric case and at the same time relate them tofSC(k,ro,ro'), like we have done l for the short-range case. Therefore, we first look at 
the (Coulomb-modified) effective range expansion. 

If V is spherically symmetric and obeys 

W(r)l<cr-le- br
, for some b>O, (5.1) 

thenfSC has the absolutely convergent expansion40,41 

(5.2) 

where 

8/(k) = argr(1 + 1 + ir/2k), 1= O,l, ... ,k> 0 (5.3) 

denote the pure Coulomb phase shifts and 8 r(k) the Coulomb-modified nuclear phase shifts. Furthermore, restricting 
ourselves to s waves (I = 0), we obtain the Coulomb-modified effective range expansion 

(1Trlk)(e"1'lk - 1)-1 [k cot8jC(k) - ik] + rh (r,k) = - (a~C)-1 + 2- lr'oCk 2 + O(k4). 
k....o+ 

(5.4) 

The left-hand side of (5.4) is real-analytic with respect to k 2 around k 2 = 0 (Refs. 5 and 6). In Eq. (5.4) a~c and r:; denote thes
wave Coulomb-modified scattering length and effective range parameter, respectively, and h (r,k ) has been introduced in Eq. 
(2.19). 

Consequently, to generalize a~ and r:; to nonspherically symmetric interactions V we study the expression F (r,k ) defined 
by 

F(r,k) = {(1Trlk)-I(e"1'lk_1)e-2i~(k)(41T)-2i dOJdOJ,/SC(k,ro,ro,)}-1 +rh(r,k), k>O, k 2Etify, (5.5) 
Js'xs' 

which coincides with the left-hand side ofEq. (5.4), in case Vis spherically symmetric. Inserting 
L 1 

u(x)1JI c-(k,ro',x) = s-lim 41T I I (2ik )/F(21 + 2) -Ie- "1'/4kF(/ + 1 + ir/2k )u(x)r-IF~O)(k,r) Y1,m(ro') Y1,m(ro,.!, (5.6) 
L--+", 1 = 0 m = - 1 

together with Eq' (4.17) into Eq' (5.5), we get after doing the angular integrations 

F(r,k) = - [(41T)-I(vr-IF~)(k,r),(uGy,kV+ 1)-lur'-lF~)(k,r'))]-1 +rh(r,k), k 2Etif y, (5.7) 

whereF\O)(k,r) is given by Eq. (2.16). SinceF~)(k,r) is entire with respect to k 2, Lemma 4.4 implies thatF(r,k ) has an asymptotic 
expansion of the type 
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F(y,k)- _(aSC)-I+r1?"k 2+O(k 4
), O<k<ko small enough, YER\{O}. 

k-+O 

We recall that in case II, assumption A is supposed to hold. Next we calculate 

F(y,k) - F(y,k) = 21Tiy(e1rY1k - 1)-1 - (ik 121T)(2ik )-I(vr-1F~)(k,r),(uGY.kV + l)-IU(Gy.k - G ~k) 

XV(UG~kV + l)-lur'-IF~)(k,r')) 
X(41Tfl(vr-IF~)(k,r),(uGY.kV + 1)-lur'-IF~)(k,r'))1-2, k 2f$.'l! Y' 

where 

yh (y,k) - yh (y,h) = 21Tiy(e1rY1k - 1)-1 

has been used. Employing the relation (cf. the Appendix) 

(41T)-2i dm" I[! c- (k,ro" ,x) I[! c- (k,ro", y) = (2ik )-1 [ Gy.dx, y) - Gy.dx, yl] 
s' 

in Eq. (5.9) the right-hand side of the latter becomes 

21Tiy(e11Y12k _ 1)-1 

- (ik 121T)(41T)-2! dm" l(vr-IFbO)(k,r),(uGy.kV + I)-luI[! c- (k,ro")W 
s' 

x (41T)21(vr-IF~)(k,r),(uGy.kV + 1)-lur'-IF~)(k,r'))1-2, k 2f$.'l! y' 

Furthermore, inserting Eq. (5.6) into Eq. (5.12) and integrating over dm", we arrive at 

'" 1 
F(y,k) - F(y,k) = (- ikI21T)e- 1rY12k L L l(vr-IF~)(k,r),(uGy.kV + 1)-1(2k)lr(21 + 2)-llr(1 + 1 + iyl2k)1 

1=1 m=-I 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

xur'-lF~OI(k,r')YI.m(rox' )W(41Tfl(vr-IF~)(k,r),(uGY.kV + 1)-lur'-IF~I(k,r'))1-2, k 2f$.'l! y' (5.13) 

Finally we look at the small kbehavior of these quantities. Inserting expansion (2.28) and (2.29) into expression (5.12) one 
obtains in case I 

(5.14) 

(5.15) 

{
o (e -11Ylk), y> 0 

k-+O 0 (1), Y < 0, In case I, 
(5.16) 

by doing explicitly the dm" integration with help of Ref. 42, pp. 87 and 88. Similarly in case II 

(5.17) 

At this point it is instructive to compare with the short-range situation (y = 0). There the analog ofEq. (5.13) and its small k 
limit reads 

F(O,k) - F(O,k) = (- ikI21T)ltl mt-I/ (vSi~:r ,(uGkv + 1)-IUjl(kr')Y1•m(rox')) /2 

X(41T)2/(~ ,(uGkv + 1)-lu sin kr' )/-2 = O(k3), k 2f$.'l! 0 
kr kr' 

in all cases I-IV (cf. Ref. 1 for the case distinctions when y = 0). 

(5.18) 

From these results we see thatF(y,k) is in general complex valued. The reason for this becomes clear from Eqs. (5.12) and 

(5.13): The first term in Eq. (5.12) [being identical to yh (y,k ) - y h (y,k ); cf. Eq. (2.19)] precisely cancels the s-wave part of 

(21k )-1 [Gy,k - Gy.k ]. In other words, the term yh (y,k )inEq. (5.5) exactly subtracts thes-wavecut contribution ofGy.k. But 
the long-range nature of the Coulomb potential y/lxl obviously dominates I (I + 1)/r as r--oo for alII = 0,1,2, .... Therefore, 
in order to get real low-energy parameters one is forced to first subtract the cut contribution of Gy,k for alii = 0,1,2, ... , in Eq. 
(5.5). By calculations presented above this corresponds precisely to a replacement of F(y,k) by its real part. Consequently we 
obtain in general 
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ReF(r,k) - - (aSC)-1 + 2- 1Y;Ck 2 + O(k4), O<k<ko small enough, ye:R'\ {OJ 
k-o 

(5.19) 

as the analog of the expansion (5.4). This leads to the following. 

Definition 5.1: Let e2alxl VER for some a > 0 and suppose assumption A holds. Then the Coulomb-modified scattering 
length aSC is defined as 

(aSC)-I= _ lim Re{[(1TY)-\e"1'lk_1)e-2i6&kl(41T)-2f dWdw'fSC(k,CI),CI),)]-I}, O<k<ko small enough, 
k-o+ k Js'xs' 

r¥O in cases I and II. (5.20) 

The Coulomb-modified effective range parameter ~C is then defined to be 

y;c = ~ + lim 2k -2{Re[( 1TY) - l(e111'lk _ l)e - 2i6~(kl(41T)-2 f dw dw' fSC(k,CI),CI)')] - 1 + (aSC)-I}, 
3r k-o k Js'xs' 

0< k < ko small enough, r¥ 0 in cases I and II. (5.21) 

Definitions (5.20) and (5.21) are clear from Eqs. (5.5), (5.19), and 

Re[rh(r,k)] =k2/3r+O(k4) (5.22) 

[cf. expansion (2.21)]. 
Remark 5.2: Obviously if Vis spherically symmetric the right-hand side ofEq. (5.13) is identically zero and hence F (r,k ) 

and the coefticientsaSC, Y'C in (5.8) are real. In case I for r> 0 and in case II, the imaginary part ofF (r,k ) is of order O(e-111'lk) 
[cf. Eqs. (5.16) and (5.17)] such thataSC and ~ are again real. So in all these cases the real part in definitions (5.20) and (5.21) can 
be dropped. The same is true in the short-range case r = O. Due to the fact that Im[F(O,k)] is at least of order 0 (k 3) [cf. Eq. 
(5.18)], the low-energy parameters lzs and r (the analogoflzSC and Y'C ifr = 0) are real and hence coincide with as and r (Ref. 1). 
Only for r<O in case I is the real part in definitions (5.20) and (5.21) needed and should be added to the corresponding 
expressions in Sec. IV of Ref. 1. 

Given Definition 5.1 we finally provide explicit expressions for aSC and ~c, thereby extending the results of Ref. 1. 
Theorem 5.3: Let e2alxl VER for some a > 0 and suppose assumption A holds. Then in case I we have 
aSC = (41T)-I(v(rr)-1/2I1((4rr)I/2),Tyu(rr')-1/2I1((4rr')1/2)), r> 0, (5.23) 

y;c = 2/3r + (21T)-1(aSC)-2[(v(rr)-1/2Il((4rr)1/2),TyrY.2 Tyu(rr,)-1/2I1((4rr')1/2) 

- (vrI2((4rr)1/2),Tyu(rr,)-1/2I1((4rr')1/2))/3r - (v(rr)-1/2I1((4rr)1/2),Tyur'I2((4rr')1/2))13r] , r> 0, (5.24) 

(aSC)-l = Re{ [(41T)-1(v(irlr)-l/2Jl((4Irlr)1/2),Tyu(irlr')-1/2Jl((4Irlr')1/2))] -lj, r < 0, (5.25) 

y;c = 2/3r - 81TI(v(irlr)-1/2JI((4Irlr)1/2),Tyu(lrlr,)-1/2Jl((4Irlr')1/2))1-2 

X Re{ (v( Irlr)-1/2 J 1((4Irlr)1/2),Tyr y.2 Tyu(lrlr')-ll2 Jl((4Irlr')1/2)) - (vrJ2((4Irlr)1/2),Tyu( Irlr,)-1/2 

XJ1((4Irlr')1/2))/3Irl - (v(irlr)-1/2Jl((4Irlr)I/2),Tyur'J2((4Irlr')1/2))/3Irlj, r <0. (5.26) 

In case II, if (v(rr)-1/2I1((4rr)1/2),tPy.jo)¥0 for some 1 <Jo<.N, we get 
(aSC)-1 = 0, (5.27) 

~C = 2/3r + 81TL~ 1(~y,ry'2tPy)X 1(~y,/,u(rr')-1/2Il((4rr')1/2))(v(rr)-1/2Il((4rr)1/2),tPy,j)] - 1, (5.28) 

assuming the existence of(~,rY,2tP)X 1 (cf. Lemma 4.4). If(v(rr)-1/2Il((4rr)1/2), tPy) = 0 for all 1 <.j<.N we obtain that a sc is 
again given by Eq. (5.23) [with Ty defined in Eq. (4.7)] and y;c is given by 

with 

y;c = 2/3r + (21T)-1(aSC)-2{(v(rr)-1/2Il((4rr)1/2),TyrY.2 Tyu(r'r)-1/2I1((4rr,)1/2)) 

- (v(rr)-1/2I1((4rr)1/2),Tyay, _ 2 Tyu(rr,)-1/2I1((4rr,)1/2)) - [(vrI2((4rr)1/2),Tyu(rrT 1/2Il((4rr')1/2)) 

+ (v(rr)-l/2I1((4rr)1/2),Tyur'I2((4rr,)1/2))] /3r + [(vrI2((4rr)1/2),a y_ 2r y,2 Tyu(rrT 1/2Il((4rr')1/2)) 

+ (v(rr)-l/2I1((4rr)l/2),TyrY,2ay, _ 2ur'I2((4rr,)1/2))]/3r - (vrI2((4rr)I/2),a y. _ 2ur'I2((4rr,)1/2))/9y}, (5.29) 

N - -1-
ay,_2 = j,f:)tPy,rY,2tPY)j/ (tPy,/,·)tPY,j' (5.30) 

expansion (4.18) into definitions (5.20)and (5.21), integrating 
over dw dw'. 0 

assuming again the existence of (~,r y,2 tP )jll. 

Remark 5.4: (a) If V is spherically symmetric and tPy,j' 
1 <. j<.Nbelong to angular momentum subspaces indexed by 
1>1 then obviously (v(rr)-1/2I1((4rr)I/2), tPy)=O for all 
l<.j<.N and the last part of Theorem 5.3 applies. Proof: Expressions (5.23H5.29) follow after inserting 
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(b) By inspection one can show that as(; and f'c are con
tinuous at r = 0 (as conjectured in Ref. 1). Furthermore, 
they converge to the corresponding short-range quantities as 
and r' if we assume, e.g., that we are in case I for allirl < €, € 

small enough. In particular, one derives 

(aSC)-1 = (as)-1 + r[ln r+ 2C - 1] - y(aS )-2(81T)-1 

X ((vlxl,Tou) + (v,Toulx'll- (v,Tou In(x+/2)v 

XTou)l21TJ+O(r ln r), r>O, (5.31) 

where C denotes Euler's constant22 and u In(x +/2)v denotes 
the Hilbert-Schmidt operator with kernel 

u(x)ln[(lxl + Iyl + Ix - yl)l2]v( y). 

Such a formula has also been written down for finite-size 
particle scattering in the spherically symmetric case in Refs. 
5 and 6. 

For discussions on charge symmetry of nuclear forces 
in connection with expansion (5.31) we refer to Refs. 29, 43, 
and 44 and the literature cited therein. 
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APPENDIX: THE EXCEPTIONAL SET Sr 
Following the treatment in Ref. 34 we sketch a possible 

way to verify that every nonzero point k ~ E 'll r belongs to the 
point spectrum of H. Throughout this Appendix we assume 
e2alxl VER for some a > 0 (this could be relaxed in the follow
ing) and 

uGr.kovcf>r.ko = - cf>r,ko' cf>r,koEL 2(R3
), 

k~E'll r' ko>O. (AI) 

We first introduce the spectral representation associat
ed with HePac (He ), Pac (He) being the projection onto the 
absolutely continuous subspace corresponding to He 

{

Pac (He)L 2(R3~L 2((0,00 ),dk;L 2(S 2)), 

Ue: g(x)---+s-lim(21T)-3/2k r d 3X --=1[/=-c-(:-:-k-,ro-,x--:-)g(X) 
R~oo Jlxl<R 
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We then state the following. 
Lemma A.I: Let cf>r.ko be as above; then 

(A3) 

Moreover, introducing 

(M~(k )g)(ro) = (Uevg)(k,ro), gEL 2(R3), 

k> 0, roES 2, (A4) 

thenM~(k )EeB 2(L 2(R3),L 2(S2)) andM~(k) is continuous in 
the Hilbert-Schmidt norm with respect to k > O. 

Proof' From Eq. (2.32) and from Ref. 10 

IF1(a;/3;z) = [F(a)F(/3 - a)] -lr(/3)fdt~tta-l 

X (1 - t ) p - a-I, Re /3 > Re a > 0, 

one obtains for all a > 0 

Ie - alxll[/ e- (k,ro,x) I <e(k), k> O. 

Thus the kernel M~(k,ro,x) of M~(k) obeys 

M~(k,ro,x) = (21T)- 3/2k 1[/ e (k,ro,x)v(x)EL 2(S2XR3), 

k>O 

and 

IIM~(k) - M~(k ')II~ 

= (21T)-d dw d 3X Ikl[/ e- (k,ro,x) 
JS'XR' 

- k'l[/ e- (k ',ro,xWI V(x)1 

by dominated convergence. Next we compute 

III Uevcf>r.ko)(ko)II~2(S2) 

= (M~(ko)·M~(ko)cf>r.ko,cf>r.ko) 

= (ikol1T)( [vGr.kov - vG ~kov] cf>r.ko,cf>r.ko)' (AS) 

Here we have used Eq. (5.11). A simple proof of Eq. (5.11) 
can be obtained from the partial wave decomposition (5.6) 
for 1[/ e- and from 

00 J 

Gr.k(x,y) = (ixllyl)-l L L ~O)( - k,lxl,lyl) 
J=Om=-J 

X YJ•m (rox ) YJ•m (roy), 

".(0) k' J , J , , 
{
G (0)( - k r)F(O)(k r') 

151 (- ,r,r) = G ~O)( _ k,r')F~O)(k,r), 

Finally, Eq. (AS) implies 

III Uevcf>r.ko)(ko)lIi '(S') 

= - (2kol1T)lm(vGr.ko vcf>r.ko,cf>r.ko) 

= (2kol1T)lm(cf>r.ko,(sgn V)cf>r.ko) = o. 

r'<r, 

r',>r. 
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Lemma A.2: Let rPY,ko be as above and define 

~e(k) = (P - k~)-IM~(k)rPy,koeL2(S2), 

k>O, k =/=ko. 

Then 

lI~e(k )IIL2(s2) eL 2((0,00); dk) 

and hence 

(A7) 

(A8) 

Proof: One can follow the proof of Lemma 10.15 of Ref. 
34 step by step. 0 

From the fact that 

{

L 2((0,00 ); dk ;L 2(S 2))-p ac (He)L 2(R3), 

U e- I: h (k,ro)_s-lim(21T)-3/2 jR dk j dw 4/1 c- (k,ro,x) 
R--..~ )0 )S2 
Xkh (k,ro), 

(A9) 

one infers that 

U.,py,ko = ~m u(He - k 2 - iE)-IVrPy,ko = - rPY,ko 
+ 

(A 10) 

and 

(All) 

by using the eigenfunction expansion of He in terms of ifJe- . 
Employing the explicit expression of G y,ko (x, y) given by Eqs. 
(2.15)-(2.17) one can show after a tedious calculation that 
VifJY,koeL ~oc(JR3). Since 

(A12) 

in the sense of distributions, it remains to prove 
VifJy,keL 2(R3

) [Le., ifJY,koeH2,I(R3)] in order to conclude (Ref. 
9, Corollary 2.8) 

(Al3) 

If H is given by an operator sum [Le., V is bounded with 
respect to He with relative bound smaller than one and hence 
~(H) = ~(Ho)] then (Al3) results by mimicking the proof 
of Proposition 10.17 of Ref. 34. If VeR and, e.g., supp V is 
compact, one can argue as follows: Equation (A3) is equiva
lent to 

(A14) 

and hence by expansion (5.6) 
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j d 3y lyl-IF\O)(ko,lyl) Y/,m (roy) v( Y)rPr,ko( y) = 0, 
JR' 

ko>O, 1= 0,1,2,.... (A15) 
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On the other hand, Eqs. (A6) and (All) imply for x outside 
supp V 

= 0, for Ixllarge enough. (A16) 

Thus supp ifJr,ko is compact and hence VifJr.ko eL 2(JR3), imply
ing the validity of (Al3). 
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Transition matrix of point interactions as the scaling limit of integrable 
potentials on the real line 
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On the real line, the transition matrix corresponding to the nonrelativistic one-particle Hamilton 
operator for a finite number of zero-range interaction points is the scaling limit of the transition 
matrix for corresponding integrable potentials. 

I. INTRODUCTION 

The mathematically rigorous study of the Schrodinger 
equation with the potential describing so-called point or con
tact interactions is useful for models in various areas of phys
ics, e.g., nuclear physics, solid state physics, elementary par
ticle physics, and corresponding few-body and many-body 
problems, with the realistic potentials inserted only solvable 
numerically, can be evaluated explicitly in the model limit of 
point interactions. 1-13 

On the heuristic level, 14-19 these point interactions are 
described by "6 functions," and many of the emerging re
sults are correct in the sense that they can be derived rigor
ously.2O--27 The most general starting point for such a rigor
ous definition of contact potentials is the "minimal 
SchrOdinger operator" 

H,,;f : = - L1 + V, VEL ~oc (~n - ..w'), 

domH,,;f: = ~o(~n - ..w'), 

where ..w' denotes the closed exceptional set of Lebesgue 
measure zero. If the set ..w' is bounded, then under certain 
additional assumptions the wave operators exist and are 
complete in the sense of Kato (Kuroda), i.e., 

ran!1± (H,,;f,Ho) =tW'ac(H,,;f)' 

where H,,;f is any self-adjoint extension of H,,;f, tW' ac (H,,;f ) 
denotes the absolutely continuous subspace of 
tW': = L 2(~n)withrespecttoH,,;f' andHois the free Hamil
ton operator; the singularly continuous spectrum of H,,;f is 
empty.28.29 

In the special case considered throughout this work, 
where N contact points on the real line ~ are considered, the 
minimal operator 

, d 2 

H,,;f: = --2' domH,,;f: = '1ffo(~ - ..w'), 
dx (1.1) 

..w':= {al, ... ,aNj, 

can be closed t030 

o d 2 

H,,;f = - dx2' domH,,;f 

={/EH2,2(~);/(a;)=0, i=I, ... ,Nj. (1.2) 

Its adjoint is the "maximal operator" 
, d 2 , 
Ht = __ domHt =H2.2(~ - ..w')nHI.2(~). ,,;f dx2',,;f , 

(1.3) 

here H 2.2(!1 ) denotes the corresponding Sobolev space over 

an open subset !1 of ~ (see Ref. 31). All the self-adjoint 
extensions of H,,;f can then be parametrized by the boundary 
conditions27.32 

d 2 

Ha:= --2' 
dx 

domHa: = {/EHI.2(~)nH2.2(~ - ..w'); 

/,(a; + 0) - /'(a; - 0) = a; I(a;), 

a j E~, i = 1, ... ,N j. (1.4) 

These Hamilton operators H a are just the self-adjoint opera
tors associated with the quadratic forms27.32 

N 

Qa(f,g): = (('Ig') + r a; I(a;)g(a;), 
;=1 

(1.5) 

The difference of the resolvents of Ha and Ho is an integral 
operator with the separable kernel 

N N 

ka(x,x'):= - r r gdx-a;)r~gk(x'-aj)' 
;= Ij= 1 

r k • - [T- 1 ] 
ij. - ii' 

Imk>O; 

here gk denotes the kernel of the free resolvent Gk , 

gk(X, x'): = (i/2k )e;klx-x'l, 

Gk : = (Ho - k2)-I, 1m k>O. 

(1.6) 

(1.7) 

This Hamilton operator Ha has at mostN eigenvalues which 
are negative; its singularly continuous spectrum is empty; its 
absolutely continuous spectrum covers the positive real 
line. 32 

The aim of this work is. to obtain the scattering theory 
for this N-point interaction via an appropriate limiting pro
cedure from the scattering formalism for a rather wide class 
of potentials; here the unitary group of dilations 

U J(x): = E-t/y(X/ E), X E ~, IE tW': = L 2(~), 
(1.8) 

offers an elegant possibility.32 The corresponding limit in 
three dimensions for integrable Rollnik potentials has been 
performed elsewhere in the sense of strong resolvent conver
gence.33 

Here we start from the following scaled potentials: 
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· N -2 (X - ai ) 
HE: =Ho+ i~1 € Ai (€)Vi -€- , 

€>O, Vi EL I(~), (1.9) 

where the real-valued functions Ai are chosen to be holomor
phic in a neighborhood of zero, with the value Ai(O) = 0; the 
above sum of kinetic energy and potential is defined in the 
sense of quadratic forms. 34 For €-D, this Hamilton operator 
converges in the sense of norm resolvent to the contact inter
actions (1.4), with the "coupling constants" 32 

a i : = A ;(0) L Vi(x)dx, f = 1, ... ,N. (1.10) 

Correspondingly, we shall prove convergence of the scaled 
transition matrix to the transmission and reflection coeffi
cients of the Hamilton operator (1.4) with N zero-range in
teraction centers. 

In the appendices, we define the transition matrices for 
both the scaled potentials (1.9) and the point interactions 
(1.4) within the framework of time-independent scattering 
theory. 

II. TRANSMISSION AND REFLECTION COEFFICIENTS 
FOR A FINITE NUMBER OF ZERO-RANGE 
INTERACTIONS 

The one-dimensional quantum scattering problem on 
the positive real axis35 or on the real line ~, respective
ly,36-41 is usually described by transmission and reflection 
coefficients. The time-independent derivation of these coef
ficients shall be sketched in the appendices. Here we start 
from the scattering wave functions of the Hamilton operator 
Ha (see Ref. 19), 

"kx f tf/ ±(x): = e±1 ---
k 21k I 

N N 

X ~ ~ rlkl ±ikaj ilkllx-a,1 
£.. £.. ij e e , 
i= Ij= 1 

X,kE~, 

which solve the formal Lippmann-Schwinger equation 

tf/k±(x)=e±ikX __ f _ ( dyeilkllx-yl 
21k I )84' 

N 

X L aiD(y - ai ) tf/ k± (y). 
i=1 

(2.1) 

(2.2) 

These waves describe one particle with momentum k inci
dent from the left- ( + ) or rig'ht- ( - ) hand side and being 
transmitted through or reflected by the point interactions. 

The corresponding transmission and reflection coeffi
cients are then defined by the limits 

t ±(k): = lim e~ikxtf/ k±(X), 
x_± 00 

r±(k):= lim e±ikx(tf/k±(x)_e±ikx), k>O. (2.3) 
x_~oo 

Inserting the scattering eigenfunctions (2.1) one obtains 
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= :t(k), 

I NN 
r±(k) = -. L L e±ika'r7j e±ikaj

, k>O. 
2lk i= Ij= 1 

(2.4) 

In the special case of one zero-range interaction center, the 
eigenfunctions and scattering coefficients are reduced to 

tf/ k±(X) = e±ikx _ fa e±ikaeilkllx-al x, kE~; 
21k I + fa ' 

t(k)= 2k , r±(k)= -fa e±2ika, k>O. 
2k + fa 2k +fa 

Thus the unitary scattering matrix, which is defined by 

[
t+(k) r-(k)] 

S(k): = r+(k) t -(k) , k>O, 

takes the simple form 

S(k) = 1 [2k 
2k+fa - fa 

- fa] [0 
2k ~ -1 

(2.5) 

(2.6) 

(2.7) 

III. SCALING LIMIT OF THE TRANSITION MATRIX FOR 
INTEGRABLE POTENTIALS 

Here we use the following implicit definition of the 
transition operator: 

(He _k2)-1 =Gk -GkTk(€)Gk, Imk>O. (3.1) 

The time-independent derivation of this stationary expres
sion shall be presented in Appendix A. 

The scaling limit (€-D) of this Schrodinger operator 
has been studied in one and three dimensions.32,33,42-44 Espe
cially, the convergence of H" to Ha in the norm-resolvent 
sense was proved,32 with the corresponding "coupling con
stants" a i defined by Eq. (1.10). 

We present the proof of convergence for the transition 
matrix in two steps: at first, we restrict the point interaction 
to one center; then we generalize this limit to the case of N 
centers. 

A. One interaction center 

For the Hamilton operator 

H,,: = Ho -+ [A (€)/c] V((x - a)/€), (3.2) 
the transition operator takes the following "symmetrized" 
form 32,34,45,46: 

_A(€) (A(€) )-1 
Tk (€) --;zv" 1+ -;zu"Gkv" u'" 

V,,: = vIC - a)/€), U,,: = u(C - a)/€), 

u: = V sgn v, v: = I V11/2. (3.3) 
The corresponding transmission and reflection coefficients 
are defined by its matrix elements 

t k±(€): = 1 + (l/2fk )(e±ik-ITk(€)e±ik_), 

r k± (€): = (l/2ik )(e~ik-I Tk(€)e ± ik_), 

Re k>O, 1m k-D+. 
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Now the unitary scaling transformation U
E 

defined by 
Eq. (1.8), which acts as 

UEVUU E-
I = V(JE), UEHoU E-

1 =cHo, 

(3.5) 

and an appropriate translation of the center to the origin 
yields the expressions 

t k± (E) = 1 + [A (E)/2iek ] 

X (e±iEk~vUI(I +..1, (e)uUGEkVU)-luUe±i€k_), 

rk± (E) = [A (E)/2iEk ] e ± 2ika 

X (e+i€k-vU1(I + A (E)UUGEkVC))-luUe± iEk_); 
(3.6) 

the Hilbert-Schmidt operator32 

Bk(E): = A (E)UUGEkVU, 

GEk = (Ho - ck 2)-I, 1m k>O, (3.7) 

acts as an integral operator with the kernel 

iA (e) . kl 'I iA '(0) --u(x)e'€ x-x v(x')---+ --u(x)v(x' ). (3.8) 
2Ek E~ 2k 

This pointwise convergence of the kernel, with the aid of 
dominated convergence, implies the convergence of Bde) in 
the sense of the Hilbert-Schmidt norm; the second resolvent 
equation then leads to the limit in the sense of the operator 
norm 

limli(I + Bde))-I - (I + (ia/2k )P)-III = 0, 
E--+O 

P: = lu)(vl/(vlu), (3.9) 

where we assumed (vlu) = Sg; dx V(x)#O. Thus we finally 
obtain the desired limits 

lim t k± (E) = t (k), limr,;: (E) = r ± (k), k>O. (3.10) 
E--+O E--+O 

The simple expressions of these scattering coefficients are 
quoted in Eq. (2.5). 

In the special case (vlu) = Sg; dx V(x) = 0, the limit 

limll(I +Bk(E))-I-I + (i/2k)A '(O)lu)(vlll = 0 (3.11) 
E--+O 

leads to the result 

lim t ,;: (E) = 1, lim rk± (E) = 0, k>O, (3.12) 
E--+O €--+O 

which corresponds to the case of no point interaction, i.e., 
rt = 0, k>O. 

B. N interaction centers 

Here we start with the stationary expression of the tran
sition operator emerging from its implicit definition (3.1), 
i.e.,32 

1677 

N N 

TdE) = I I T~(e), 
i= Ij= I 

T~(e): = [Aj(e)/c] ViE [A;; I(e) ];jUjE) 

[Ak(E)]i/ =~ij + [Ai(E)/c]uiEGkVjE' Imk>O, 

vjE : = vj(C - aj )/€}, ujE : = uj(C - aj)/E), 

(3.13) 
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The kernel h ~ k of the Hilbert-Schmidt operator UiEGkVjE 
explicitly reads 

h ij (x x'):=u. ___ ' --eiklx-x'iv. ___ J (
X - a.) i (XI - a.) 

E,k , 'e 2k J e ' 

(3.14) 

Now one can again translate each center to the origin and 
insert the scaling transformation UE ; one obtains the follow
ing limits: 

lim(eUik-1 T~(E)eU'ik-) 
E--+O 

-..1,/(0) ik(u'aj-ua,)( I[A -I] ) 
- j e Vi k,O ij uj , (3.15) 

Straightforward evaluation, in the limit 1m k---+O+, yields 

I· (Uik_ITij() a'ik_) _ -uika'r k +a'ikaj k"O 1m ekE e - e ije ,"'" . 
E--+O 

(3.16) 

Thus we finally obtain the following theorem. 
Theorem: Let the scaled potentials Vi fulfill the integra

bility assumption quoted in the definition (1.9) of HE' In the 
scaling limit E---+O, the scattering amplitude of the Schro
dinger operator HE tends to the corresponding transition 
matrix of point interactions, described by the Hamilton op
erator Ha , in the sense that 

lim t ,;: (E) = t (k ), lim rk± (E) = r ± (k ), k>O, (3.17) 
E--+O E--+O 

if the "coupling constants" a i are chosen according to defin
ition (1.10). 

The result of norm-resolvent convergence in the scaling 
limit has been generalized to the case of an infinitely count
able, discrete set of interaction points.32 This limiting proce
dure may be useful for the evaluation of periodic interactions 
with additional local impurities, as in crystals, for instance.4o 

APPENDIX A: TIME-INDEPENDENT DEFINITION OF THE 
TRANSITION AMPLITUDE FOR A WIDE CLASS OF 
POTENTIALS 

In three dimensions, for integrable Rollnik potentials, 
the so-called eigenfunction expansion has been presented in 
detail in monographs,34,47 using quadratic form techniques; 
also in one dimension, the time-independent derivation of 
the scattering amplitude and its connection with the scatter
ing waves can be found in the literature.36.48,49 Accordingly, 
for the eigenfunction expansion of the Schrodinger operator 
H: = -..::1 -i- Von the real line, defined in the sense of qua
dratic forms, we assume 

L dxl V(x)1 < 00. (AI) 

The scattering eigenfunctions (/) k± (x) obey the Lipp-
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mann-Schwinger equations 

4J k± (x) = e ± ikx - 21~ I f~ dy eilk Ilx - yl V(v)«P k± (v), 

kE!!Ii-~, k,t=O; (A2) 

here ~ is some closed set of Lebesgue-measure zero. (In fact, 
~ is either empty or only contains the origin.48.49 These ei
genfunctions can then be used to express the corresponding 
wave operators 11 ± by their matrix elements48 

J 

between states J, g such that J, 11 +g E dom H b12; here the 
supports oflandg are assumed to be disjoint from (0). Thus 
one obtains the time-dependent derivation of the scattering 
amplitude 

t(k', k): = (21T)-J~ dx e-ik'xV(x)«P t(x), 

k E !!Ii - (0), k' E !!Ii, (A5) 

on the energy shell, e.g., 

ifl(S-I)g) = -21TiL dk L dk' 

X I(k ')g(k )t5(k 2 - k '2)t (k', k), (A6) 

with the supports of I and g being disjoint from (0), by as
sumption. 

Then the implicit definition 

(H-k2)-I=Gk-GkTkGk' Imk>O, (A7) 

of the transition operator Tk , which implies its stationary 
expression32.44,46.47 

Tk = v(I + uGkV)-I U, 

ifll1±g) = L dk J:(kjg(k), 

g(k): = (21T)-1/2 L dx e-ikxg(x), 

f± (k): = (21T)-1/2 L dx «P k±(xlf(x)dx, 

f,g E.Jr: = L 2(!!Ii), k E!!Ii - (0). (A3) 

The matrix element of the scattering operator S: = 11 t_ 11 + 

can then be evaluated as ~ 

(A4) 

Again we start from the wave operators 11 ± ; between states 
J, g E dom H b/2 we calculate 

N 

X L a i (e itH'1)(a;). (e - itHOg)(a;) 
;= 1 

X (I{! :.(ai ) J:(k1 

+ I{! k--:(ai ) /Jk1). 
Then the eigenvalue equations 

((Ha - k 2)-Jj)± (k') = (k,2 - k2)-lf± (k'), 

k ' E !!Ii, 1m k > 0, 

(B2) 

(B3) 

I k 0 I V 1
1/2 (AS) together with the eigenfunction expansion m > , u: = V sgn v, v: = , 

together with the Lippmann-Schwinger equations (A2), in f(x) = (21T)-1/2 '000 

dk If+(k)1{! k+ (x) + f_(k)1{! k (x)) 
the limit 1m k~+, leads to the on-shell transition matrix Jo 
(euik-ITkeu'ik_) = 21Tt(ak,a'k), u,u'= ±l, k>O. 

(A9) 

APPENDIX B: TIME-INDEPENDENT DERIVATION OF 
THE TRANSMISSION AND REFLECTION 
COEFFICIENTS FOR N ZERO-RANGE INTERACTION 
CENTERS 

In order to derive the transmission and reflection coeffi
cients (23.3) from the wave operators (which exist and are 
complete),29 we again use the scattering eigenfunctions (2.1) 
as kernels of the integral transformations 

f± (k): = (21T)-1/2 L dx I{! k±(xlf(x)dx, 

k E!!Ii, fE.Jr. (Bl) 
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= (21T)-1/2 f~ dkf± (k)1{! k±(X), 

which are valid for allfE.Jr, lead to the result 

(B4) 

ifll1±g) = L dk J:(kjg(k), J,gE.Jr. (B5) 

The matrix element of the scattering operator can then be 
calculated using the integral kernels of the wave operators 
11 ± ,i.e., 

(I1t±f)-(k)=(21T)-1/2 L dx I{!l(x)f(x), kE!!Ii; 

(11 ±f)(x) = (21T)-1/2 L dkl(k)1{! k± (x), X E!!Ii. (B6) 

One obtains the integral representation 
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f
+OO N 

<t1{S -I)g) = ~ (- i) _ 00 dte-Eltli~1 a i (e-itH<y)(ai)(e-itHn+g)(ai) 

= -21Ti L dk L dk ' ](kl)g{k)8{k2_kI2)t{k',k), J,n+gEdomHb12
, (B7) 

with the kernel 

N -ik'a. + 
21Tt (k I, k) = L. aie '1]/ k (ai ), k, k 1 E f!li. (B8) 

i=1 

Comparing this result with the transmission and reflection coefficients (2.3) one ends up with the desired result 

t+{k)=t-{k)=1+{21T/2ik)t{±k, ±k), r±{k)={21T/2ik)t{+k, ±k), k~O. (B9) 
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Quantization of systems with many degrees of freedom by the method of 
collective coordinates: Quantum mechanics around a classical periodic orbit 
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A fairly complete perturbation theoretical solution of the Schrodinger equation around a classical 
periodic orbit is given as an example demonstrating the quantization of a system with many 
degrees offreedom by the method of collective coordinates. In particular, explicit expressions are 
derived for the creation and annihilation operators of quantum fluctuations orthogonal to the 
classical path, as well as the corresponding eigenfunctions, in both the adiabatic and nonadiabatic 
domains. It is also shown that corresponding expressions become proportional (and thus can be 
linked) in domains where they overlap. Finally the splitting of asymptotically degenerate states, 
and hence the band structure of the resulting spectrum, is calculated. 

I. INTRODUCTION 

The quantization of nonlinear field theories possessing 
stable finite energy (or action) classical solutions such as soli
tons, instantons, and monopoles has been the subject of nu
merous investigations in recent years. There are essentially 
two approaches: the path-integral method and the Hamil
tonian method. The latter, which will be discussed here, is 
basically that of the Schrodinger equation with the Hamil
tonian expressed in terms of collective variables that para
metrize the classical solution (or are symmetry parameters 
as in extended theories) and field variables which describe 
the fluctuations around it. In general this transformation 
leads to a larger number of variables so that appropriate 
constraints have to be imposed in order to remove superflu
ous degrees offreedom. In field theory the classical solution 
does not possess some particular symmetry of the Hamilton
ian, and consequently one or more zero energy eigenstates 
arise which lead to an ill-defined Green's function. The es
sential point of the procedure is therefore the subdivision of 
the space spanned by the states of the unperturbed Hamil
tonian into two mutually orthogonal subsets such that the 
perturbation expansion involves only states of the subset of 
transverse states, and the zero modes are contained in the 
complementary set. Choosing the constraints in this way the 
Green's functions are well defined and the fluctuations 
around the classical solution can be quantized in accordance 
with the familiar canonical procedure. It is evident that al
though the procedure is clear, its application to specific 
models can be complicated. In the following we consider 
therefore in some detail the application of the procedure to 
quantum mechanics around a classical periodic orbit, since 
this permits explicit calculation and is offundamental inter
est. The problem as such was first investigated by Gervais 
and Sakita,l who also advocated an appropriate WKB wave 
function approach for application to systems with many de
grees of freedom. Although we shall follow in part the idea of 
these authors, our objective is to treat the method as a 
straightforward generalization of well-known one-dimen
sional perturbation theory. Our ultimate aim here is the cal
culation of the band structure of the resulting spectrum,2 so 
that the eigenfunctions of the Hamiltonian have to be found 
in both the adiabatic and nonadiabatic domains, as well as 

their proportionality in the region where they overlap. The 
procedure we adopt for this purpose is similar to that used 
for the calculation of the level splitting of the double-well 
potential,3,4 and was originally applied to the Schrodinger 
equation for the periodic potential5 and other periodic equa
tions.6 The considerations presented below are distinctly dif
ferent, however, and can serve as a prototype for the applica
tion of the method to more complicated model theories. 

In order to have a basis for our subsequent consider
ations, Sec. II is devoted to a recapitulation of the main steps 
involved in transforming the Schrodinger equation to collec
tive and fluctuation variables. 7 Section III deals with the 
validity of the perturbation expansion and Gribov ambigu
ities.8 In Secs. IV and V we construct the fluctuation creation 
and annihilation operators in both the adiabatic and nona
diabatic domains (in the latter case we follow in part the 
suggestions of Ref. 1 and the derivation of Ref. 9). In Sec. VI 
we demonstrate that both types of quantization operators 
merge into one another in the domain where they overlap. In 
Sec. VII we calculate the WKB wave functional of the 
ground state and with the help of the latter the Bohr-Som
merfeld quantization condition for the multidimensional 
case under consideration. In Secs. VIII and IX we derive the 
unperturbed adiabatic and nonadiabatic wave functionals in 
the domain where they overlap; in Sec. X we demonstrate 
their proportionality in the overlap region. Finally in Sec. XI 
we calculate the level splitting and hence the band structure 
of the resulting spectrum. 

II. THE SCHRODINGER EQUATION IN TERMS OF 
COLLECTIVE AND FLUCTUATION COORDINATES 

In order to have a basis for our subsequent consider
ations we recapitulate first from Refs. I and 7 the main steps 
involved in reexpressing the Schrodinger equation in terms 
of collective and fluctuation coordinates. 

We consider the Lagrangian 

L (R) = p~2 - V(R), (1) 

where R is the N-dimensional Euclidean vector with conju
gate momentum 

aL . 
P=-. =R. aR (2) 
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We assume that R is given approximately by the classical 
path r(f(q)) defined by Newton's equation 

rfJ = - (a~R))r . (3) 

Here I(q) is a function which fixes the parametrization of the 
curve r, and the parameter q is called the collective variable. 
Of course, it is only in the context of classical mechanics that 
I plays the role of time. Introducing fluctuation variables 1] a 

which describe the deviations away from r we can write 

R = rif(q)) + L 0a(f(q))1]a, (4) 
a=2 

where {oa} is a set of orthonormal unit vectors which are 
orthogonal to the classical path at q, i.e., 

where a,b, ... = 2, ... ,N and rf==.dr(f)/df 
Setting 

01 = rf l(rJ)1/2, 

(5) 

(6) 

we see that 01,Oa, a = 2, ... ,N form a moving local reference 
frame. Then 

N 

RI = L (OJ)IQj' 
j=1 

where 

(7) 

QI = rorfl(r.W12, Qa = 1]a + r 0 0a' (8) 

and R I , i = 1, ... ,N are the components of R with respect to 
some fixed frame of reference. Replacing R of L (R) by (7) we 
see that L (q,Qj) is a function of N + 1 variables with conju
gate momenta 

aL aL aRt 
P = aq = aRI aq , 

aL aL aRt 
p.=-. =-. -. 

J aQj aRt aQj 

(summations understood). Now 

ak aR. 
aQ~ = aQ~ = (OJ)1 M;}" 

Defining Was the inverse of M we have 

W;j = (o;)j' M/j JJjk = O;k' 

The latter of these is, in fact, the completeness relation 

(9) 

(10) 

(11) 

(12) 

Eliminating aL laR; from (9) we obtain the Dirac cP or pri
mary constraint 

cP P - Pj JJj;TI = 0, (13) 

where 

(14) 

The constraint (13) allows the removal of the superfluous 
variable of L (q,Qj)' 

Our next step is to express P; in terms of P, P a' We have 

(IS) 
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Insertingpi from (13) this becomes 

P; = WI/(p - Pa Waj1jl/WlkTk + Pa Waf' 

Inserting (14) for 1j we obtain 

P _ (rf ); ( 1 ~ Fa /J ) 
; - 2 ) f' P - £.- /J 1] Pa 

(rf - r fJ"1'J a,/J = 2 

N 

+ L (Oa);Pa' 
a=2 

where 

(16) 

(17) 

The Hamiltonian is given by the Legendre transform 

H(Rj>P;) = poR - L (R) =! p 2 + VIR). (18) 

In terms of the new coordinates 

L (R;(q,Q)) L (q,QI) 

and 

H '(q,QI' P, p;) = pq + p;Q; - L (q,Q;). 
• • • 2' 2 

It can be venfied (With Pj = R;M;}> Pj = R ;) that 

H'=!p;+ V(R;(q,Q))+q(P-pjJJjkTk)=H, 

where q plays the role of a Lagrange multiplier. 

(19) 

In (16) we placed the momenta on the far right. Then 
with 

[p,q] = -i, [Pa,1]/J] = -ioa/J, 

we have 

[ PoRj ] = (2 - i ) {(rA (rf)j + (rf ); L (oaf)j1]a 
rf - rfJ"1'J a 

- (rf ); L Fb 1]b(Oa)j} 
a,b 

N 

- i L (Oa);(0a)}" 
a=2 

Using rfooa = 0, rfJooa = - rfooaf, and multiplying from 
both sides by functions of the form 

1/1 = L (0; )jcP 5(1]), (20) 
i,j 

we find 

[ P;,Rj ] = - iOij' 

Thus it is correct to place the momenta on the far right in P;, 
and the transformation from R; to q and 1]a is canonical. Of 
course, this also implies that P is a self-adjoint operator in 
the space of functions of the form (20). It is important to 
realize that (20) represents an expansion of 1/1 in terms of 
solutions v;(/) of the equation ofsmall fluctuations with re
spect to the fixed frame of reference, i.e., 

ii; = - VI~(rf) Vj' 

Thus 

1/1 = L v;(/)cP;(1]) 
I 

= L (Oa);1]acP;(1]), 
i.a 
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as explained in the Appendix. 
Hence 

r2 ( 1 N )2 H- f _ _ r a 

- 2( 2 f I'P L b1lbPa rf - rff"1) a,b = 2 

1 N 
+- L p~ + V(r + 1)), 

2 a=2 
(21) 

Using (16) and 

dR j = {(rf)j + at2 (Daf)j1Ja} dl + at2 (Dat d1Ja 

as well as rf"Da = 0, etc. and derivatives, it can be verified 
that 

N N 

L Pj dR j pdq + L Pa d1Ja· 
j= 1 a=2 

The generating function F of the canonical transformation is 
therefore given by 

N 

dF=H'(q,1Ja;P,Pa)dt-pdq- L Pa d1Ja 
a=2 

N 

-H(Rj;Pj)dt+ L Pj dR j 
;=1 

= [H'(q,1Ja;P,Pa) - H(Rj; Pj)] dt. 

As noted the ansatz (20) for 1[/ amounts to expanding 1[/ 

in terms of small fluctuations l:a (Da)j1Ja = Vj (see the Appen
dix) with respect to the fixed frame of reference. In Sec. V we 
shall be interested in a similar expansion in terms of small 
fluctuations with respect to the instantaneous reference 
frame. 

Next we introduce a parameter g by setting 

a = gr, r=r(f(q)), (22) 

so that 

r-o(lIg), 1)-o(gO) 

and 

V(r)=(lIg2) V(gr)-o(lIg2). (23) 

It will be seen that g plays the role of a semiclassical expan
sion parameter. Now 

VIr + 1)) = Vir) + (JV(R)) (1))j 
JR j r 

1 J2V(R) 
+ '2 aR. aR. (1))j(1))j + ... , (24) 

, J 

where 

_ r a aV(r)) + ( ). aV(r)} ( ). 1Jb b a Da , J Dc ,1Jc 
1Ja 1Ja 

= aV(r) 1Ja -0 (~) . 

J1Ja g 
(25) 

Thus the terms of (24) are of order i with i = - 2, - 1,0, ... , 
respectively. We can now expand H in rising powers of g. 
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Then 
2 2 

H=-P-+ V(r)+-P- r 01) 
2f'2r; f'2(r;)2 ff 

aV(r) 1 2 1 J2V(r) 
+-a- 1Ja +'2Pa +'2 a a 1Ja1Jb 

1Ja 1Ja 1Jb 

_ pr~1Ja Pb + ~ L (rff
o
1))2 + o(i'). (26) 

f'r; 2 1'2 (r;)3 

Assuming that P is of order gO these terms are of order i 
with i = 2, - 2,3, - 1,0,0,2, and 4, respectively. 

We now set 

HI[/= EI[/ 

and 

E=Eo +E1, 

where Eo = o (1Ig2). Eo can be called the classical energy, 
i.e., the total energy associated with the system described by 
the classical solution r(f); and E1 represents the quantum 
correction of the classical energy. 

III. UNIQUENESS OF THE EXPANSION AND GRIBOV 
AMBIGUITIES 

It should be observed that the transformation (4) to the 
collective coordinate q and fluctuation variables 1Ja is "a 
priori" not unique; i.e., without the constraints (5) and for a 
given vector R any point on the classical path would be a 
possible origin of the moving frame of reference. This nonun
iqueness is removed by the specification of the constraints (5) 
which for any given value of R admit only one particular 
point along the classical path (which then serves as the origin 
of the moving frame of reference) provided the fluctuations 
1Ja are not too large (and thus avoid Gribov ambiguities8

). 

This problem is similar to that in electrodynamics where the 
nonuniqueness of gauge-equivalent potentials AI-' (x) is re
moved by the imposition of a gauge constraint. Thus in the 
present context (5) plays the role of a gauge constraint. 

Now rf(f), the tangent to the classical path, is also a so
called zero mode, i.e., a solution of the linearized form of the 
classical equation of motion with eigenvalue zero. This can 
be seen by differentiating (3) with respect to f 

r
f 

= - ~ VV(r) = - (J2

V(R)) r
f

. 
dl aRaR r 

The constraints (5) therefore demand that the fluctuations 
1J a be normal to this zero mode (constraints of this type are 
called unitary gauge conditions), and this condition then en
sures that the Green's function which is required for the 
complete solution of the Schrodinger equation is well de
fined (i.e., does not lead to infrared divergences). 

We remarked above that the fluctuations 1Ja have to be 
sufficiently small in order that the transformation ofR to the 
new variables be meaningful. If this transformation is unique 
then in principle 

(27) 

can be solved for f This value of I(q) then determines the 
value of q at which the moving frame of reference is located. 
It is conceivable, however, that in general equation (27) ad-
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mits a number of different solutions, and then the perturba
tion procedure becomes ambiguous. The duplicates of the 
solutions q of (27) which arise in this way correspond to the 
Gribov ambiguities8 discussed in the context of non-Abelian 
gauge theories. In the latter these duplicates result from a 
multitude of intersections of the orbit of the gauge field A,. 
(formed by the application of any element g of the gauge 
group G to an element of the functional space) and the hyper
plane defined by the gauge fixing condition. Figure I illus
trates the possibility of two such intersections (at q,q') in the 
present case, and it is evident that the consistency of the 
perturbation procedure around the classical path requires 
the additional restriction that the fluctuations be small. 

IV. QUANTIZATION: THE ADIABATIC APPROXIMATION 

In the adiabatic or oscillatorlike approximation we set 

H = VIr) + Hf + o(.f) 

and 

aV(r) I 2 I 
Hf=-a--'TJa +TPa +T'TJaMab'TJb' 

'TJa 
where 

a2 V(r) 

a'TJa a'TJb 

(28) 

(29) 

The word adiabatic implies the slow variation of an external 
parameter of the system around an equilibrium position,i.e., 
a local minimum of Vat which aV(r)/a'TJa = 0 and M is 
positive definite, i.e., 

(30) 

Any Yc corresponding to h: = 0 is called a zero mode. Here 
we assume that each h : -1= O. If any h : = 0 the corresponding 
momentum Pc is conserved; in this case the appropriate 
variable'TJc has to be separated out before the WKB proce
dure of the nonadiabatic case is applied. 

Setting 

'TJa=A~bYb' A~V~Acd=!h:Dad' AA T =1 (31) 

and 

we can define operators 

'ij" large 

r(f(q'l) 

FIG. 1. Intersection of the classical path with the hyperplane 1]' rf = 0 at 
two di1ferent values of q, one corresponding to a small fluctuation 1], and the 
other to a large fluctuation 1]. 
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A = -i(~+~Z) c dz
c 

2 c , 

(32) 

A + = -i(~-~Z) 
c dz

c 
2 c 

satisfying 

[Aa,Ab] =0, [Aa+,Ab+] =0, [Aa,Ab+] = Dab' 
(33) 

so that we obtain the regular, diagonal representation of Hf , 

i.e., 

(34) 

To the same degree of approximation the eigenvalue E of H 
is 

1 N ( I) E= V(r)+- L h~ nc +-, 
2 c~2 2 

(35) 

where nc = 0,1,2, .... Thus there are N - 1 zero-point ener
gy contributions. This number is independent of the domain 
of validity of the adiabatic approximation of the wave func
tion and results from treating one degree of freedom classi
cally. This point will become clearer later when the quanti
zation of the collective variable is considered in detail. Of 
course, diagonalization of Hf is also possible near (i.e., not 
only around) a minimum, i.e., for aV(r)/a'TJa -1=0, but then 
the ordering in rising powers of g is destroyed. 

The semiclassical ground state IS (r) is defined by 

Ac IS(r) = 0, c = 2, ... ,N, 

i.e., apart from a normalization factor, the wave function is 

S(z) = II e -(1/4)~. 
c 

It follows that 

(S(r)IRIS(r) = (S(r)lr + 1lIS(r) = rtf), (36) 

after reexpressing each component 'TJa in terms of Aa and 
A a+. 

Before higher-order terms of H can be treated perturba
tively, we have to deal with the first term of (26) and the 
corresponding quantization of the collective coordinate q. 
We defer this point to Sec. VII where the wave functionals 
are derived explicitly. Thus, once this has been done, we can 
reexpress each factor 'TJa, Pa' q, or P in Hi=H - VIr) - Hf 
in terms of corresponding quantization creation and annihil
ation operators, and the perturbation theory can, in princi
ple, be carried out to any desired order in the adiabatic do
main. 

V. QUANTIZATION: THE NONADIABATIC 
APPROXIMATION 

Here we begin by recapitulating steps from Refs. 1 and 
9. As before we have HI[I = EI[I with E = Eo + E l , 

Eo = o(l/gl) but this time one substitutes 

1[1 _ /ESo(q) X(q,ll) 
(q,ll) - (dSoIdq)1/2 ' (37) 
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where C = ± 1 depending on whether E~ V, i.e., in the clas
sically allowed or forbidden region. Assuming that 
So = o( 1/ g2) and equating in H'/I = E'/I [with H replaced by 
(26)] terms of the same order in g, we obtain 

(d;~qT = 2f'2r}IEo - V(r)l, 

i.e., 

and 

KX(q,1)) = E1X(q,1)), 

where 

K= -..!.L-iE(J ~-r:rt~) 
2 o1J~ \(' aq a1J b 

1 
+"2 Wab 1Ja 1Jb 

and7 

Wab = ( az V ) + 3~ (r ff'na )(r ff'nb). 
01Ja 01Jb r rf 

(38) 

(39) 

(40) 

(41) 

For the diagonalization of K we construct a suitable set of 
orthonormal basic functions with the help of the classical 
Hamiltonian corresponding to (40), i.e., 

Ko = H'~ + E(P/f' - r:Sa;b) +! WabSaSb' (42) 

Setting (see Refs. 1 and 7) 

Dab=8ab ~ + r: 

and applying Hamilton's equations to (42) we have 

E t = o/Jr'o, ta = _ o/Jr'o 
a O;a aE Sa 

and thus 

;a = E DabSb, 

EDab;b = - WabSb· 

Hence 

DabDbcSc + CWabSb = O. 

(43) 

(44) 

(45) 

This is the equation of small fluctuations with respect to a 
frame of reference which travels with the point q along the 
classical path. In the Appendix we give an alternative deriva
tion of this equation from first principles, as this is the meth
od usually referred to in the literature. 1.2 

We now set 

v = (~:) 
and 

so that 
Mv=O. 

(46) 

-8ab ) 
EDab ' 

(47) 

(48) 

We assume that the classical path is periodic with period T, 
i.e., 

1684 J. Math. Phys., Vol. 26, No.7, July 1985 

r(f) = r(f + T). 

Then we can search for solutions v of(48) which are such that 

'fl U = (flaa), v(f) = e - IV eu(f), \p 

with 

u(1 + T) = u(f). 

Then 

Mu=vu. 

(49) 

(50) 

(51) 

In the space of periodic functions of period T we define 
the scalar product of two solutions UI,U2 by 

(u2,ud = iT u/ 0'2UI d f (52) 

It can be shown that the periodicity oful>u2 implies thatM is 
Hermitian, i.e., 

(Mu2,ul ) = (u2,Mud, 

so that the eigenvalues v are real. By complex conjugation of 
(51) we see that if Vi is an eigenvalue with eigenfunction U(I\ 
then - Vi is an eigenvalue with eigenfunction U(I' •. It follows 
that {u~l/i = 2, ... ,N I is a set of N - 1 linearly independent 
eigenfunctions. We now use the fl~) of 

tl
')) (i) = fl~ 

U (11 
b 

as a set of orthonormal basic vectors to span the space or
thogonal to r f [the tangent to the path r at 1= I(q)). We write 

flai fl~) (a,i = 2, ... ,N) 

and define fl- I as the inverse of the matrix fl. Then the ele
ments flai form N - 1 vectors with respect to index i obeying 
the completeness relation 

~ I/(i) I/. -I(i) = 8 Lra rb ab 

or, with 
f: (i) _ - ivJle (II 
~ a - e fla 

the relation 

~ f:(llf: -I(i) = 8 
L~a~b ab' 

(53) 

(54) 

(55) 

Considering (S~l) as a nonsingular (v#O) square matrix we 
have also 

~ f: -!(i)f:(]1 = 8 .. 
£,.-:'a ~a I)· 

a 

(56) 

The existence of the inverse 5 - I of 5 is ensured by the 
linear independence of the vectors Sill. From (51) one can 
show with the help of (54) that s~) is a solution of 

DabDbcS~1 + E2WabS~) = 0 

or fl~1 is a solution of 

(57) 

(Dab - (i/E)vi8ab ) (Dbc - (ilE)vi8bc ) fl~) + CWabfl~) = O. 
(58) 

Now 

a a 0 b 0 
-;- (Dbc1Jc) - (1Ja Dab) -a = (N - 1) alf+ 2r a 1Ja -;-
u1Jb 1Jb u1Jb 
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-IE ---+r 'YI -- • 
· {N-l a b a} 

2 al a'/a a17b 
(59) 

As shown in Ref. 9, one now inserts Kronecker deltas and 
hence (55) between the brackets on the left and between the 
factors Dbc and 17c on the right, and considers the action of 
the second term on the right of (59) on a solution X(!.17) 
expanded in the form 

17dX(!.17) = L 5~1(f)(h(17) (60) 
j 

in terms of solutions 5 (}1 of the equation ofsmall fluctuations 
with respect to the instantaneous frame of reference. This 
expansion is analogous to the familiar partial wave expan
sion in quantum mechanics and expresses the separation of 
variables associated with the problem of simultaneously dia
gonalizing two or more Hermitian operators, i.e., here Hand 
M. We then obtain 

± ~ (....!..- + iE17aDab) 5 ~15 c- 1111 (....!..- - iEDcd17d) 
i=2 2 a17b a17c 

iE a = -Jf"--(N + 1)-. (61) 
2 al 

We now define 

-iv,/IE ( a ) _ e - 1111 . 
Ai - - 1/2 5 b -- -IEDba17a , 

(v;) a17b 
(62) 

+iv,/IE ( a ) + _ e . Iii 
Ai - 1/2 --+ IE17aDab 5 b . 

(v;) a17b 

Then 

1 N iE a 
Jf"=- ~ v·A'+ A. --(N+ 1)-. (63) 

2 i~2 I I I 2 al 

One can verify that 

[Ai,Aj] =0, [Ai,A/]=Oij, [A/,A/]=O 

(i,j = 2, ... ,N) (64) 

provided 5 ~1 is normalized such that 
N . 

L {5~1(D5(}1)b+ -5b-I(}1(D5111)b}=~viOij (65) 
b=2 E 

or equivalently 

Using (54), this can be written 
N L {(DIlI11)b+ 1l~1 -Ilb+ 111(DIl I11 )a} = 

i=2 
- !... Vi Ilb+ 1111l~1. (66) 

E 

For the correct identification of quantum numbers in 
agreement with those of Sec. IV it is important to observe 
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that the quasiparticle number operator A / Ai in (63) can 
assume only odd integral eigenvalues 2ni + 1, ni = 0,1,2, .... 
This identification follows from comparison with the corre
sponding treatment of the simple harmonic oscillator [cf., 
e.g., Eqs. (21 )-(26) of Ref. 7]. Hence quantization of the fluc
tuations 17a implies 

Jf"= ± Vi (ni +~) - iE (N + 1)i.. 
i=2 2 2 al 

This agrees with (34) of the adiabatic case provided 
Vi = ! h;, as will be seen to be the case. 

The operators (62) can be reexpressed in another form 
with the help of (60). Using in addition (65) and (66) we have 

5 b- 1111Dba 17aX 

= L 5 b- Ilil(D5 (}l)b~j(17) 
j 

= -!... Vi L 5 a- 111117aX + (D5 (11)b+ 17bX, 
E a 

Inserting this into Ai we obtain 

e - iv,/IE 
A. = - --:-:-:,-

I (V;) I 12 

X (5 b- 1111....!..- - iE (D5 (11)b+ 17b - ViS a- Ilil17a) . 
a17b 

Recalling that 

5 ~I(f) = e - ivJlEIl~I(f), 

we have 

A. = - _1_ (II. - 11/1 ....!..- _ iE (DlI.lil) + 'YI ) (67a) 
I ()1/2 r-b a r- b '/b 

Vi 17b 

and correspondingly 

A / = (Vi ~1/2 0~' a~b - iE (Dlllll)b 17b ) . (67b) 

Two points should be noted with regard to these expressions: 
the factor (DIl) is no longer an operator but a c number, and 
the periodicity of these creation and annihilation operators 
follows from the periodicity of the function 1l~1 (assuming 
that na is periodic). 

In view of (67) we can write (63) 

1 N E 1 
Jf"=- ~ vA'+ A. +-(N+ 1)-p, (68) 

2 i~2 I I I 2 I' 
where we have replaced a/ a/by the appropriate momentum 
operator. The operator pin (68) has to be quantized along 
with its conjugate variable q. We write the corresponding 
creation and annihilation operators a 1+ , a l' Thenp and q can 
be expressed in terms of aI' at, and these commute with 
Ai' A / , since there are altogether N independent degrees of 
freedom. 

We observe that (68) does not yet exhibit explicitly the 
zero-point energy generally associated with each quantized 
oscillator degree offreedom. We can arrange this, however, 
in the following way. We consider 
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- [p~) a~a - i€(Dp(·t 1]a - VjP~)1]a ] 

X [ Pb+ (.) a~b - i€ (Dp('))b+ 1]b + VjPb+ (')1]b ] 

= VjA / Aj + 0P~)Pb+ 1')1]a 1]b 

+ V. //1')// +(.) ('" ~ - ~ '" ) • r-ar-b ·/a a a '/b 
1]b 1]a 

+ i€Vj1]a 1]b {(Dpl'))a Pb+ I') - p~)(Dpl'))b+} . 

Using (66) this becomes 

vjA j+ Aj + 0 p~) Pb+ 1')1]a 1]b - Vj p~1 Pa+ (.) 

- 01] a 1] b P a+ I') p~) 

= VjA / Aj - Vj Pa+ I') p~) 

= L Vj [ A / Aj - 1] . 
j 

Thus, defining 

A. =-- p+(')---i€(Dpl'))+1] +vpHI1] - 1 [ a . ] 
• (Vj )1/2 a a1]a a a • a a 

-jvIIE [a ] = e ' I: + Ijl ___ i€ (DI: (.)) + '" 
(

.)1/2 ~ a a ~ a '/a , V, 1]a 
(69a) 

+jV,!IE [a ] = _ e I: I') ___ i€(DI: I')) '" 

(
.)1/2 ~ a a ~ a '/a , 

V, 1]a 
(69b) 

we have 

- ~ v· A'+ A. = ~ v· -A'+ A. +-1 {1-- I} 
2"'1'" "'1' 2" 2 

and (70a) 

JY=~v. -A'+A.+- --(N+l)-. [ 
1 - - 1 ] i€ a 

"'1 ' 2 • • 2 2 aj 
The operator Aj is similar to a corresponding operator con
jectured previously by Gervais and Sakita. I 

We have observed earlier that quantization implies 
A / A j--+2n j + 1, nj = 0,1,2, .... It follows therefore from 
(70a) that the eigenvalues of A / Aj are even integers 2n j . 
Hence again 

JY= ~ v· n· +- --(N+ 1)-. ( 1) i€ a 
"'1' • 2 2 af 

(70b) 

It may be noted thatA j , A / have the same general form as 
the corresponding operators in general multidimensional 
quantum mechanics.7 They satisfy the commutation rela
tions (64) on account of (65). 

It can be seen that JY and the 2(N - 1) linearly indepen
dent operators Ai> A / form the Cartan basis of a Lie alge
bra. This follows from various properties oftheAj • In parti
cular one has 

[JY,A;] = -v;l2Aj, 

[ JY, A / ] = + (v;l2) A / . 

The components Vj of the vector v = (v2, ... , VN) are then the 
roots of the Cartan basis. We have seen above, that if v /2 is a 
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root, then - v /2 is also a root and the total number of roots 
is even. 

Finally we observe that in the nonadiabatic case the 
ground state wave function Xo(J,1]) is defined by 

Aj Xo(J,1]) = 0, i = 2, ... ,N, (71) 

up to an arbitrary function of f The perturbation method 
then proceeds in the usual way. We do not elaborate on the 
wave functions here since these will be dealt with in detail in 
Secs. VIII-X. 

VI. THE MATCHING OF ADIABATIC AND 
NONADIABATIC APPROXIMATIONS IN THEIR 
OVERLAP REGION 

Above we have seen that the adiabatic expansion is val
id in a small domain of oIl/he) around a minimum of the 
potential, and that the nonadiabatic expansion is valid in the 
region beyond this small domain. We now demonstrate that 
both types of expansion merge into each other in the transi
tion region where they overlap. We consider only the match
ing of the quantization operators here; the matching of wave 
functions will be considered in Sec. X. 

We recall that na·ff = 0 so that Daf·ff + Da'fff = O. 
Sincefff = - (aV /aR)r--+Oas we approach the minimum at 
fo, we see that (with 1 fol = 00) 

lim Da (f) = O. 
f~fo f 

Hence 

and 

r ~ = Da 'Db --+0 as f--+f o. 
f 

Thus (57) becomes (as f--+fo) 

~ 1:(') + eM 1:('1 = O. af2 ~ a ab ~ b 

Using 

I: 1'1 _ - jvJ IE ('1 
~ a - e Pa 

V. _(VI.21)112 = 1 h 2 
I II 2 I' 

one can show that 

nonadiabatic adiabatic 

(72) 

(73) 

(74) 

apart from irrelevant overall phase factors, where A / ,Aj are 
the creation-annihilation operators (69a), (69b) of the nona
diabatic case, whereas A / ,Aj are the corresponding opera
tors in the adiabatic approximation (32). Explicitly in the 
limit f--+Io 

_ -jVJIE ( a ) A --+ e -lljl 
j 112 5 e -a + Ve 1]e . 

v. 1]e 

H. J. W. MOiler-Kirsten and A. Wiedemann 1686 



                                                                                                                                    

Withzc = 2(vc)1/21]c and using the normalization condition 
(65) 

we have 

.---+- - -z e u· A- (a + 1 ) iv;fIEs: 
I az

c 
2 c CI • 

(75) 

VII. THE GROUND-STATE WAVE FUNCTIONAL AND 
THE BOHR-SOMMERFELD QUANTIZATION 
CONDITION 

Our aim here is to derive the explicit ground-state 
WKB wave functional X 0 defined by the condition 

Ai (f) Xo(f, .... ) = 0, i = 2, ... ,N, 

whereA; is given by (69a). Inserting (69a), we obtain a differ
ential equation from which Xo may be determined. Thus, 
using (55), we have 

a a Xo(f, .... ) + n ab (f)1]bXO(f, .... ) = 0, 
1]a 

where 
N 

nab(f) = - iE r s~l(Ds(/l)b+ . (76) 
i=2 

Hence 

Xo(f, .... ) = d (f) exp{ - ! nab (f) 1]a1]b J, (77) 

where d (f) remains to be determined. 
With the help of (55), i.e., 

s(f) S -I(f) = s(f) S +(f) = 1 (78) 

and so 

sas + + as s+ =0 
af af ' 

it follows that 

n (f) = n +(f), 

since [using r + = - rand (78)] 

i(n - n +) = s(Ds)+ + (Ds) s + 

= + s as + + as s + + s IFs) + + IFs)s + 
af af 

=0. 

In order to determine the j-dependent factor d (f) of X o( f, .... ) 
we substitute (77) into (39). Performing the differentiations 
with respect to 1] one obtains 

{ -iE!....-EI +~ ± ncc(f)} d(f) 
af 2 c=2 

-! d (f) {nacncb - iE (:fnab - 2r~nCb) 

- Wab} 1]a1]b = O. 

With some cumbersome manipulations [using (76), (78), and 
(58)] the expression in the second bracket can be shown to 
vanish. The solution of the resulting first-order differential 
equation is 
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d (f) = exp (iEd) exp ( - ~ f ± nee (f) df) . E-; 2 c=2 

In the argument of the second exponential we replace n by 
(76) and therein D by (43). In view of (55) the term containing 
r ~ reduces to r ~ = O. The argument of the remaining term 
is 

-~ ± I s ~l(f) as a+(ll(f) df 
2 i,a=2 af 

= - ~ ± f (s a+(/l(f)) -I as a+(/l(f) df 
2 i,a=2 af 

= -~Trf!....(lnS+)df 
2 af 

= -! Trlns+ 

= In(det S +)-112. 

Hence 

d (f) = iEtfIE/(det S +)1/2 

and 
iE,flE 

Xo(f, .... ) = (d~ s +)1/2 exp { -! nab 1]a1]b J (79) 

or [using (37)] 
iESO(q) iIEE,f(q) 

e e - (1I2)l.!a,,(f(q))1Ja1Jb 

¢lo(q, .... ) = [!'rJ] 1/2 (det S +)1/2 e . (80) 

In Sec. II we pointed out that large fluctuations 1]a can lead 
to ambiguities which invalidate the perturbation procedure. 
For reasons of consistency it is therefore necessary to de
mand that the wave function l[/ falls off sufficiently rapidly 
away from the classical path. We see from (80) that this is 
ensured if the real part of n is positive definite. 

The Bohr-Sommerfeld quantization condition is ob
tained from the requirement that the ground-state wave 
functional be periodic, i.e., 

¢lo(f + T) = ¢lo( f), (81) 

where ¢lo is given by (80). In this expression we have to insert 

So(q)==So(f(q)) = ± If {2 r;(f')\Eo - V(r(!')) \ J 1/2 d!,. 

Then 

So(f + T) = So(f) + W(Eo), (82) 

where W (E) is the classical action over one complete period, 
i.e., 

W(E)=f {2r;\E- V(r(f))\J I/2 df, 

and, since Eo - Vir) = ! rj-, 

W(Eo) = f rfodr. 

(83) 

(84) 

Further, if A.j , j = 2, ... ,N are the eigenvalues of (s a+ (/1) we 
have 

N 

det(s +(f)) = II A.j(f) 
j=2 

and 
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det(5 +(f + T)) = det(s +(f)) exp + (;;; V;T). 

Finally we observe that 

fJab(f + T) = fJab(f) . 

(85) 

(86) 

Inserting (80) into (81) and using (82), (85), and (86) we obtain 

exp {i€W(Eo) -.!.... f vjT + !..E~OIT} = exp{2mi1rj, 
2€ j=2 E 

where m is an integer. Hence with ~ = 1, i.e., considering 
the classically allowed region, 

W(Eo) + T {E~OI- ;t2 ~ V;} = 2m1T. (87) 

We can rewrite this equation in a more familiar form 1.10.11 by 
setting [see, e.g., (35), (70b), or (111) below] 

N 

EI = E\OI + L naVa' (88) 
a=2 

where na = 0,1,2, ... is the occupation number of the ath 
state. Now 

and 

W(E)~ W(Eo) + (E - Eo) (aW'j aEjEo 

(a~ f r}df - - (89) 
aE Eo - {2r}IEo - V(r)1 j 1/2 ' 

where Eo - VIr) =! r}. Hence (aW laE)Eo = T and 

W(E)= W(Eo) + (E-Eo)T= W(Eo)+EIT. (90) 

Using (87) and (88) we can rewrite this equation as 

W(E)=2m1T+ f (na +.l.)Va T. (91) 
a=2 2 

Equation (91) may be looked at as the multidimensional gen
eralization of the one-dimensional WKB quantization for
mula. The quantum number m is the main quantum number; 
in semiclassical language it describes the number of com
plete waves that can be supported by the classical path. The 
N - 1 quantum numbers na describe the quantum excita
tions orthogonal to the classical path. 

VIII. WAVE FUNCTIONALS IN THE ADIABATIC CASE 

In Sec. II it was shown that the Hamilton operator of 
the system can be written as 

H = V(r(f)) + Hs + 0 (i3), 

where 

+.l. (L _ pr:TJa Ph) 
r} 2/,2 /' 

(92) 

(93) 

(summations understood) the terms in Hs being, respective
ly,oforder - 1,0, and 2 ingforp oforderO. In deriving the 
fundamental wave functional (i.e., the so-called unperturbed 
wave functional in terms of which the perturbation expan
sion is to be constructed) we have to take each of these terms 
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into account (as in the Schrodinger equation), and the pertur
bation HI is of order ~. 

As before, we assume that r(f) is periodic in Ref with 
period T. Then in approaching a minimum of V(r(f)) at 
r = ro (or Imf~ - 00) 

av ~O, r:-o 
a1'/a 

(as explained in Sec. VI), so that in a small domain around ro 
1 az 1 

VIr) + Hs = - 2""""i2 + 2" 1'/a Mab 1'/b 
TJa 

- 2~} ;2 + V (r(f)). (94) 

Ultimately we wish to solve the Schrodinger equation 

HIJI= EIJI. 

To lowest order, H is given by (28) and IJIby 

IJI(OI = <p (r(f)) if> (1'/), (95) 

with E = E \0) + ..1 ~E \01 since the variables of (94) [f(q) and 
1'/] are separable. The ansatz (95) also implies that we search 
for periodic solutions of period T. We thus obtain the two 
sets of equations 

with 

or 

E \0) = E(OI + E(O). 

Now, the classical equation of motion is 

.!!... (! r}) = r
ff 

= _ aV(r) 
dr ar 

! r} = V(ro) - VIr). 

(96) 

(97) 

(98) 

(99) 

(100) 

The classical energy is zero for V (r 0) = 0, so that the turning 
points are shifted to the extremum (this is an important in
gredient of the perturbation method of Refs. 12). We now let 
r be the vector with components Xj and we write 

dx. 
X.=_l 
1- df 

Expanding VIr) around ro we have 

1 " . 2 1 " )2h 4 2" 4Xj = -8 4(xj -Xp j +"', 
1 1 

(101) 

where 

V.17 I(ro) = l h; . 
(For simplicity we ignore off-diagonal quadratic terms or 
assume that the quadratic terms have already been rotated to 
normal form.) From (101) we deduce on physical grounds 
that to lowest order 

X;= -l(Xj -xp)2h;+8j , 

for every independent coordinate xj • 

The solutions of (102) are of the form 
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±(i/2)h]f x) - XjO a::e (103) 

[where Re fis the variable in terms of which r(f) is periodic]. 
Of course, (103) would also follow from Newton's equation. 
In approaching the minimum at ro the lower sign of (103) has 
to be chosen (Imf---+ - 00). Close to a minimum of V(r(f)), 
we can therefore write [since a lafacts on tP (r(f))] 

1~ 

2r} af2 

= __ 1_'_2 IXI~Xk~ 
2~) x) I.k aXI aXk 

"'-'-
1 ~I.k h ih i(xi - xlO)(alaxd(Xk - xkO)(alaXk) 

- 2 ~)hJ(x) -xjOf 

= _! I [~+ 1 ~ +O(Xk -XkO)2]. 
2) ax; (x) -xjO) ax) x) -xjO 

(104) 

The last expression results from expanding the contribution 
of the jth degree of freedom for IXk - xkolxj - XjO 1<1 in 
case k ,#j, this being the condition for singling out the inde
pendent oscillators, one for each degree of freedom. In this 
adiabatic (i.e., oscillatorlike) approximation, valid in a nar
row domain of o( lIhj ) around the minimum of the potential, 
we can therefore rewrite (96) as 

[ 
1 ~ 1 1 a 
2 ax] 2 (x) - XjO) ax) 

+ ~ (Xj - xjO) VJr(rO)(xk - XkO)]tP = E(O)tP. (105) 

The l1-dependent equation (97) can be brought into nor
mal form by the substitution 

11 =A Ty , 

with 

A TA = 1, (A TMA lab =! h :8ab • (106) 

In (105) we ignore the Xj,xk coupling terms for simpli
city (or as an approximation) and set 

V~)(ro) =! h t· 8ij' (107) 

We now set 

Z) = hj(x) - xjO), za = haYa (108) 

(no summation) so that (96) and (97) become 

- ..!. I h J (~ + ..!. ~ - ..!. zJ) tP = E(O)tP, (109) 
2) azJ z)az) 4 

-..!. ~ h 2 (~_ ..!.z:) 1. = €(O)1.. (110) 
2~aa~ 4 a

'f' 'f' 

We now make the following ansatz for the energy E (A 
being the contribution of HI): 

E = V(ro) + E\O) + A, E\O) = ~O) + ?o), 
(111) 

E(O)=~..!.(p.-l)h2 €(O)=~..!.P h 2 • 7- 4 J J' ~ 4 a a 

Here Pa is exactly or only approximately an odd integer 
depending on whether VIR) = Vir + 1J) is an oscillator po-
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tential in 11 a or only approximately so (i.e., allows tunneling). 
This type of dependence is not the subject of the present 
investigation. However, since we assume that rtf) is periodic, 
Vir) is also periodic and thus possesses minima separated by 
humps of finite height. Thus p) will be seen to be only ap
proximately an odd integer and, in fact, the calculation of its 
deviation from an exact odd integer is the main task of these 
considerations. We shall see that the extra " - 1" ensures 
that the zero-point energy is zero in the approximation ofthe 
purely classical contribution. Of course, the set of all P a' p) 
defines a set of 2N - 1 quantum numbers. Since we have 
only N degrees offreedom, we can have only N independent 
quantum numbers. Thus the Pa can be expressed in terms of 
the Pi' the two sets resulting from two sets of basic eigen
functions which are related to each other by a unitary trans
formation. 13 We return to this point at the end of our calcu
lation. For our present purposes and our demonstration of 
the existence of a band structure of the eigenvalues this point 
is irrelevant. We might remark that in this respect our proce
dure is similar to that of Ref. 2, although, of course, the 
calculation itself is completely different. 

Inserting (111) into (109) and (110) we obtain 

(112) 

and 

1 2;:OS -

~ 4" h a:z! P. tP = 0, (113) 

where 

~ = 2 [~- (- !)(!) + 1 (p. - 1) + 1 r,] 
Pj ar, r, 2J 41 

1 1 

(114) 

and 

f2; = 2 [~ +..!.P -..!. z:] . 
P. az: 2 a 4 a 

a 

(115) 

The solutions of (113) are products of parabolic cylinder 
functions, i.e., 

(116) 
a a 

and describe the quantum fluctuations orthogonal to the 
classical path. They are the eigenfunctions that result from 
the application of creation operators A a+ to the ground state 
wave function tPo defined by AatPo = 0, where A a+ ,Aa are 
the operators given by (32) for the domain around a mini
mum. 

The solutions of (112) are of more interest since they 
describe the tunneling from one potential well to another in 
terms of the collective variable. It is therefore necessary to 
investigate these in some detail. Previously3-5 the problem of 
matching solutions which are valid in neighboring domains 
has only been considered for the case of no centrifugal term. 
Thus we have to develop the appropriate generalization of 
the procedure. For this purpose we consider the equation 

(117) 

In our case 
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¢ = II ¢ (pj,h J;Zj) = II (Zj-1I2¢ ~ -1I2)(Zj)). (118) 
j j 

The solution of (117) which is the direct generalization of the 
Weber parabolic cylinder function D( 1/2)( P _ I) (z) is 

1T1/ 22/+(1I4)(P-I)e-(1I4Jz' 

¢~(±z)= rr[ -1(p-3)] 

( 
II?) XF -1-"4(p-l), -1+ 2 ;2 

(119) 

where F is a confluent hypergeometric function. For 1 = 0 
we have 

¢ ~( ± z) = D(1I2)(P_I)( ± z). 

We now put 

"" ( - 112)="" 'f'p -'f'p. 

Then 

¢p( ±z) = ap ZI/2e-(1I4)z'F( -1 (p - 3),q?), (120) 

where 
1TI/22(1I4)(P-I)(2-1/2 + 2+1/2) 

a = . (121) 
P r[-1(p-3)] 

The asymptotic behavior of the confluent hypergeometric 
function F is given by 

F(a,b;z)~[r(b )Ir(b - a)] ehraz- a 

+ [r(b)/r(a)] e'zO-b 

( - 1T12 <arg z <~ 1T). 

Hence 

¢p(z)~apzl/2 e - (1I4Jz' 

X { e - i(1T/4)( P - 3)(~ rf/4)( p - 3) 

r [lip + 1)] 

e(1/2) z'(~ r) - (114)( p + I) } 

+ . r [ -lip - 3)] 
(122) 

We now define solutions ¢:' ¢; of (117) which have the 
asymptotic behavior 

(123) 

¢ ;(Z)~1/2 e + (1I4Jz' (ZIl2)(P+ 1))-1, 

and are valid in the same domain of o(l/h) around a mini
mum of the potential [we keep the factor ZI/2 separate be
cause this cancels the factor l/zl/2 in (118)]. Thus (123) is the 
behavior of these solutions at their boundary of validity. The 
existence of solutions having the behavior (123) follows im
mediately from the equation g; p¢p = 0 which remains un
changed under the combined replacements 

z--iz, (p - 1)-- - (p - 1), 
i.e., 

r __ - r, (p - 3)-- - (p + 1). 
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The solutions ¢ (Pj, h J; Xj) with the behavior (123) for each 
degree of freedom can be written 

¢B(Pj' h J; Xj) 

= II apj e -1I4zJ F( -1 (Pj - 3),1; ~ zJ) 
j 

Re e - '11T/4)( Pj - 3)(! if)(114)( Pj - 3) e - 114 zJ 
"'II a J 
- j Pj r [! (Pj + 1)] , 

for IZj 1-1 (124) 

(where Re means "real part or') and 
- 2 
¢C(Pj' h j; Xj) 

=IIa e-(1I4)zJF(_~(P._3)1.zJ) 
. Pj 4 J ' , 2 

J 

e + (114) zJ 

~l} apj (! zJ)(1I4)(Pj+ I)r [ _ '!(Pj _ 3)] 

for IZj 1-1. (125) 

It should be observed that the first expression is the same in 
each case and is due to the special case b = 1 ofF (a,b;x). The 
solutions (124) and (125) are valid for Xj - XjO <o(l/hj)' 
IZj 1< 1. Solutions ¢B' ¢c valid around - XjO are obtained by 
replacing XjO by - xjO. 

IX. WAVE FUNCTIONALS IN THE NONADIABATIC CASE 

We return to our considerations of Sec. V which are 
valid for IXj - XjO I> o(l/h). We are interested in the behav
ior of the wave functional 1/1 at the boundary of the domain of 
validity where the adiabatic and nonadiabatic approxima
tions overlap. We consider first So, i.e., 

So=21
/
2 r df{ r;'(V(ro)- V(r))} 1/2 

I
r 
~ [ 2 h J dXj ] = 4- (Xj -XjO) --.-
J 4 Xj 

(126) 

Hence 

exp( ± iSo)~exp ( ± ~ hi [(Xj _XjO)2 -x11). 
(127) 

We observe that the signs ± can be looked at as arising from 
either of the replacements f-- - for h J- - h J. Now 

1/1= e±iSo x(r(f),7]), (128) 

and the equation for X is 

{
I if ,. (a rb a a) 1 W a b 

----,' -- a 7] -- +- ab 7] 7] 
2 a7]~ af a7]b 2 

+ HI += ~ ~ (In/, r;')} x(r(f),7]) 
2 af 

= (E\O) + ~ tr(r(f),7]). (129) 
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In approaching a minimum of the potential 

Wab~Mab' r!-+<> 
and the variables land 1]a in (129) become separable with 

x(r(/),1]) = ijI(r(/))~ (1]), (130) 

where ~ is given by (97) and (116). Using (97) and (111) we can 
rewrite (129) 

=+= i [~ + ~ ~ (In/, rJ)] ~r(/)) 
al 2 al 

= E(O).p(r(/)) = L ~ (Pj - 1) h ]~r(/)). 
j 4 

(131) 

We now reexpress this differential equation in terms of xj • 

Thus, using (102) we have 

-, . a _ . " . a 1 "( ) h 2 a -,1-= +1 kXj -= ±-kXj -XfJ j-al j aXj 2 j aXj 

and 

Equation (131) therefore becomes 

and its solution is 

jr'-II( )(1I2)(±(PJ- 1)-2) 
r - Xj -xfJ . 

j 

(132) 

(135) 

Using (103) we observe that for Pj = 1 (ground state) this 
factor corresponds preciselr. to the te~s (r;)1 f2[det s +p/2 
in (80). Setting as in (95) tp = tP (r(/))tP (1]), we now have 

tP = eiSoijl, and a linearly independent solution tP is obtained 
by the combined replacements h J~ - h] and (Pj - 1) 
~ - (Pj - 1). From (131) together with (132) we see that 
these replacements are equivalent to a change of sign of f 
This observation is important for the construction of solu
tions which are even or odd in J, as we shall see below. 

We now define solutions tP A' ¢ A by their behavior in the 
domain of overlap with tPB' ¢c but on the side excluding ro: 

tP A (Pj - 1, h ]; xj ) 

1691 

~exp( -! ~h][(Xj_XfJ)2_x1]) 
XII( )(1I2)(PJ-3) 

Xj -xfJ ' 
j 
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(136) 

¢A(Pj - 1, h J; Xj) 

= tP A ( - (Pj - 1), - h J; xj ) 

~exp ( + ! ~ h J[ (Xj - XfJ)2 - x1 ] ) 

xII 1 
. ( )(1I2)(PJ+ 1) 

J Xj -xfJ 
(137) 

X. MATCHING OF WAVE FUNCTIONALS 

Looking at (124) and (136), we see that in their common 
domain of validity 

tPA = rtPB' (138) 

with 

and similarly 

~A = r~c' (140) 

with 

r= n {r [-l(pj - 3)] e-(1/4)hJ4 (! h])lI4(PJ+ I)} , 
J a~ 

(141) 

these being the dominant contributions. It should be ob
served that we arrive at these expressions by (1) expanding 
the solutions tPB' ~c, which are valid in a small domain of 
o( lIha ) around a minimum of the potential for relatively 
large values of IXj - xfJ I so that the expansion yields the 
behavior in the domain of the boundary, and (2) by expand
ing tP A' ¢ A for relatively small values of Ix} - XfJ I (i.e., select
ing the most singular contribution) so that the expansion 
yields their behavior in the same domain, as indicated in Fig. 
2. 

XI. THE LEVEL SPLITTING 

We now construct solutions tP ± which are, respective
ly, even or odd in the collective variable f We have seen that 
the replacement I~ - I is equivalent to the combined re
placementsofhJ~-hJand(pj -l)~-(pj -l)forallj. 
Hence we write 

(142) 

The continuation to the domain around a minimum of the 
potential at ro is then given by 

FIG. 2. Matching of oscillator and 
WKB solutions in overlap domains 
(shown hatched). 
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(143) 

At ro these functions satisfy the following boundary condi
tionsl4 characteristic of even and odd functions: 

tP_(ro) = 0, tP+(ro) = CI , 

(144) 

d d - tP (ro) = C2, - tP+(r) = 0, d! - d! 
where CI ,C2 are constants which determine the desired value 
of the Wronskian. Thus 

tP ± (ro) = (YtPB ± r¢c)Zj=o 

± II r [ - ! (Pj - 3)] 
j 

Xe - (1/4)hJx~ (! h J)(1/4)(Pj+ I) , (145) 

i.e., 

- (1/4)h Jx~ 
= "" (r) II e (1 h 2)(1I4)(pr 3). 

'f' ± 0 j r [A( Pj + 1)] 2 , 

For tP _ the right-hand side is zero; for tP + the right-hand side 
is of order IIj (lIhj ) lower than the left-hand side. Thus the 
right-hand side is zero or approximately zero. Using 

r[! +z] r[! -z] = 1T/COS 1T z, 

we then have for tP '+ 

• 1T 21T(!hJ)(1/2)(Pj-l)e-(1I2IhJx~ 

SlnT(Pj -1) = ± {r [A(Pj + 1)Jl2 
(146) 

Now sin(1T/2)(pj - 1) = ° for PjO = 1,3,5, .... Expanding 
around these values we have 

Hence 

4(lh 2)(1/2)( P,o - I) - (1/2)h J4 
._ ",,-,+(_1)-(1I2)(Pp-l) 2 j e 

P, PjO- - {r [A(pjO + 1)] J2 ' 
(148) 

the upper sign applying in the case of tP-, the lower in the 
case of tP +. It can be verified that the derivative conditions of 
(144) lead to the same relations to the same order of appro xi
mation. 

We now return to (111), i.e., 

E(pj)= V (ro) + I~Pah~ + I~hJ(pj -1)+..::1. 
a 4 j 4 

Expanding Pj around Pp we have 
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(149) 

Inserting (148) we obtain the splitting of the (asymptotically 
degenerate) energy levels associated with tP,+ and thus the 
band structure of the eigenenergies. In particular we observe 
that for the ground state (pp = 1) the level splitting is 

..::1E = ~ I h J e -(1/2)hJ·x~. 
1T j 

(150) 

This type of expression is typical for the level splitting arising 
from degenerate minima. Of course, the existence of the 
splitting as such is also demonstrated by other higher-order 
contributions, such as the product of the exponentials2 in 
(150). 

It can also be observed that (149) does not involve a 
zero-point energy contribution in association with the quan
tum number related to the collective variable. This is, of 
course, what one would expect, because the entire procedure 
has been constructed in such a way that to lowest order the 
energy consists of the classical energy at the minimum 
(V(r) = 0) plus the energy of quantum fluctuations perpen
dicular to the classical path. Clearly one could obtain an
other expression for E that would involve a zero-point ener
gy associated with the collective variable by treating all 
degrees of freedom on the same quantum basis. In the above 
calculations it is precisely the centrifugal term in (114) which 
prevents this zero-point energy from occurring, and this cen
trifugal term, of course, results directly from the transforma
tion to collective and fluctuation coordinates. 

The band structure of the eigenenergies (149) is formal
ly similar to that of the eigenvalues of Mathieu's equation, 
i.e., the Schrodinger equation for a periodic potential. 5,15 Put 
more precisely, (149) gives the boundaries of energy bands 
which are separated by forbidden regions that do not repre
sent physically permissible eigenstates. In order to be able to 
obtain any desired eigenvalue in a given energy band it is 
necessary to introduce the equivalent of the Floquet param
eter which is well known from the theory of simple differen
tial equations with periodic differential operators. 15 

Finally we return to a point raised in connection with 
the ansatz (111) for the eigenenergy E. We have seen that 
(111) involves effectively two distinct sets of quantum 
numbers which are associated with different sets of basic 
eigenfunctions. The latter are, of course, related by a unitary 
transformation. The relationship between the quantum 
numbers Pj = 2~ + 1 associated with the fixed frame of 
reference and the quantum numbers Pa = 2na + 1, 
PI = 2nl + 1 associated with the local reference frame is 
complicated but can be investigated with the help of the 
Bohr-Sommerfeld quantization conditions. 

We do not calculate the tunneling amplitude in the 
present context. This problem has been discussed in Ref. 16. 
The application of the method ofSecs. II-VI to a field theory 
with solitons has been investigated in Ref. 17. 
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APPENDIX: ALTERNATIVE DERIVATION OF Ea. (45) 

Here we present an alternative derivation of the equa
tion of small fluctuations. We have R = r + v, r = r (I(q)), 
and R = r + V, a dot denoting differentiation with respect to 
I(q). The total energy E is therefore 

E = !R2 + VIR) = ! (r + 'W + VIr + v) 

= !f2 + !v2 + r • v + VIr) 

+ V' (VV) +.l ( a
2

v ) v·v· + .... 
r 2 aR aR. ' ) 

i ) r 

Now r is a solution of 

r= -VV(r), 

so that 

r' v + v(VV)r = r' v - v • r. 
We choose v such that r· v - V· r = O. 

Alternatively we may consider r as a solution of 

'r= - ~(VV(r)) = _ ( d
2

V ) r 
dt dRdR r 

(AI) 

(A2) 

(A3) 

(A4) 

obtained from (A2). Differentiating (AI) with respect to V/ 

we obtain 

(AS) 

i.e., 

.. (~V ) 
V/ = - aRt aRj r

Vj ' 

In the following we ignore nonlinear terms. Equation (AS) is 
the equation of small oscillations in terms of components 
with respect to the fixed reference frame. Comparing (A4) 
and (AS) we see that (r/) is a solution of (AS). 

We now set 

v.r . N 

V = -'2- r + L l1a na' 
r a=2 

(A6) 

Then 

(Db)/V/ = (Db )/ :t: [ vr/ (r)/] 

+ l1b + 2F~ ~a + (Db' iia)l1a' (A7) 

where 

~ (v.r). 2a(v.r) .. = - -. - r' Db + - -. - r' Db at 2 r2 at r2 
(AS) 

(
v.r) ... + iT" r'Db , 

where r • Db = O. Also 

- -- =- v·r+v·r - -- v·r a(v.r) 1( ... ) 2r.r(.) 
at r2 r2 (r2)2 

(A9) 
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on using (A3). Next, inserting the completeness relation (12), 
we obtain 

.. V' r (. ..) ( )( .. ) v • r = -'2- r' r + V· Da Da' r 
r 

v· r (...) ( .. ) = -'2- r' r + l1a Da • r . 
r 

(AlO) 

Hence 

2 a (V'i") .. - -- r'Db at r2 

4 .... r· r '" = r2 (v, r)(r· Db) - 4 (r2)2 (v, r)(r' Db) 

= (r!)2 (v, r)(r • r)(r • Db) + 4/r2 (r • Db )(r • Da)lJ a 

4(r· r) '" 4.... - (r2)2 (v, r)(r· Db) = f2 (r· Db)(r' Da)l1a, 

(All) 

where we have again used the completeness relation. Substi
tuting (All) into (AS) we obtain 

(Db); :t22 [vr~r (n] =; (r'Db)(r'Da)l1a +(v;/)r'Db' 

On using (A4) this becomes 

4 (.. )(.. ) ( v • r) ( ) ( a2 
V ) (.) 

i"2 r'Db r'Da l1a - 7 Db; aRt aR
j 

r r:i' 

and on using (A6) this is 

~ (r'Db)(r'Da)l1a -(Db); ( ~V ) [Vj - f l1a(Da)j]' 
r aRt aRj r a=2 

From (AS) we obtain, by multiplying the right-hand side by 
(Db It. 

( 
a2v ) 

- (Db); aR. aR. Vj 
, ) r 

= (Db);i!; = (4/r2)(r' Db)(r' Da)l1a 

- (Db )/ (a:;R.) [Vj - f l1a(Da)j] 
I J r a=2 

Thus 

l1b + 2r~1]a + (Db' iia)l1a + ~ (r· Db)(r' Da)l1a 
r 

( 
~V ) N + (Db )/ aRt aR

j 
r a~2 l1a(Da)j = O. 

On the other hand, if 

Dab = ,sab ~ - r!, at 
we have 

DabDbcl1c = l1a - (:t r~) l1c 

_FC al1c +FbrC", 
a at a b'le 

= l1a - 2F~ 1]c - (Dc' Da + Dc' iia)l1c 

+ (Db • Da )(Dc • Db )l1 c· 
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Using Dc oDb =6cb and Dc or=O,i.e.,Dc ODb +Dc oDb =0 
and Dc 0 r + Dc 0 r = 0, we have (again using the complete
ness relation) 

i.e., 

. . (Dc 0 r)(r 0 Da). . 
Dc· Da = '2 + (Dc 0 Db)(Db 0 Da) 

r 

. . (Da • f)(Dc of) . . 
(DcoDb)(DbODa)= '2 -(DcoDa)· 

r 

Substituting in (AI4) and using 

° d
2 

( ).. 2" .. = dt 2 Da 0 Dc = Da • Dc + Da· Dc + Da 0 Dc' 

we obtain 

.. 2r c • (2 .. .. ) (Dc of)(Da of)l1 c 
= l1a - al1c - Dc·Da + DcoDa l1c + '2 

r 

.. 2r a ' ( .. ) (Dc 0 f)(Da 0 f) (AI5) 
=l1a+ cl1c+ Da· Dcl1c+ '2 • 

r 

Inserting this in (AI2) we have 

DabDbcl1c + (3/r2)(f 0 Da)(f 0 Db)l1b 

+ (Da); (a:;R.) (Db)jl1b = 0, 
I J r 

i.e., 

DabDbc l1c + Wab l1b = 0, 

where 

Wab = V~6 + (3/r2) (f 0 Da) - (f 0 Db)' 
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This is therefore the equation of small fluctuations with re
spect to the moving frame of reference. 
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We write down standard gauge field theory in a basis-independent manner using the ideas of 
~oving frames (fiber bundles). Then we describe the construction of frames for gauging 
parafields. To do this (frames) bases for fields are replaced by Clifford matrices. These matrices are 
in one-to-one correspondence with the number of spinor components. We briefly examine the 
objects upon which they can act (through matrix multiplication on the left). These objects bear the 
same relations to spinors that spinors do to vectors. Finally, we show how to construct a set of 
inner products for the parabases that yield the same action and n-point functions as in the 
standard field theory. 

I. INTRODUCTION 

There is a quote, attributed to Einstein, which is, "A 
thing should be made as simple as possible and no simpler." 
Bearing this in mind, we will show that the physical conse
quences of gauging parastatistics are the same as those of 
conventional gauge theories. 

To set the stage we will first describe a choice-of-basis 
independent framework for conventional gauge theories.! 
Next, we briefly review the concept of a basis for parafields. 2 

Then we convert the general basis formulation of the stan
dard theory to one natural to the parastatistical formulation 
and see how every quantity associated with a field theory 
goes through. 

II. FRAMEWORK FOR GAUGE THEORIES 

We will begin by considering an n-component Fermi 
field ",. It has components r/I' and basis Sa' Under an infinite
simal translation, both the field components r/I' and the basis 
elements sa can contribute to the change in'" = Sa ",a. Thus 
we find! 

~'" = ~ (sa r/I') = Sa ~r/I' + 8sa r/I' 
= Sa a,.. r/I' ~x'" + Sa A :b rpb ~x'" (1) 

= Sa (a,.. r/I' + A :b ",b)~X'" = sa(D,.. "'t ~xP-. 
The change in the basis element Sa gives rise to the gauge 
field A :b' The last object in parentheses (D,.. "'t is the covar
iant derivative of the field. 

A note on language. In view of the equality v = vk Xk, 
familiar from classical mechanics, showing that an object 
can be expressed as a tensor in an arbitrary basis (the direc
tions and magnitudes of the basis vectors X k are arbitrary) is 
the same as showing that it exists independent of the basis. 
We will use the analog of this vector notation for field theor
ies. We will therefore refer to our equations as being basis 
independent when we show that they do not depend upon 
the choice of basis. 

The formalism used in relation (1) was originally de
vised by Cartan.3 He called Sa the moving frame (repere mo
bile). The idea of the moving frame became the foundation of 
the modem concept of the fiber bundle. For our purposes a 

fiber bundle B can be thought of as a union of copies of a 
given space F, the fiber, where there is a unique copy of F for 
each point x in the base manifold M. To denote this associ
ation of a fiber per point we write a given copy as I x } X F, 
where I x} denotes the set consisting of the point x. The bun
dle can be expressed via the following formula: 

B= U Ix}XF. 
XEM 

(2) 

An aside: If one wanted to be more precise, one would 
replace the singleton I x}'s in Eq. (2) with a collection of open 
sets Uq in M, which form an open cover of M and which have 
the property that the bundle is locally of product form 
Ua XF. In this case the bundle is the union of the Ua XF's. 
The map which locally reduces the bundle of this product 
form is called a local trivialization. If any of the sets Uu can 
be the whole manifold M then the bundle is said to be trivial. 

Our notation was chosen so that one could replace the 
manifold M with a lattice L consisting of vertices x and links 
connecting them (the lattice has the structure it inherits as a 
substructure of R "). The bundle B is then replaced with the 
obvious lattice analog 

B=u{x}XF. 
XEL 

(3) 

We will refer to these objects as lattice bundles or L bundles. 
This structure is especially relevant to a field theory being 
viewed as defined by the limit of multi-integrals on fibers 
over L as L goes to the limiting manifold M. 

If Sa is a basis for a complex N-dimensional space C", 
there are n independent sa's. Thus, to construct a fiber large 
enough to include each, one is led to 
c nxn (C n ® ••• ® C n). Local coordinates for the bundle 
with this fiber are (X,sl, ... ,sN)' Each Sa E C n

, The real caseR " 
works the same way. 

Thus, over a lattice L the L bundle of moving frames 
has the following construction: 

B = u Ix} XC"x". (4) 
XEL 

Its limit is the bundle of frames on M 

B = u (x) XC nx ". (5) 
XEM 
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We will see that the Yang-Mills tensor is the object one 
finds when the frame is transported around a loop in any of 
these bundles. 

To include scalar (or spinor) fields we will introduce a 
field !/J. To accomodate this new field we must give it a fiber 
of its own. But, because we want to couple it to the gauge 
field there must be a relationship between the new fiber and 
the old. Thus we view !/J as a multilinear mapping from the 
fiber e nxn into an added fiber cn 

(6) 

The coefficients depend upon which fiber is being mapped, 
but we have suppressed this x dependence. Here Sa is the 
image in en of Sa under the natural identification of the ath 
piece ofe nxn with en. To see that this identification is natu
ral view the collection of n Sa's as forming a matrix which 
maps the canonical basis elements of en, that is, the vectors 
uj with one in thejth place and zeros elsewhere, into the basis 
Sa' The components of this matrix are the inner products of 
Sa and uj using the canonical metric for en (the identity 
metric on the canonical basis). Given this, components of Sa 
are equal to the components of Sa' In fact this identification is 
so natural that we will not persist in making the distinction; 
thus, we will write Sa instead of Sa' The coefficients ~ are 
complex numbers, if!/J is a scalar. But they become (complex) 
Grassmann numbers, if!/J is a spinor. In this case the image 
space is G~, the space of complex n-component Grassmann 
numbers. The identification of Sa with Sa can and will still be 
made. The coefficients are characteristically viewed as being 
the field; we view the total entity !/J as being the field. 

The bundle of interest in the spinor case is apparently 

B = u {xJ xenxnxG~. (7) 
xeM 

Here, B is equipped with !/J's. But, there is an important, 
technical point. One must wonder about the anticommuni
cation relations offermions at different locations. Should not 
all fermions be placed into a single enormous Grassmann 
algebra so that they will all anticommute with each other? 
The obvious answer to this question is yes. Fermions are not 
local objects. However, it is possible to achieve this end indir
ectly, since we are interested in functional integrals. Use the 
tensor product for fermions at different locations, but then 
project out of that the antisymmetric piece by totally anti
symmetrizing the functional measure. In this way the time
ordered expectations of the fields will have the right rela
tions and that is what matters. 

This begs the question of what is the correct space. The 
answer is relatively straightforward in the case where the 
base is a lattice. In the case of a base manifold, we will view it 
as a limit of the base lattice case. So, if there are a total of p 
points in the lattice, the space of interest is an L bundle taken 
in product with a complex Grassmann space of dimension 
n Xp. Thus the total space is 

S = u [xJ XenxnxG~xp. 
xeL 

(8) 

There is a spinor-valued map from a single fiber in the lattice 
bundle piece of this space (e nxn) into a particular (complex) 
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n-dimensional piece of G ~op which looks just like the map in 
Eq. (6). 

We will now demonstrate the procedure for construct
ing a sample action on the manifold limit of this space. In Eq. 
(1) we used the equation for the change in the frame under a 
small displacement 

{)sa = SbA!a oxf'. (9) 

The second time we make a displacement we pick up the 
change in the coefficients A!a as well as another change of 
frame. Thus in second order we find 

dosa = Sb JvA!a dxvox!-' + SbA ecA ~a dxvox!-' (10) 

= [sb(JvA!a + A ecA~) ]dxV ox!-'. 

The antisymmetric part of the term in parentheses in Eq. (10) 
is the curvature of the frame bundle. This is also called the 
Yang-Mills tensor. It is what you get when you compare 
displacements taken in two different orders or when you take 
a trip around an infinitesimal loop. We can implicitly define 
the components of this tensor in the following way: 

sbF~f'a = HSb(JvA!a +AecA~a)-(V+-+ILl]. (11) 

Note that the metric is a rank two tensor in the basis space. 
We can introduce another basis element to absorb the free 
index a. To achieve a formalism which works in a general 
basis we must do that. Thus we have a curvature tensor 
which lives in a subbundle of the bundle offrames. The fiber 
of the subbundle is just en ® en. The general basis expres
sion for Fis 

F °a Fb 
VI" =s ® Sb avf" (12) 

The asterisk denotes complex conjugation. Clearly, the 
gauge field also takes values in that fiber. In general an object 
with p indices will live in the subbundle whose fiber is 
e nxp( = en ® ••• ® en,p-fold product. 

It may seem inconsistent to introduce a basis-indepen
dent notation for the internal space and leave the space-time 
indices dangling. In fact, there is a basis-independent con
struction for space-time also. As we saw, the antisymme
trized tensor product of "infinitesimal" displacements was 
the object which arose in computing the curvature. Infinite
simal displacements are given mathematical realization as 
"differentials," the duals of the directional derivatives. Anti
symmetric tensor products ofthese differentials are endemic 
to the geometry. The ensemble of them form the spaces of 
"differential forms" for the bundle, a p form being the anti
symmetric product of p differentials. 

The action has a natural expression in this language. It 
is the Hilbert square of the curvature two-form. However, it 
is more common in physics to keep the space-time indices, 
and to construct the Lagrangian density as a scalar rather 
than as a form. We will follow that convention since the use 
of forms is not required for this problem. 

In order to construct the action as a scalar in our basis
independent notation we need a metric for the basis ele
ments. We give the basis elements Sb the usual (flat) metric of 
en. We will express the metric of that space as follows: 

(sa ISb) = Oab' (13) 

This product has the usual sesquilinear structure. That is, 
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the product of sums of entries, in either arguments, is the 
sum of the products. Further, scalars in the second argument 
can simply be factored out front, (sa ISbA) = A (Sa ISb)' On the 
other hand, those in the first argument are complex conju
gated before they can be extracted; (saA ISb) = A *(sa ISb)' 

In order to construct a scalar such as the Lagrangian 
from a rank two tensor in the internal space (the Yang-Mills 
tensor), we must extend the metric to pairs of basis elements. 
Because the bundles of interest have a tensor product struc
ture, the generalization to arbitrary products is easy: 

(Sal ® '" ®San ISbl ® ••• ®Sbn) 

= (Sal ISb I )",(San ISbn) 

= 8al'b I ..• 8an·bn · (14) 

The terms on the right are simply multiplied together. The 
gauge field contribution to the Lagrangian is 

L = !(F/La \F"8 )g""ga8 

= !P:"abP~~(Sa ® Sb Isc ® Sd )gIL"ga8 

_ Ipa pb ,./L",.,a8 
- 4 /Lab "8al5 l5 . 

The Hermiticity of P has been used to get the last line. 

(15) 

To include the contribution from a scalar, we construct 
the covariant derivative by recalling Eq. (1) and omitting the 
infinitesimal displacement 

(16) 

We use the inner product to make the scalar kinetic Lagran
gian 

L = !(DA> ID"cP )gIL" 

= !(D/LcP fa(D"cP )b(sa ISb)gIL" 

= !(D/LcP fa(D"cP)b 8abg"" 

= !(D/LcP )t(D"cP )g"". (17) 

Constructing potential terms for the action in a basis-inde
pendent way is a straightfoward continuation of the ideas we 
have just presented. 

The fermion action is linear in the covariant derivative. 
To form it we introduce the following object: 

(18) 

The fermion kinetic term is an inner product of this object 
with the basis-independent covariant derivative. However, 
the inner product appropriate to the spinors for Minkowski 
space equals the components of the matrix Yo' (sa ISb) = YOab' 
Thus, 

L = (rlS t/JIDv1/iJg"" (19) 

= (YIS t/J)*a(D"t/J)b (Sa ISb)gll" 

= (Y/L t/J)*ag""(D" t/J)byOab · 

= ~f5t/J. 
If this expression is not self-conjugate, then add the conju
gate and divide the sum by 2. 

It should now be clear that the action is independent of 
the choice of basis. We also must show that the relevant n
point functions do not depend upon that choice either. For 
example, consider a simple case in which the spinors have 
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only one index, the spin index, which will be local (gauged). 
While it is true that this yields a quantum gravity formalism, 
we are using this as an example solely to avoid the extra 
complexity of giving each spinor multiple indices. A more 
elaborate example with pairs of indices per spinor (or basis) is 
dealt with later in this paper. It should, however, be easy for 
the reader to go from our example to the other case (especial
ly if one remembers the Kaluza-Klein approach through 
which that other case can be subsumed). The two-point func
tion for two fermions is 

«(t/J(x) I t/J( y))) = «(s(x)a t/J(x)als( y)b t/J( y)b». (20) 

We have made the coordinates explicit to show that one 
must relate bases at different points in order to compute 
these functions. So far we have given the inner product for 
frames at the same point. In a bundle with nontrivial curva
ture or Yang-Mills tensor this means giving the path that 
connects the two points. This formalism requires the flux 
link. Let U (x,y) denote the path-dependent matrix obtained 
by integrating the gauge field along the path connecting x 
withy. We can define the inner product between spinor bases 
at two locations in terms of spinor bases at a given location 
by "transporting" one of the bases. Thus we have 

(S(x)a IS(Y)b) = (s(x)a Is(x)c)U(x,y)~ = YOac U(x,y)~. (21) 

If we had two indices per spinor, the rightmost expression 
would consist of the sum of the U matrix apropos to the spin 
index acting on the Dirac matrix Yo times (tensor product 
with) the identity matrix for the other index plus the other U 
matrix times (tensor product with) Yo. But, in our sample 
case, we find the basis-independent expression for the two
point function to be 

«(t/J(x)lt/J(v))) = «(s(x)a t/J(x)"ls(Y)b t/J(y)b) 

= (t/J(x)"at/J(v)b(s(x)a Is(Y)b) 

= (t/J(x)"at/J(v)bU(x,y)~ )Yoac 

= (~x)U(x,y)t/J(v). (22) 

The last expression is the usual time-ordered functional 
average. The details of the choice of path are suppressed. 

We will now construct some four-point functions. They 
are also expectations of inner products. Thus consider 

«(t/J(x) ® t/J(v) I t/J(z) ® t/J(w))) 

= (t/J'a(x)t/J'b(Y)rfJ«z)~(w)(sa ®Sb Isc ®Sd) 

= (t/J'a(x)t/J'b(Y)rfJ«z)~(w)(sa ISc)I(Sb ISd) (23) 

= (t/J'a(x)t/J'b(Y)rfJ«z)~ (w)U(x,y): YOce U (y,w~ YOd,) 

= - (~x)U(x,z)t/J(z)~)U(y,w)t/J(w). 

Generalizing to n-point functions is straightforward. Ob
serve that the requirement that we consider basis-independent 
objects only has left us in the color-blind sector. To see the 
color we must explicitly introduce basis elements into the n
point function. For example, «(t/J(x)lsa(X))(Sb(Y)It/J(Y))) 
= (~a(X)t/Jb(y)' 
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III. BASIS FOR PARAFIELDS 

We will now briefly review parastatistics. 2
•
4 The defin

ing relations are the trilinears (think of the extra indices as 
momenta) 

[ [cP LcPd ± ,cPm ] - = - 26km cPI' 

[[ cPk,cPd ± ,cPm ] _ = O. 
(24) 

We will use [, ] + for ( ,land [, ] _ for [, ], interchange
ably. Throughout this paper the upper subscriped sign will 
refer to the para-Bose case, the lower sign to the para-Fermi 
case. Assuming that there exists a vacuum such that 
cPk 10) = 0, Green introduced the ansatz that each operator 
cP could be split into a sum of n operators. The number n of 
the components is the "order" of the parastatistics. It can 
take any positive integer value 

n 
'" _ ~ ",(a) 
'l'k - £.. 'I' k' 

a=l 

(25) 

and similarly for the conjugates. These operators obey the 
usual commutation or anticommutation relations for equal 
values of a, but obey the following unusual relations for une
qual values of their indices: 

[
",(a) '" (a)t] _ ~ 
'I' k ''I'I =t= -Ukl, 

(26) 
[cP ~),cP ~b)t] ± = 0, a=fb. 

The inner brackets of the trilinear relationship in Eq. (24) are 
now given by 

[cPLcPd ± = I[cP~)t,cP~a)] ±. (27) 
a 

So, it is clear that relations (24) are satisfied by operators 
obeying the ansatz. 

The relationship between operators and c numbers for 
use in functional integrals is well known. The crucial differ
ence is that commutators and anitcommutators must vanish 
for the c numbers and not vanish for the operators. The ana
logs to relations (24) for c-number parafields are 

[ [cP LcPd ± ,cPm ] - = 0, [ [cPk,cPd ± ,cPm] _ = O. 
(28) 

We can call this a para-c-number algebra. It can be satisfied 
by introducing an analog of Green's ansatz for q-number 
fields, cPk = ~cP ~), where now these are c numbers. The re
placements for relations (26) are the following: 

[cP~).cP~a)t]=t= =0, [cP~),cP~b)t]± =0, a=fb. (29) 

We will use the para-c-number algebra and the functional 
integral formalism and not the operator construction. 

Let us examine the behavior of the generalized number 
operator (bracket of a parafield with its conjugate) when we 
introduce a basis instead of using Green's ansatz. If the para
field is cPk = cP 'kea, then the generalized number operator is 

[cP'kea,cP;tet ] ± =cP'keacP7 te; ±cP7tetcP'kea 

= cP 'kcP 7 t(eaet + etea) 

= I[cP'k,cPjt] ±. (30) 
a 
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In the second line we have used the fact that bosons com
mute and spinors anticommute to find the same sign in both 
cases. The expression in the third line is obtained by working 
backwards from the last line, which is what we want. We can 
therefore infer that the relation eaet + etea = 26ab is need
ed for our basis elements to work properly. 

This is one part of the relations which define a complex 
Clifford algebra. In such an algebra the following two anti
commutation relations (and their conjugates) hold: 

{e:,ebl = 26abI, (ea,eb) =0. (31) 

The matrix I is the unit element of the Clifford algebra (the 
identity matrix). These two relations will work nicely in the 
case of parafermions. But in the case of parabosons the sec
ond relation makes the construction of symmetric represen
tations exceedingly awkward if we try to put the parabosons 
in the "vector" sector of the complex Clifford algebra. 

A real basis for a Clifford algebra EA obeys the follow
ing relation: (EA ,EB ) = 21]AB1, where 1] is the (indefinite) 
metric. Indeed, the complex basis elements have a natural 
realization as linear combinations of real E A'S. Of course, 
there must be twice as many EA'S as there are ea's. It is 
possible to avoid explicit introduction of the imaginary unit i 
by taking a metric 1] which has equal numbers of positive and 
negative square basis elements. Thus, let Ea be those with 
positive square, and let Ea, be those with negative square. 
The "complex conjugate" * acts by sending Ea, into minus 

itself. Define the "complex" basis ea = (Ea + Ea,)I{2 and 

e: = (Ea - Ea, )/{2. Alternately, you can use a real metric 
6AB and replace Ea' with iEa,; complex conjugation is the 
usual. You can verify the relations (31) in either case. Note 
that the subalgebra of only e's or only e*'s is a Grassmann 
algebra. 

We want the parabosons to have the possibility of cou
pling with bilinears constructed from the fermions. We have 
seen that gauge fields can be viewed as rank two tensors in 
standard basis-independent field theory [cf. Eq. (12) and re
marks following it]. Of course, for the gauge field, the mini
mal coupling implicit in the gauge covariant derivative 
which arose as a piece of the derivative of the basis-indepen
dent field [Eq. (1)] made it unnecessary to explicitly utilize 
this tensor structure. But in the case of scalar-fermion cou
pling such considerations are necessary (unless the scalar is a 
piece of a connection which split off under dimensional re
duction). In any case the obvious thing to try is to make 
parabosons rank two tensors in the complex Clifford alge
bra. The parabosons are taken to have e:e b as basis elements. 

Exponentials of sums of skew-Hermitian coefficients 
times e:eb represent U(n). To obtain a U(n) rotation of ec 
perform a similarity transformation on ec with an element of 
that group of matrices. The infinitesimal relationship 
[e:eb ,ec ] = - 2 6aceb can be derived from the anticommu
tation relations of the e's. The additional requirement that 
the metric {e:,eb) = 26abI be preserved restricts transfor
mations to U(n). Parascalars can be in GL(n,C) because they 
are not required to preserve the metric. But the same com
mutator can be used to couple these scalars with the fer
mions [since GL(n,C) is just the complex extension ofU(n), 
i.e., U(n) with complexified coefficients]. To get parabosons 
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which are in the fundamental representation ofU(n) we use 
the complex Clifford algebra with n + 1 generators, a stan
dard device. 

So far, it all looks good. The problem is that while the 
anticommutator {e:eb ,e~ed J has a component which is the 
identity matrix multiplied by t3bc t3ad , which makes the ten
sor analog ofEq. (30) work, it has another component which 
is a rank four tensor. To get rid of this unwanted piece we 
take a trace (suitably normalized). When we dealt with the 
para-c-number fermions, we could have introduced this 
trace but we were lucky and wound up with a multiple of the 
identity. To make everything uniform we define the general
ized number operator to be the (normalized) trace of either 
the commutator (parafermions) or the anticommutator (par
abosons). Thus, in front of the inner bracket of the defining 
trilinears we insert a (normalized) trace 

[tr[ ¢ t.¢d ± ,¢m] _ = - 2N t3km ¢l' 

[tr[ ¢k,¢d ± '¢m] _ = O. 
(32) 

Here, N is the normalizing factor. Note, if the coefficients are 
quantum field theory operators, the vacuum expectation of 
the inner bracket of the first equation in (24) must be sub
tracted off, as well as taking the trace.2 The right-hand side 
of the first of these relations is set to zero in the case of a para
c-number algebra. 

With the basis elements obeying the relations (31) and 
with the coefficients being Grassmann or scalar c-numbers, 
one can now verify that the combined entity obeys a para-c
number algebra. The new Green trilinears (32) are satisfied. 

Before going on we must consider the case where a pa
rafermion is required to transform under two or more sym
metry groups (carry two indices). Because of the fact that the 
e's form a Grassmann algebra when taken by themselves, we 
cannot use a simple tensor product basis such as ea ® hk' 
where hk denotes some other basis (either complex Clifford 
or not). The reason is that if there aren e'sandN h's (assume 
N> n), the obvious product of these elements (the Clifford 
product for the e's and either the tensor or the Clifford pro
duct for the h's) allows at most n terms, instead of n xN 
terms [any more terms in the product produces a zero due to 
the second ofEqs. (31)]. Here, N Xn terms surviving is okay 
on account of the fact that the Fermi coefficients vanish any
way for more than N X n terms. So, the correct basis is eak' 
where these are the generators of an (N Xn)-dimensional 
complex Clifford algebra (as mentioned above, this is most 
natural from a Kaluza-Klein or totally unified perspective). 

IV. EQUIVALENCE OF GAUGE THEORY AND 
PARAFIELD FRAMEWORKS 

We first showed that the action and its gauge-invariant 
moments did not depend upon the usual basis elements. We 
also saw how to extract basis-dependent quantities. Now we 
have seen how to create and use a parabasis. To prove that 
the physics of para- and usual fields is the same we must see 
that the action still will not depend upon the new basis ele
ments and that all the moments can still be extracted. 

The idea now is to replace the bundle offrames piece of 
the space S defined in Eq. (8) with the complex Clifford alge-
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bra of parabases. Operationally, this simply means that in all 
the formulas given above, which use the basis sa (x), one re
places the basis elements Sa (x) with the complex Clifford ma
trices ea (x). But, technically, there is more to it. One usually 
requires that all the fermionic field coefficients at all loca
tions anticommute with each other. In order to have anti
commutation relations between all spinor components at all 
locations, there must be an enormous Grassmann algebra. 
The algebra of parabases is no bigger than the Grassmann 
algebra of coefficients. The size of either of these algebras is 
found by taking into account the number of degrees of free
dom per point (consider the case where there are only para
fermions and coupled gauge fields) and the total number of 
points in the lattice. If there are n complex components at a 
point, the smallest (complex-irreducible) complex Clifford 
algebra with that many generators has rank zn. Ifthere are 
two spaces of bases, each with that many components, the 
smallest complex Clifford algebra with enough generators 
for both is of rank zn + n. Thus, if there are p points in the 
lattice, the smallest matrix algebra with enough generators 
has rank 2nxp. The smallest matrix algebra representation of 
the fermionic coefficients is twice this size, as we can infer 
from the fact that the subset of generators e or e* by them
selves formed a Grassmann algebra using simple matrix 
multiplication [see the paragraph after Eq. (31)]. So, that is 
the scale of these objects. Note that there is an intriguing 
duality in the size and nature of these objects. This can be 
pushed further (their dimensions can, in fact be taken equal 
by replacing the matrix product for the fermions with a total
ly antisymmetrized matrix product). 

Thus, we replace the space S with the parastatistics 
space P which is a pair P = (A,L ) with A = C (znxP) X G ~xP, 
where C (zn XP) denotes the complex Clifford algebra of rank 
zn xP, G ~ xp is the Grassmann algebra of spinors, and L is the 
lattice. The portion of C(2nxp) which replaces a fiber is a 
subalgebra C (zn). There is a section which picks out a sepa
rate copy ofC (2n) for each point inL. A connection is a U(n)
valued map for each link. It can be thought of as being repre
sented by matrices of the form exp( - wabe:(x)eb (x +..j )/2) 
for each link. These matrices act by conjugation on the basis 
ec (x) to push it forward and rotate it into a basis at x +..j, as 
one can see by trying the infinitesimal form and using the 
brackets for the e's. Scalars can be viewed as sections taking 
values in the two-tensor subalgebra of C (2n Xp ). 

Note that there are some new entities which have aris
en. Consider the space of objects that the matrices in C (zn xp ) 
act upon (via left-hand multiplication). Such objects will ro
tate one-half as fast as spinors. That is, if (exp(wij.2'ij))7 is a 
Lorentz transformation of a vector VI, then (exp(wijuij)/2)/: 
acts on the spinor r/l and the new object (exp(wijuijbe:eb)/4)~ 
acts on some new object B'. The reason that l'.t I did not 
appear in the second of these matrices is that 
l'.tl = (t37 t3J - t3; t3: )/2. The substitution was made. Thus the 
last two matrices bear precisely the same relationship with 
their antecedents. The objects B' rotate one-quarter as fast as 
the vectors; so, they could be called spin- 1 objects. These 
objects arise because in physics spinors are Grassmann ele
ments which can be represented by matrices which in turn 
can act on some new space. Although, we have come to them 
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by thinking about the complex Clifford algebra that has the 
same number of elements as there are spinor components 
(the parabasis). Furthermore, there is a real irreducible ana
log to this process. For example, a Majorana spinor ~ can 
be coupled to or 0; a bilinear coupling can also be made 
t/JAG~OrBrCot/Jc. Here G is the Majorana metric. Or a 
Dirac mass term can be formed if/'(Oe:ebO )t/Jb. In this case 
the spin-zero mass term is formed out of a spin-up and spin
down 0 field. We will call 0 the daughter field. Like the 
Russian matruska dolls, this process can continue. For those 
interested in the idea of constituents, the fact that spinors 
can be pulled apart (as vectors can be) may be of interest. 

The internal metric is replaced by a trace over the com
plex Clifford matrices (suitably normalized). We have 

(Sa (x) ISb (y)) = rOacU(x,y)~ 

= N -I tr(e:(x)eb (y)). (33) 

Here N is the normalizing factor. The Clifford matrices have 
the same kind of path dependence that the usual basis ele
ments do. It is natural to define the rightmost entry as the 
inner product of the e's and write it as (ea(x)leb(y)). 

The next thing to do is to extend this inner product to 
products of bases. Here is one place where there can be some 
technical differences between local parastatistics and stan
dard gauge theories. Consider first the inner product of two 
rank two tensors at a given point. When we defined the inner 
product on tensors (via tensor products of basis elements) in 
Eq. (14), we took that product to be simply the product of the 
first basis element in the left-hand slot of the product paired 
with the first basis element in the right-hand slot, then the 
second with the second, etc. That is, we defined n-fold pro
ducts by induction based upon the simple inner product of 
two elements. However, in the Clifford matrix case the inner 
product can be expressed in terms of (suitably normalized) 
traces of matrix products. To see this for a rank two Clifford 
matrix observe that (at a point) 

N -'Tr((e:(x)eb(x))*(e~(x)ed(x))) = ~ab ~cd - ~ac~bd' (34) 

The trace Tr refers to the trace on the daughter indices car
ried by the e's. We will use tr for the trace on the indices a, b, 
etc. If A and B are rank two tensors (in e space) we have 
N -I Tr(A *B) = tr At tr B - tr At B. This is not a definite 
product. Recall that the inner product of the sa's gave the 
negative of the second term. To insure precise equality of the 
theories we must take our inner products to be the same. So, 
define the inner product of rank two tensors as follows: 
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(A IB) =N-' Tr(A *)N- ' Tr(B) -N- ' Tr(A *B) 

= tr A tB. (35) 

The extension to the case of higher tensor products is easy 
and is done so that the analog ofEq. (14) holds. That is, there 
is only one product of ~ matrices on the right-hand side. It is 
not essential to relate an inner product to the trace; one can 
simply define an inner product, but the trace is the natural 
inner product on the vector sector of these algebras. So, we 
have shown the relationship of our inner product with the 
trace. 

v. CONCLUSION 

With this space P and this set of inner products, it is 
clear that the lattice versions of the local parastatistical mod
el (as we have defined it) and the standard lattice field theory 
have the same action and n-point functions. We assume that 
the continuum limit of the functional theory defined on the 
standard space S [Eq. (8)] exists and is well defined. Like
wise, we assume that the continuum limit of the functional 
theory defined on the parastatistics space P exists and is well 
defined. Assuming this, one sees that, operationally, one set 
of basis elements has been replaced by another with a one-to
one correspondence; further, the inner products also corre
spond directly. The two theories therefore have the same 
predictions. 
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The Dirac Coulomb Green's function is obtained in both coordinate and momentum space. The 
Green's function in coordinate space is obtained by the eigenfunction expansion method in terms 
ofthe wave functions obtained by Wong and Yeh. The result is simpler than those obtained 
previously by other authors, in that the radial part for each component contains one term only 
instead of four terms. Our Green's function reduces to the Schrodinger Green's function upon 
some simple conditions, chiefly by neglecting the spin and replacing A by l. The Green's function 
in momentum space is obtained as the Fourier transform of the coordinate space Green's 
function, and is expressed in terms of basically three types offunctions: (1) FA (a; {31 {32 {33; r I r 2 r 3; 
ZI Z2 Z3)' (2) the hypergeometric function, and (3) spherical harmonics. The matrix element for 
Rayleigh scattering, or elastic Compton scattering, from relativistically bound electrons is then 
obtained in analytically closed form. The matrix element is written basically in terms of the 
coordinate space Dirac Coulomb Green's function. The technique used in the evaluation of the 
matrix element is based on the calculation of the momentum space Dirac Coulomb Green's 
function. Finally the relativistic result is compared with the nonrelativistic result. 

I. INTRODUCTION 

The Dirac Coulomb Green's function (DCGF) is of 
great importance in the quantum electrodynamics of the rel
ativistic electron in the presence of a Coulomb field. So far, 
only the coordinate space DCGF has been obtained. I The 
radial part is obtained from the solutions to the homogen
eous equation. Each solution t/If contains the sum of two 
terms. Thus the radial DCGF, being the product of two I/l's, 
contains four terms. In a previous paper, 2 we have obtained a 
simplified solution to the homogeneous Dirac Coulomb 
equation where each component contains one term only. Us
ing these wave functions we calculate the DCGF by the ei
genfunction expansion method, which is the most orthodox 
way to calculate the Green's function. We integrate the con
tinuum wave functions by contour integration. The pole 
terms from the contour integration then cancel exactly the 
bound state sums, with the resulting Green's function in a 
similar form originally constructed by Brown and Schaefer3 

and Wichmann and Kroll. I However, our results are simpler 
than theirs in that each component of the radial Green's 
function contains one term only instead of four terms. More
over, our results can be directly compared with the nonrela
tivistic case,4 which is well known. In fact, our result reduces 
to the Schrodinger Green's function upon two simple condi
tions: (1) neglect the spin, and (2) replace A by l. 

Next we use the coordinate DCGF to obtain the mo
mentum space DCGF by Fourier transformation. It is 
shown that the angular part can be easily done. It remains to 
evaluate the integrals over r l and r2• Because of the presence 
ofthe () function in the DCGF, the integral over, say, r 2 is 
finite, i.e., the limits go from zero to r I' We find that a similar 
integral has been evaluated by Ogata and Asais in connec
tion with finite nuclear size effects. In the present case, by 
modifying the method of Ogata and Asai slightly, we obtain 

a result expressible in terms of 2 FI functions. The remaining 
integral is a Laplace transform of I(r) = r" - I 

XMK,,/t, -112 (alr) •.. MKn,/t. _ 112 (an r), which can be found in 
Ref. 6. The result is expressible in terms of the Lauricella 
function FA of n variables. In the present case, n = 3, and 
this function is a hypergeometric function of three variables. 
Thus the DCGF in momentum space is obtained in closed 
form. 

In the second half of this paper, we apply the Green's 
function to a practical problem: to find the matrix element of 
Rayleigh scattering from relativistically bound electrons. 
The method used is as follows. The matrix element for Ray
leigh scattering is written basically in terms of the coordinate 
space Green's function, which can be found in Brown and 
Schaeffer.3 Then one has to evaluate an integral over the 
intermediate states. This is done according to the technique 
used in the first half of this paper for the calculation of the 
momentum space Green's function. Basically the angular 
parts are written in terms of spherical harmonics. The Four
ier integral over the angular variables can then be performed. 
Then only the radial integrals are left. These are of two dif
ferent kinds: a finite integral over, say, r2 , with limits going 
from zero to rl , and an integral over rl , with limits from zero 
to infinity. Both these integrals can be evaluated in closed 
form. 

Using the ground state IS1/2 as the initial state, we find 
that the integrals involved are very similar to the ones en
countered in the evaluation of the momentum space Green's 
function. It is not hard to generalize our results to arbitrary 
initial states, since the technique we have developed can be 
generalized to more complicated structures. Moreover, it is 
also possible to obtain matrix elements for inelastic Comp
ton scattering for relativistically bound electrons, since the 
same technique applies. 

In the final section of the paper, the question of conver-
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gence of the sums, especially over j or equivalently /, is dis
cussed. We make a brief comparison between our result and 
the nonrelativistic result. If the initial state is chosen to be an 
arbitrary bound state, then it is shown that to within on 
order of 0.01 percent, the relativistic result contains the non
relativistic result. Moreover, the relativistic result contains a 
correction term which corresponds to the Furry approxima
tion, and is of the order of a, the fine structure constant rho 
However, if the initial state is chosen to be the ground state 
lSI / 2, then the correction term does not appear. Thus we 
have obtained the remarkable conclusion that the nonrelati
vistic result for Rayleigh scattering and Lamb shift is accu
rate to within 0.01 % when compared with the relativistic 
result for the lSI / 2 state. A detailed presentation of these 
results will be given in a future pUblication. 

II. COORDINATE SPACE DIRAC COULOMB GREEN'S 
FUNCTION 

The coordinate space DCGF was obtained by Wich
mann and Kroll. I Brown and Schaefer3 also obtained the 
DCGF in general form, but did not write out the expression 
explicitly. Later publications basically follow the same 
expression given by Wichmann and Kroll; see, e.g., Mohr,7 

Gyulassy,8 and Hylton. 9 The Green's function is obtained in 
terms of solutions to the homogeneous Dirac Coulomb equa
tion. This solution, explicitly written out by Wichmann and I 

Kroll. is basically the same form as obtained by Darwin, 10 

derived in detail in Bethe and Salpeterll or Rose. 12 It is well 
known that the radial solution contains two terms for each 
component. Thus the DCGF so obtained, being the product 
of two wave functions, contains four terms for each compo
nent. 

We have obtained in a previous paper2 a simplified solu
tion to the Dirac Coulomb equation where each component 
of the radial wave function contains one term only. Using 
this solution we are able to obtain the DCGF as one term 
also, instead of four terms. This is done through the eigen
function expansion method. All notations in the following 
are the same as in Ref. 2, unless otherwise stated. 

The DCGF G (r2,r l ,z) satisfies the equation 

[H(r2) -zI]G(r2,rl ,z) = 83(r2 - rl)I, (2.1) 

where I is the 4 X 4 identity matrix and H (r) is the Dirac 
Hamiltonian H aIr) defined in Ref. 2, after the transformation 
S, i.e., 

H(r) =SHO(r)S-I, 

HO(r) = (lOp -13m + V, 

S= exp[ - !P2a-rtanh- I(Ze2IK)], 

K=/3(O"'L+ 1). 

(2.2) 
(2.3) 
(2.4) 

(2.5) 

The DCGF, expanded over the complete set of spin 
angular eigenfunctions of K [eigenvalue K = iiJ(j + !)], and 
J3 = L3 + ~ (T3 (eigenvalue IL), x,: (r), is 

- iG !2(r2 rlz)S2X'_ K(r2) x,: + (rl)Sl) 

G;2(r2 rlz)S2X~ (r2) x,: + (rdSI ' 
(2.6) 

where Sj, i = 1,2, is the same transformation S as in Eq. (2.4) with r replaced by r j • The spin angular eigenfunctions x~(r) are de
fined unanimously in all literature; see, e.g., Refs. 2, 7, and 9, and also Eq. (4.10). The summation over IL in Eq. (2.6) can be per
formed in terms of 1TK (r2,rd, where 

1TK(r2,rl ) = L x,: (r2) x,: + (r l ) 
p. 

(2.7) 

wheres = r2'r l , Pis the Legendre polynomial, andP' is the derivative of Pwith respect to the argument; I is the 2x 2 identity 
matrix. Thus (2.6) can be written as follows: 

(
G !1(r2 r lz)S2 1T _ K(r2 rdSI G !2(r2 r lz)S2 ia-r2 1TK (r2 rl)SI) 

G(r2,r l,z) = L G 21 ( )S. A (A A)S G 22( )S (A A)S . K - K r2 rlz 210"'r2 1T -K r2 r l I K r2 rlz 21TK r2 r l I 
(2.8) 

Inserting (2.8) into (2.1), we obtain the differential equation satisfied by the radial Green's function G :/(r2 rlz), In Ref. 2, 
we have explicitly calculated the operator H (r 2)' Thus we obtain the following equation satisfied by the radial Green's function 
G:/(r2 rlz): 

[

KZIy+m 

~+ l-y +zZe
2 

dr2 r2 Y 

~ + 1 + Y _ zze
2

] 

dr2 r2 Y 

m -KZ/Y 
[
G !1(r2 rlz) 

G;I(r2 rlz) 

G !2(r2 rlz)] 

G;2(r2 rlz) 
(2.9) 

The solution for G :/(r2 rlz) is obtained by the eigenfunction expansion method in terms of the wave functions which are 
solutions to the homogeneous equation 

1702 

[ 

d 1 + Y zze
2

] KzIy+m -+-----
dr2 r2 Y 

d l-y zZe2 

-+--+-- m -Kzly 
dr2 r2 Y 
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In Ref. 2, we have obtained the solution to (2.10). The 
bound state wave functions for n r , w,j are 

tP(w) = (EKlr+ m)1/2 N'(W)pA(,;,) e- p12 

X I F I( - nr,U (w) + 2,p) 

and 

tP( - w) = iw(EKlr - m)1/2 N'( - W)pA(-,;,) e- pl2 

XIFI( - n"U (- w) + 2,p). (2.11) 

Since both wave functions are completely equivalent to 
the Schrodinger solution, if one replaces A ( ± w) by I ( ± w), 
we can rewrite (2.11) in terms of the normalized Schrodinger 
wave function R ( ± w). Thus 

tP(w) = (EKlr + m)1/2 NR (w), (2.12) 

tP( - w) = iw(EKlr - m)1/2 NR ( - w). (2.13) 

In (2.12) and (2.13), N is a single normalization constant 
for the bound staten r , W, andj, andR (± w) satisfy the equa
tion 

LX> R 2( ± w),-2 dr = 1. (2.14) 

Then we normalize ¢t(w) and ¢t( - w) such that 

So'" ,-2dr(ltP(wW+I¢t(-wW)=1. (2.15) 

From (2.15), we obtain 

N = (2EKlr)-1/2. (2.16) 

Thus we shall write ¢t( ± w) in the form (2.12) and (2.13), with 
N given by (2.16). Explicitly, 

R (± w) = [r(U (± w) + 2)] -1(2PI)3/2 

X [F(n +A( ±w) + I)F(n -A( ±w) + lW /2 

X [2nF{n -1 (± w) + I)F(n - 1 (± W))]-1/2 

XpA(±,;,) e- pl2 
I F I( - nr,U (± w) + 2,p), 

(2.17) 

withpi = (m2 - E 2)1/2 and where the terms r (n - 1 ( ± w) 
+ 1) and r (n - 1 ( ± w)) in the bracket could be written in

dependently of 1 ( ± w), by using the equations 

1(w)=n-nr -l, (2.18) 

1 (-w) =1 (w)+ 1, for (w ± 1), (2.19) 

or 

[F(n -1 (±w) + I)F(n -1 (± W))]-I 

{

[r(n r +2)r(nr + 1)]-1 for (w), 

= [r~nr+2±1)r(nr+l±I)]-1 for(-w) 

(CtJ = ± 1). 
(2.20) 

To compare our result with the Schrodinger result, we 
can also rewrite (2.12) as 

tP(w) = (EKlr + m)1/2(rl2EK)I/2 23/2 pi 

[ 
r (n + A + 1) ] 112 1 

X 2Ze2Er(n-A) r(U+2) 

Next we write the continuum wave function as 

¢tP(w) = (EKlr+ m)1/2~P(kr), 

¢tP( - w) = iw(EKlr - m)1/2~P(kr), 

~P(kr) = Jimk (-1.....)112 riA + 1 + i1])eiU 
E 3/2 211'K 

Ep1r1//2( 2'k )-1 M (2'k) Xe - I rEp i'1.A+ 1I2 - I rEp, 

where 1] = Ze2E Ik, Ep = ± 1 for p = 1 and 2, and 

eiu is the argument of 

[riA + 1 - i1])/F(A + 1 + i1]1P /2 . 

(2.22) 

(2.23) 

The eiu will not contribute to the Green's function since 
it is always cancelled by e - iu coming from ¢t*. Here 
M i'1,A + 112 (z) is the Whittaker function defined by 

M i'1,A+ I12(Z) =zA+ 1 e=FZ/2Ir(U + 2) 

X I FI(A + 1 += i1],U + 2, ± z). (2.24) 

We also take this opportunity to introduce W: 

W ( ) 11' { - M i'1,A + 112 (z) 
i'1,A + 112 Z = sin 11'(U + 1) F( - A - i1]) 

+ M i'1,-A-1I2(Z)}. (2.25) 
r(A+l-i1]) 

The wave function ~p (kr) is normalized in the k scale. 
The time-dependent wave function t/f'(r,t ) is written as 

t/f'(r,t) = t/f'(r)e - iEp Et, 

Ep = 1, P = 1; Ep = - 1, P = 2. 

(2.26) 

(2.27) 

The radial Green's function G :!(r2 r1z) is now obtained 
by the eigenfunction expansion method. Before proceeding, 
let us clarify the meaning of the superscripts i,j. They take 
on four values: 1 1, 1 2,2 1, and 22. In general, they refer to 
the "large" and "small" components, corresponding to tP(w) 
and t,b( - w), respectively. In accordance with our previous 
papers, we have chosen to use 2 for the "large" component 
and 1 for the "small" component. However, this is purely a 
matter of convention. In what follows, we shall omit the 
superscripts i,j, since it is obvious that each component of 
the Green's function follows the corresponding component 
of the wave function. Thus we have 

(2.28) 

The Green's function is obtained by doing the integra
tion over the continuous spectrum. We follow basically the 
work of Hostler,4 who did the calculation in the Klein-Gor
don case. Define 

(2.29) 

xe- pl2 p\ F I ( - n"U + 2,p). (2.21) Use the identity 
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e±1rik W. (ze±1ri) e±".i(i1/-,I,-I) W. (z) M ( ) - 11/.,1, + 1/2 11/.,1, + 1/2 

i1/."+ liZ Z = r(A + 1 _ i1J) + r(A + 1 + i1J) 
(2.30) 

We get 

J = ~L [ ('" dk r(1 + A - i1J)Wi1/.,I,+ 112 ( - 2ikrz)e-".i(A+ I) M -i1/.,I,+ 1/2 (2ikr l ) 

K 417"r l r2 K Jo E3 Z - E 

L'" dk . W - 11/,A. + 112 (2ikrz) M - i1/,A. + 112 (2ikr I) + - r (1 + A + l1J) ----"---'------'-'-----
o E3 z-E 

('" dk W _ i1/.,I, + liZ ( - 2ikrz) M _ i1/.,I, + liZ ( - 2ikr tl 
- Jo ?r(1 +A +i1J) z+E 

_ ('" dk r (1 + A _ i1J) Wi1/.,I, + 1/2 (2ikrz)e
lTi

(,I, + 1)M - 11/.,1, + 1/2 ( - 2ikr I) ] , 

Jo E3 z+E 
(2.31) 

where E = + (k 2 + mZ)1I2. 
Using the identity 

M _ i1/.A + 1/2 (z) = e =F l'i(,I, + 1)Mi1/.,I, + 112 (ze ± l'i), (2.32) 

the phase factors e ± ".i(,I, + I) occurring in the first and fourth terms of (2. 31) can be absorbed in the M functions. Changing the 
integration variable from k to E = + (k 2 + m2)1/2 in the first two integrals and to E = - (k 2 + m2)IIZ in the last two, we 
obtain 

J = ~L [fm dE r(l +A - i1J) J¥;1/.,I,+ liZ ( - 2ikr2)Mj1/.,I,+ 1/2 ( - 2ikrd 
K 417"r l r2 K '" kE2 E-z 

_ L'" dE r(1 + A + i1J)W - i1/.,I, + liZ (2ikr2)M - j1/.,I, + 112 (2ikr l ) 

m kE Z E-z 

+ f -m dEz r (I + A - i1J) J¥;1/,,I, + 112 ( - 2ikr 2)Mj1/.,I, + liZ ( - 2ikr I) 

-'" kE E-z 

_ f- '" dEz r(1 + A + i1J)W -i1/.A + liZ (2ikrz)M - i1/.A+ 1/2 (2ikr l ) ] • 

-m kE E-z 
(2.33) 

We now define k for general values of E on the complex plane less the two branch cuts - 00 < E < - m and m <E < 00. This 
definition is 

k = (EZ - mZ)I!Z, 0 < arc(k) <17". (2.34) 

It is seen that Im(k) > 0 for all E on the cut plane. The integrands in (2.33) are then reduced to a single function 

~ L r (I + A - i1J) J¥;1/.,I, + liZ ( - 2ikrz)Mj1/.A + liZ ( - 2ikr I) 
(2.35) 

417"rl rz K kEZ(E - z) 

when evaluated above or below the positive or negative energy branch cut. Because of the behavior of M, which is regular at 
the origin, and W, which is regular at infinity, the contour may be closed by semicircles "at infinity" in the upper and lower 
half-planes as long as rz> rl : 

J = m2y f dE r(1 +A - i1J)Wi1/.A+ 112 ( - 2ikrz)Mi1/,A.+ liZ ( - 2ikr l ) 
K Z • 

41rK r l rz kE (E - z) 
(2.36) 

The contour is now a closed loop enclosing the entire 
cut plane in the clockwise sense. (The original contour circles 
the disjoint branch cuts in the counterclockwise sense.) The 
poles of the integrand are the poles of the gamma function 
r (I + A-i1J), the pole at E = z, and the double pole at E = O. 
The poles of the gamma function occur at precisely the 
bound state energy levels. The residues at the poles of the 
gamma function will be evaluated shortly. It is then found 
that this contribution cancels exactly the eigenfunction ex
pansion sum coming from the bound states, i.e., the second 
term on the right of (2.28). 

The residue of the gamma function is calculated as fol
IOWSI3

•
14

: 
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Res r(1 + A - i1J) 
E=Ej 

= Res r( - nr - iZeZ(E /p - EJpj)) 
E=Ej 

_ ( It' + I {"Z 2 , a [ E ] } - I 
- - l e nr· aE (EZ _ mZ)1/2 E=E. 

= ( - It'+ I p~/Z~m2nr! (2.37) 

When (2.37) is multiplied by ( - 217"i), we find that it 
cancels exactly the bound state wave function term in (2.28). 
Since the bound state wave functions have been normalized 
exactly, we know that, because of this cancellation, the con
tinuum wave function (2.22) must have been normalized cor-
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rectly. In fact, we present this result as one of the ways of 
normalizing the continuum wave function. The double pole 
at the origin does not contribute anything. This can be seen 
as follows. First physically, the pole at the origin corre
sponds to E = 0, and therefore there is no electron. Math
ematically, one can argue as follows. Write the integrand, 
other than the 1/E2 term, asf(k). Then the residue of the 
double pole is obtained by calculating 

[ 
d f(k) dk] = [ d f(k) E] = 0. 

dk dE E=O dk k E=O 

Finally, we obtain the coordinate space DCGF as 

G :/(r2 rlz) 

=f(' .) m
2
y 1 F(1" ) l] -.- 2 21/2....2 +/1. -l1] 

2lK r l r2(z - m) z-

X W;1/,A.+ 1/2 ( - 2ikr2)M;1/,A.+ 1/2( - 2ikr1), (2.38) 

r2> rl> 1] = Ze2zlk, k = (r - m2)1/2, Im(k) > 0, 
(2.39) 

wheref(i]l is the factor corresponding to (zKly + m)1/2 for 
i,j = 2 and iiiJ(ZKly - m)1/2 for i,j = 1. The appropriate A in 
(2.38) is a function of iiJ. For i,j = 1, A is A ( - iiJ), and for 
i,j = 2, A = A (iiJ). 

The connection between our Green's function and the 
nonrelativistic one is quite obvious. First the spin angular 
eigenfunction ¥,: obviously reduces to the Schrodinger case 
if the spin is neglected, since J = L + a/2. Explicitly, one 
can see that the first term in (2.7) summed over iiJ is equal to 
(21 + 1 )PI(S )/41T, which corresponds to the Schrodinger re
sult. Therefore the second term in (2.7) can be considered as 
the relativistic correction due to the spin. In the final section 
of this paper, we shall show that the second term gives rise to 
the correction term over the nonrelativistic result in Ray
leigh scattering. Furthermore, this correction is found to 
correspond to the Furry approximation. 

We can therefore summarize our results roughly as fol-
lows. 

Relativistic result: A noninteger, spin present. 
Furry approximation: replace A by I, spin present. 
Nonrelativistic or Schrodinger result: replace A by I, 

put spin equal to zero. 
Aside from these factors mentioned above, there are 

only minor factors which are peculiar to the relativistic case 
and cannot be found in the nonrelativistic case. The first is 
the fact that the Dirac equation is a first-order coupled dif
ferential equation, hence the factor y/2EK in the normaliza
tion. The other factor is that in the relativistic case, the total 
energy E is considered, where E2 = k 2 + m2, while in the 
nonrelativistic case the kinetic energy E is considered, where 
E = k 212m. It is well known that the bound state energy 
spectrum between the Dirac equation and the Schrooinger 
equation differs by terms of the order Z4a4. All these ques
tions will be further discussed in Sec. V. 

III. MOMENTUM SPACE DIRAC COULOMB GREEN'S 
FUNCTION 

We now derive the momentum space DCGF by Fourier 
transforming the coordinate space DCGF obtained in the 
previous section. Thus 
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(3.1) 

In spherical coordinates, P2 and PI are expressed in terms of 
(P2,02,f/J2) and (PI,Ol,f/Jtl, respectively. The angular integrals 
can then be done immediately. We shall summarize the re
sult in the form of a theorem. This result, though obviously 
known to many authors for a long time, has nevertheless not 
been stated concisely nor sufficiently appreciated. Thus we 
shall present this result as a theorem and give a simple proof. 

Theorem: As far as the angular variables are concerned, 
the Fourier transform (say, from r to p) of a spherical har
monic Yi(O"f/Jr) is equal to the same spherical harmonic 
Yi(Op,f/Jp) multiplied by a definite factor (of r). Explicitly 

fl So21T 
d cos Or df/Jr Yi(Or,f/Jr)e±iJ>or 

-I 0 

= Yi(Op,f/Jp) [(21T)3/2( ± iV(rp)-1/2 JI + 112 (rp) ]. (3.2) 

This result was obtained by Podolsky and Pauling l5 by 
explicitly integrating out the left side of(3.2). We shall, how
ever, give a simple proof of Eq. (3.2) based on the following 
three relations. The first one is an expansion due to Bauer, 
according to Watson, 16 

e±;prcos(o) = i (± i)L(2L + 1)(1T/2rp)1/2 
L=O 

(3.3) 

The second one is the spherical harmonic addition theorem 17 

Pdcosw) = ~ L yr(Or f/Jr) Y1'(Op f/Jp). (3.4) 
2L+ 1 m 

The third one is the orthonormality of the spherical harmon
icS

l8 

f1T So1T yr(Or f/Jr) Y1':(Or f/Jr)sin Or dOr df/Jr 

= DLL , Dmm,· (3.5) 

Applying Eqs. (3.3), (3.4), and (3.5) successively to the 
left side of (3.2), we ~et the right side of (3.2). 

Since the spin angular momentum eigenfunctions X~ 
contain only spherical harmonics, we can immediately apply 
the theorem and obtain the result 

fl dcosOr f21T df/Jre±;prr'¥,:(Orf/Jr) 
-I Jo 

= ¥,:(Op f/Jp)[(21Tf/2( ± i)l(r; p;)-1/2 JI + 1/2(r; Pi)], 

(3.6) 

where ± i refer to r I PI and r2 P2' respectively. Thus the an
gular integration is done. In particular, the angular depen
dence of G (P2,PI,z) is entirely contained in the matrix 

ia-P2 1TK (P2Ptl] . 
1TK (P2PI) 

(3.7) 

The "radial" Green's function in momentum space 
G :/(P2P IZ) is now 
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G:!lpzPlz) = f f ri drz ri drl(rl rzPIPz)-I/Z J,+ IIZ(rI PI)J,+ I12hPz) 

2 

><I(ij). ; r 21/Z;? r(1 +A-i17)[Wi7l.A+IIZ(-2ikr2)Mi7l.A+IIZ(-2ikrIlO(r2-rl) 
212Krl rZ( - m ) 

+ »';7/.A + liZ ( - 2ikrl ) M i7l.A + liZ ( - 2ikrz) 0 (rl - r2)]· (3.8) 

It is only necessary to evaluate one ofthe terms in the bracket, say, 0 (rl - rz). The other term can be done in a similar way. 
Thus we wish to evaluate the integral I, 

1= i oo 

drl t112 J,+ In!rI PI)Wi7l.A+ I12( - 2ikr,) i r
, drz ~/Z J,+ liZ (rzpz)(2rzpz)A e- iw, I FI(A + 1 + i17, U + 2, 2if.trz), 

where 

f.t = (ZZ - mZ)lIZ, 

17 = Ze2z/(;? - m 2)"z. 

The Bessel function can be changed into a confluent hypergeometric function 19 

2- I - IIZ 
J1+ IIZ (rZP2) = (rzPZ)/+ liZ e-irzpz ,FI(I+ 1,2/+2, 2ipz,r2). 

r(/+~) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The integral over rz in (3.9) is similar to the one considered by Ogata and Asais in connection with finite nuclear size 
effects. We shall briefly outline the procedures. 

First, we distinguish between two cases (l)pz <f.t and (2)pz >f.t. In case 1, the I FI functions are expressed in terms of the 
integral representation, Eq. (A6) of Ref. 5. We associate u with the Bessel function and v with the Dirac wave function. Then 
the integral over r 2 can be done, resulting in an incomplete gamma function, which in tum can be expressed in terms of IF" 
Eq. (6) of Ref. 5. This, FI function is now expanded by means of a multiplication theorem, Eq. (A12) of Ref. 5. The terms 
containing [1 - (2J.L/(pz + f.t - 2 pzu)v] are then separated out and expanded in terms of the binomial theorem. Then the 
integral over v can be performed, resulting in an z FI function with argument 2f.t/( pz + f.t - 2 pzu). The argument of this z F, 
function is converted into its inverse by means of Kummer's relations, Eq. (All) of Ref. 5. Then the z F, functions are 
expanded according to its definition 

(3.13) 

Finally, the integral over u can be performed, resulting in another 2 F, function. Thus from Eq. (3.9) we wish to evaluate the in
tegral/z, where 

($" {'I d ,p; - 1 - ill-' + pz)rz F ( b 2' ) F (- -b 2' ) if 2 = Jo rz TZ e , I a, ; IPz rz I ) a, ; If.trz , 

where 

a = A + 1+ 3, a = I + 1, b = 21 + 2, a = A + 1 + i17, b = U + 2. 

The final result is the following. 

Case 1: Pz <f.t, 

/z=rf a - I i: i: i r[a+nJJ,(_l)m(n)(_i)u-+mr[a,b_-aJ 
q~On=Om~O a n. m b 

X) FI(a + n,l + a, _ rIl {r [b,a + m - aJ (pz + f.t)Cl(PZ + f.t) -Iu-+ m) (a)q(a - b + l)q (pz + f.t)q 
a + m,b - a - 2f.t (a - a - m + l)q q! 2f.t 

[
b-a,a] ( 2P ) [ba-a-mJ Xr b zF, a,a + m -a - q;b, __ z_ +r _'- (- 2f.t)-Iu.+ m ) 

pz + f.t a,b - a - m 

X (a + m)q(a + m - b + l)q (pz + f.t)q r [b - a,a]zFI(a, _ q;b, ~)} . 
(a+m-a+l)qq! 2f.t b Pz+f.t 

(3.14) 

(3.15) 

(3.16) 

Case 2: pz > J1,. This case is evaluated in the same way as case 1, except that the integration over u is carried out before 
integration over v. The result for case 2 also looks very similar to case 1: 
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X I FI(a + n,1 + a, _ rtl {r [b,a + m - a] (P2 + JL)O (P2 + JL) -(a+m) (a)q(a - b + l)q (p2 + JL)q 
a + m,b - a - 2 P2 (a - a - m + l)q q! 2JL 

[b - 0,0] ( - 2jl) [b a - a - m] 
Xr b 2FI a,a+m-a-q;b, P2+JL +r a:b-a-m (-2p2)-(a+m) 

(a + m)q(a + m - b + l)q (p2 + JL)q [jj - 0,0] (_ .- 2JL)} X --- r - 2FI a-q,b,--- . 
(a + m - a + l)q q! 2 P2 b P2 + JL 

(3.17) 

The integral over r l is basically ofthe following form: 

LX> drl r: e-U"P, I FI(I) I FI(2) I FI(3). (3.18) 

Here, I F I (1) comes from the Bessel function and is the 
same all the time, 1 FI(2) comes from the incomplete gamma 
function and is also the same all the time, and I Fl (3) contains 
two types, I FI(p, q, t) and G (p, q, t), where 

G(p,q, t) 

= t I - q r (p + 1 - q)r (q) F (p + I _ q 2 _ q t ). 
r(2-q)F(p) I I " 

(3.19) 

Thus we are required to evaluate the following integral / I: 

/1 = 50'" dr l rt' e- 2ipl " I FI(I + 1,21 + 1,2irI PI) 

X I Fda + n,l + a, - rtll F I(ai>bi ,2irI PI)' 

(3.20) 

where i = 1,2, and i = 1 refers to the Whittaker function M, 
i = 2 refers to the Whittaker function W, 

PI = U + 21 + n + 5, a = A + 1+ 3, P2 = 21 + n + 4, 

al = A + 1 + i1], b l = U + 2, (3.21) 

a2 = - A + i1], b2 = - U. 

Equation (3.20) is of the form given on p. 216 of Ref. 6. 
We shall just give the result for; = 1 in Eq. (3.20) 

/1 = (2ipJ)I+..1.+2(1 + 2iPI)-ll-21-n-6 

Xr(U + 21 + n + 6) 

XFA. (U + 21 + n + 6;1 + 1,A + 1+ n + 3, 

A + 1 - ;1];21 + 2,A + 1+ 4,U + 2: 

2iPI 1 2iPI ) . 
1 + 2; PI' 1 + 2i PI' 1 + 2i PI (3.22) 

Thus we have obtained the DCGF in momentum space. 

IV. RELATIVISTIC RAYLEIGH SCATTERING 

In this section we present the matrix element for relativ
istic Rayleigh scattering, or elastic Compton scattering, in 
analytically closed form. 

The method used is as follows. The matrix element for 
Rayleigh scattering is written basically in terms of the coor
dinate space Dirac Coulomb Green's function, which has in 
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I 
fact been given by Brown and Schaefer.3 The coordinate 
space Green's function has been obtained by us in Sec. II. It 
remains then to evaluate the integral over the intermediate 
states. The integral is evaluated according to the technique 
used in Sec. III for the calculation of the momentum space 
Green's function. Basically, the angular parts are written in 
terms of spherical harmonics. The Fourier integral over the 
angular variables can then be performed. Then only the radi
al integrals are left. These are of two different kinds: a finite 
integral over, say, r2, with limits going from zero to r l , and an 
integral over r l with limits from zero to infinity. Both these 
integrals can be obtained in closed form. 

Using the ground state ISI / 2 as the initial state, we find 
that the integrals involved are very similar to the ones en
countered in Sec. III in the evaluation of the momentum 
space Green's function. It is not hard to generalize our re
sults to arbitrary initial states, since the technique we have 
developed can be generalized to more complicated struc
tures. Moreover, it is also possible to obtain matrix elements 
for inelastic Compton scattering for relativistically bound 
electrons, since the same technique applies. 

The basic diagrams for Rayleigh scattering are shown 
in Fig. 1, where the double solid lines represent the relativis
tic electron in a Coulomb field, and the dotted lines represent 
the photon. 

For case (a) we have to evaluate the matrix element 

Mia) = J d 4x2 J d 4xI ¢i(X2) YI' A ~ + )(x2 ) 

XS~)(X2 xtl Yv A ~ - )(x l) tPi(Xtl. (4.1) 

For case (b) we have 

M(b) = J d 4x2 J d 4xI ¢i(X2)YI'A~-)(X2) 

XS~)(X2 XI) Yv A ~ + )(xtl tPi(X I )· (4.2) 

FIG. 1. Diagrams for Rayleigh scattering. 
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We use the fact that 0/; (x) = o/;(r) e - iE;l and that A ~ ± )(x) 
= Ay(r) e ± iwt, where W is the energy of the photon M(b) = 41Ti8(w -w') f dr2 f drl ¢i(r2) YJl AJl (r2) 

S~)(X2 XI) = (ihr) f: '" G (r2r l E)f3e - iEt dE, (4.3) 
xG(r2 r l E j -w) Y4 yy Ay(rl)o/j(rl)· (4.5) 

where G (r2r l E) is the Dirac Coulomb Green's function in 
coordinate space. Integrating over f2' f I' and E we have 

Henceforth, we shall confine our attention to case (a), 
since case (b) can obviously be treated in a similar way. 

We can now insert the Green's function obtained in Sec. 

M(a) = 41Ti8(w -w') f dr2 f dr l ¢i(r2) YJl AJl (r2) 

X G (r2 r l Ei + w) Y4 yy Ay(rd o/i(rd, (4.4) 

II into (4.4). If the initial state is chosen to be the ISI / 2 

ground state, nr = O,j = !, iJJ = - 1, then only G;2 will en
ter into the calculation. Thus we shall consider the integral 

Ma = 8(w -w')( - 41Ti) ~ Sa'" r. dr f d{J .I·.(r) .pi ({J ) (m + zKly)m2yF(1 + A - i1]) 4 1 1 1 '1', I AK, 1 4' .-2(_2 2)1/2 ,.W 0 r 1 r 2 lKz- Z- - m 

X~S2x,:({J2)x,:+({JdSIY4 YJl e~ e-'K'r, 0/;'(r1) L' ~ drz f d{J2 

Xo/~(rz)x.::+ ({Jz)e,K.r'Y4 yy ey o/j(rz), (4.6) 

where 0/~(r2) and o/;'(r l ) correspond to the Whittaker functions M and W, respectively. We shall now evaluate the angular 
integral. 

First we write 

yy =Y4[xy,H]. 
Then 

yy ey = Y4WXy ey, 

yy e~ = - Y4WXJl e~. 

(4.7) 

(4.8) 

(4.9) 

Next we sum over the polarization vector of the photon and average over the position vector of the electron, obtaining for each 
term Xy ey a term 2x13, which can be expressed in terms of spherical harmonics. The spherical harmonic from X~ can be 
coupled with the position vector by the usual angular momentum coupling technique to obtain another spherical harmonic. 
The spin eigenfunction is 

[ 

_ w( K + ! - f.t )112 YJl- liZ ] 
2K + 1 IK+ IIZI-IIZ . 

x,:= (K+ 21+1I.)1I2 (4.10) _ r YJl+IIZ 
2K + 1 IK+ IIZI-IIZ 

Denoting the final relevant spherical harmonic by Y r({Jz) we can perform the angular integration over (J2' according to 
Eq. (3.6), 

f d{J2 e'K'r, Yr({Jz) = Yr(k) [(21Tf/2 iI(kr2)-1/2 J1 + 112 (kr2)]· 

The angular integration over {JI can be performed in the same way. It remains for us to evaluate the radial integrals. 
The integral over rz is of the following form: 

where 

jl=(E~ _m2)I/Z, Ek =Ej +w, s= -!im[2(I-Z 2e4)1/2-1 +ZZe4j112, sZ=mz_E;. 

Before evaluating the integral, let us discuss the relations between the energies. We have 

fJ,2 + [S[2 = (Ej + w2) - E; = 2Ejw + w2 = 2Ejk + k 2. 

Hence 

fJ,z + [s[2>k2 or [fJ, +s[ >k. 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Now the integral in (4.12) is of the same form as Eq. (3.14), except that (4.12) has an extra term e - jr,s. Equation (4.12) can 
be evaluated by the same technique as in Sec. III. However, because of (4. 15) we only need to consider case 1, [fJ, + s[ > k. Let 
us define 
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a=3+A+I+(I-Z 2e4)1/2, a=l+l, b=2/+2, a=A+l-i7J, h=U+2. (4.16) 

Then 

I ~ ~ ~ r[a+n] 1 l)m(n)( .)a+mr[a,h-a] F( 1 = r'ia- /::0 n"':O m":=O a n! ( - m - I h I I a + n, + a, - rtl 

X {r [b,a + m - a] (k +ft +s)-a-m+a( _ 2ft)-a (a)q (a - h + l)q (k +~ +s)q r [a,b - a] 
a + m,b - a (a - a - m + l)q q! 21l b 

X2 FI(a,a+m-,-a- q;b; 2k _)+r[~,~-a-m](_2ft)-la-m) (a+m)q(a+m-h+ 1) 
k + s + Il a,b - a - m (a + m - a + l)q q! 

X( k +~ +ft r r [a,bb- a] 2 FI(a, - q;b, k +~k+ft)} . (4.17) 

Case 2, where 1ft + sl < k, is applicable for the evaluation of 
M b , Eq. (4.5), diagram (b) of Fig. 1. 

The integral over r I is of the following form: 

/1= loo drlr'ie-i,,(k'+il+S)IFI(I)IFI(2)IFI(3), (4.18) 

where l FI(I) comes from the Bessel function and is the same 
all the time, I FI(2) comes from the incomplete gamma func
tion and is also the same all the time, and I FI(3) comes from 
tft;'(r l ) and contains two confluent hypergeometric func
tions: I FI(p, q, t) and G (p, q, t), as defined in (3.19). All the 
cases are expressible in terms of the following integral/I: 

/1= loo drl/{'e-i,,(k'+il+S)IFI(/+ 1,2/+2,2ik'rl) 

X I FI(a + n,l + a, - rtll F I (ajObj02ijir l ), (4.19) 

wherei = 1,2,andi = 1 refers to I FI(p, q, t)andi = 2 refers 
to G(p, q, t) 

a = 3 +A + I + (1- Z2e4)1/2, 

/31 = a + 2 + (1 - Z2e4)1/2 + I + A, 

/32 = a + 1 + (1 - Z2e4)1/2 + I-A, 

a l = A + 1 - i7J, bl = U + 2, 

a2 = -A - i7J, b2 = - U. 

(4.20) 

Equation (4.19) is ofthe form given on p. 216 of Ref. 6. 
We shall just give the result for i = 1 in Eq. (4.19) 

/1 = (2ik ')/+ I (2i{t)'t+ I [1 + its + k' + ft)] - v-M 

where 

Xr(v+M)FA(v+M; 1+ I,A + 1+ n + 3, 

A + 1 - i7J; A + 1 - i1], 21 + 2, 

A + I + 4; 1/ [1 + its + k' + ji)], 

2ik '/[ 1 + its + k' + ji)l, 

2ift/[ 1 + its + k' + ji)]) , (4.21) 

(4.22) 
M = (3A + 31 + 8)/2. 
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I 
V. COMPARISON OF THE RELATIVISTIC RESULT WITH 
THE NONRELATIVISTIC RESULT IN RAYLEIGH 
SCATTERING 

In this section we make a comparison between the rela
tivistic result and the nonrelativistic result in Rayleigh scat
tering. Our purpose is twofold. First, to understand the con
vergence of the sums in our formula, especially with regard 
to summation overj or equivalently I. Second, to see whether 
the nonrelativistic result is contained in the relativistic re
sult. The conclusion we have obtained is the following. If one 
uses the ground state IS1/2 as the initial state, then the rela
tivistic sum should be convergent, and the nonrelativistic 
result is indeed contained in the relativistic result, to within 
an order of 0.01 %. Moreover, in the general case, with an 
arbitrary initial bound state, the relativistic result contains a 
correction term, which is chiefly due to the spin of the elec
tron, corresponding to the Furry approximation.20 This cor
rection term is of the order of the fine structure constant (Th). 

In order to compare the relativistic result with the non
relativistic result, we shall make some approximations in our 
formula. The errors thus committed can be readily estimat
ed, and are found to be very small. The approximations we 
make are the following. 

(1) With regard to the Dirac Coulomb wave function, 
we shall replace A by I. This commits an error of approxi
mately 0.01 %. This simplification reduces the radial part of 
the wave function and the Green's function to be almost 
identical with the nonrelativistic SchrOdinger result, except 
for a scale factor III = (m2 - E~) 1/2 for the bound state wave 
function and k = (r - m2)1/2 for the Green's function. In 
particular, if one chooses the ground state IS1/2 to be the 
initial state, then the "small component" vanishes according 
to the Wong-Yeh solution and only G;2 will enter into the 
calculation. 

(2) The second point to be examined is the interaction 
term. According to the relativistic formulation, the electro
magnetic interaction term is basically a·A, while for the non
relativistic formulation it is p·A. However, from (4.8) and 
(4.9), we see that the first expression can be written basically 
as ± i(i)xv ev , while the second expression can be written as 
- im(i)xv ev • Thus the interaction terms are of the same 

form. 
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Now when we compare the relativistic result with the 
nonrelativistic result in Rayleigh scattering, we find that the 
only difference arises from the summation over f-t of the spin 
eigenfunctions in the Green's function, Eq. (2.7). Equation 
(2.7), for the relativistic case, contains two terms. However, 
the first term, when written out in terms of I, is exactly the 
same as the nonrelativistic result, i.e., ~r=o [(21 + 1)1417"] 
xPI(cos fJ). Therefore, we conclude that the second term in 
(2.7), after the transformation S, given by Eq. (2), gives rise to 
the relativistic correction over the nonrelativistic result. 
This correction term adds 

-iZe2 

---PI (cos fJ)(l - cos fJ)ao(rl + r2) (5.1) 
2/(1 + 1) 

to each PI term for 1= 1,2,3, ... ,00, and is therefore of the 
order of a = -d? Furthermore, it has been shown by Hostler4 

that this correction term corresponds to the Furry approxi
mation. 

However, if the initial state is chosen to be the ISl/2 

state, then the correction term in (5.1) does not contribute, 
because a has the matrix 

in p space and we have seen that only the G;2 term will 
contribute, which means that the correction term is zero in 
this case. Thus we conclude that for the IS1/2 ground state 
the nonrelativistic result in Rayleigh scattering and in the 
Lamb shift is accurate to within 0.01 % when compared with 
the relativistic result. 

For a general bound state, we conclude that the relativ-
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istic result converges, and does contain the nonrelativistic 
result as a first approximation. Moreover, we have identified 
the correction term with the Furry approximation, and 
found that it is of the order of the fine structure constant hh), 
and is basically due to the spin of the electron. A detailed 
calculation of the correction term both in the case of Ray
leigh scattering and in the Lamb shift will be presented in a 
future publication. 
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We investigate here GL(4,R )-gauge theories of gravity based on variational principles. The 
components of tetrad fields ey:), the components ofmetricsg(a)/fl)' and the components of 
connections r A (a)(p) are taken as the gravitational potentials. Matter potentials are the 
components ofGL(4,R )-tensor fields ¢ z. We derive the conservation laws for a general theory, 
that is, the Belinfante-Rosenfeld and Bianchi identities, and find minimal systems of independent 
variational equations. The natural GL(4,R )-covariant Hamiltonian formulation of the theory 
induces a GL(3,R )-covariant Hamiltonian formulation related to a chosen slicing of space-time. 
The Hamiltonian field equations corresponding to this formulation describe the dynamics of the 
system. We determine 20 symplectic constraints, 20 gauge transformations, and 20 gauge 
variables generic for a general gravitational Lagrangian. As an example, we consider the 
GL(4,R )-Einstein theory in vacuum as well as in the presence of a vector field and find the 
complete canonical formulation in both cases. 

I. INTRODUCTION 

In the 1960's astronomical observations confirmed that 
the Einstein theory of gravity explains several questions con
cerning the structure of the universe at large and can also 
predict the existence of such nonclassical objects as quasars 
and black holes. On the other hand, after 30 or 40 years of 
active research in quantum theory it became clear that the 
gravitational field should play an essential role in any future 
consistent theory offundamental interactions. 1 The problem 
of the "initial singularity" of the universe and the difficulties 
in the quantization of the Einstein theory of relativity2 at
tracted the interest of physicists in other theories of gravity. 
Physicists started to investigate the classical structure of 
such theories. One possible direction is to consider theories 
based on alternative Lagrangians for the gravitational field. 
We should pose the question here: What kind of conceivable 
geometries can be taken into account for reasonable theories 
of gravity? We recall that in the Einstein theory space-time is 
endowed with the structure of a pseudo-Riemannian mani
fold, that is, connections on space-time have to be metric 
compatible and torsionless. One can relax these conditions 
and investigate spaces with torsion or even admit metric 
noncompatible connections. For gravitational theories with 
the presence oftensor fields the Palatini variational principle 
generally gives rise to non-Riemannian space-times. 

If the variational variables are (holonomic) components 
g!'v of a metric g and holonomic components rA !' v of a con
nection r then we have two natural kinds of theories: (i) 
spaces with symmetric connection coefficients r A !' v (torsion 
equal zeroV and (ii) spaces with general affine connections 
rA !' v (with torsion and nonmetricity).4,5 For both kinds of 
theories the metric g is generally incompatible with the con
nection r, that is, pjJ Agi=O. 

In recent years, however, another approach has been 
commonly accepted. According to Weyl6 instead of a metric 
g on M we take four linearly independent fields of covectors 
x_(e(a)(x))! = 0 on space-time. These fields are supposed to 

be a priori orthonormal, that is, e(a)'e(P) = 1](a)(P), where 
1](a)(p) = diag( - 1, 1,1,1) is the constant diagonal Minkowski 
metric. Such a structure is richer than the metric structure of 
M. It also gives us a spinor structure of space-time. 7 Fields of 
tetrads of covectors and their dual fields of tetrads of vectors 
x-lea (x))! = 0 are subject to an action of the local Lorentz 
group SO (3,1). Ifx-[ L (a)(p) (x)] ESO (3,1) is an element of 
the local Lorentz group, that is, a field of special orthochron
ous Lorentz matrices on M, then the transformed tetrads are 
given by the following formulas: 

'e - L (P) e 'e(a) - L - I(a) e(P) (Ll) 
(a) - (a) (P), - (P). 

Besides its metric structure, space-time carries another 
structure that enables us to transport tensor fields in a paral
lel manner along curves in M. It is given by means of an 
90-(3,1 )-valued one-form J'la) (P). In local coordinates (xt ) on 
M, r(a)/fl) = r A (a)/fl) dxt. The Lie algebra 90(3,1) ofthe Lor
entz group SO(3,1) consists of Minkowski-skew-symmetric 
4 X 4 real matrices, that is, 

r (a) ...,(E)(P) - r (a)(p) - _ r (p)(a) 
A (E)'{ - A - A 

= - r A (P\E)1](E)(a). (1.2) 

The action of the local Lorentz group in the space of connec
tions is given by the following formula: 

'r (a)(p) - L -I(a) L -I(P) r (E)(T) 
A - (E) (T) A 

-LIE\T)1](T)(p)aA L -lla)(E)' (1.3) 

For anholonomic components of a tensor field cf> we have 
,,,,Ia,) ... (ak) _ L - Ila,) ••• L - Ilak) 
'I' (P,) ... (P.) - IJ.',) IJ.'k) 

XL Iv,) ••• L Iv,) ",1J.',)"·lJ.'k) (1.4) (P,) (P,) 'I' Iv,) .. ·(v,) • 

By virtue of(1.3), (1.4), the covariant derivative pjJ A¢ Z com
mutes with local Lorentz rotations (see Sec. II). It follows 
from (1.2) that the covariant derivative of the metric tensor 1) 

vanishes, that is, 

pjJ A1]la)(p) = O. (1.5) 

1711 J. Math. Phys. 26 (7), July 1985 0022-2488/85/071711-17$02.50 ® 1985 American Institute of Physics 1711 



                                                                                                                                    

We see that theories invariant with respect to the action (1.1), 
(1.3), and (1.4) of the local Lorentz group are metric compati
ble, that is to say, the parallel transport given by the connec
tion r preserves the metric 1). 

Theories under considerations are to be invariant with 
respect to the natural action of the diffeomorphism group of 
space-time. We say that the gauge group of these theories is 
the semidirect (semisimple) product of the local Lorentz 
group and the group of diffeomorphisms of space-time. The 
study of such theories was initiated by Sciama and Kibble8 

who, in the early 1960's generalized Utiyama's results9 and 
rediscovered the Einstein-Cartan theory of gravity. 

Gravitational theories formulated in the tetrad lan
guage are usually called "gauge theories of gravity." In the 
literature one can find several interpretations of that notion, 
either closer or further to the original Yang-Mills idea.1O 
Especially important are (i) the approach based on Cartan 
connections in the bundle of affine frames on space
time ll

-
15; (ii) the "Poincare group approach" of Hehl and 

von der Heyde l 6-18; and (iii) methods of principal fiber bun
dles with more general structure groups [SO(3, 1), Sp(4)].19-22 
Our approach is fairly close to that of (ii). As opposed to 
Refs. 16-18, however, we do not put the emphasis on the 
construction of the full gravitational gauge group, that is, a 
mathematical object containing local SO(3,1) [or GL(4,R)] 
rotations and the transformations given by diffeomorphisms 
of space-time. Nevertheless, as we show in Appendix F, such 
a construction exists but it differs from that presented in 
Refs. 16-18. 

Investigations on the Einstein-Cartan-Sciama-Kibble 
(ECSK) theory were later continued by Hehl, 16 Trautman, II 
Nester,23 and others. 

In the seventies, physicists also paid attention to theor
ies of gravity with gravitational Lagrangians different from 
R (the scalar curvature). 18,24-28 Sezgin and Nieuwenhuizen29 

investigated general gravitational Lagrangians quadratic in 
curvature and torsion, and selected such of them that could 
be interesting for quantum gravity. Nieh, Rauch, and other 
authors26 investigated spherically symmetric solutions for 
gravitational Lagrangians quadratic in curvature and tor
sion and found the conditions when Birkho1rs theorem held. 
Baekler, Hehl, Mielke, McCrea, and others28 presented sev
eral solutions for the theory based on the Hehl-von der 
Heyde Lagrangian and, thereby, showed its viability. The 
linearized version of theories with quadratic Lagrangians 
was investigated by Hayashi and Shirafuji. 29 

In the present paper we deal with a more general case, 
with theories of gravity in nonorthonormal tetrads and with 
metric noncompatible connections. The geometry of space
time M is given by four linearly independent fields of covec
tors era) on M, a symmetric metric tensor g(a)(P) (with the 
signature + 2) defining a scalar product for vectors (covec
tors) tangent to M, and a 9't(4,R I-valued connection one
form }'1a)(.8) = rA (a)(.8) dxA ~t(4,R) is the Lie algebra of the 
general linear group GL(4,R ), that is, the algebra of all 4 X 4 
real matrices]. Matter in our theory is described by a tensor 
field cf>. The basic gravitational gauge group for such theories 
is the bundle product of the local GL(4,R) group and the 
diffeomorphism group of space-time. The construction of 
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the bundle product GL(4,R ) X b Diff M is presented in Ap
pendix F. 

The main goal of the present paper is to give a Hamil
tonian formulation for GL(4,R) theories and to develop 
methods that could enable us to pose the initial value prob
lem as well as to investigate the number of independent de
grees of freedom for particular Lagrangians. For theories 
with metric compatible connections [SO(3,1)-gauge theor
ies] such a problem was investigated in Ref. 30, and the gen
eral theory of gravitational Hamiltonian systems developed 
therein was applied to the Einstein-Cartan theory with ten
sor matter fields in Ref. 31. By means of the methods of Refs. 
30 and 31, one of us has recently investigated the canonical 
structure of the Yang theory of gravity24,28 presenting the 
complete set of its canonical (symplectic) variables, symplec
tic constraints, and gauge transformations.32 Simultaneous
ly, we should like to emphasize the fact that the complete 
canonical analysis of the theory with a given Lagrangian is 
not easy. The general method given in Ref. 30 enables us only 
to start the procedure and to separate the dynamical sym
plectic variables. It is relatively easy to compute primary and 
secondary symplectic constraints for these variables33 but it 
is difficult to find the complete set of gauge variables as well 
as to determine the evolution of the remaining nondynami
cal variables. 

The results of the present and previous papers show the 
following differences between SO(3,1)- and GL(4,R I-gauge 
theories of gravity. 

(i) In SO(3, 1) theories matter is characterized by its spin 
and energy-momentum distribution. For GL(4,R) theories 
the skew-symmetric spin tensor ,jA(a)(P) is replaced with the 
hypermomentum tensor A"A(a) ((J) having no special symmetry 
properties.4,34 In G L( 4,R ) theories, besides the canonical en
ergy-momentum tensor cYA(a) of matter, we have also a 
symmetric energy-momentum tensor J y1a)(.8). Conservation 
laws for these quantities and their implications are discussed 
in Sec. III. 

(ii) For the Lorentz group we have its natural decompo
sition into boost transformations and three-dimensional ro
tations (the Cartan decomposition). It has an elegant geo
metric interpretation and enables us to define symplectic 
variables of the theory. 30 Generalizations of these construc
tions for the GL(4,R) case are not obvious. One reasonable 
construction is given in Sec. IV and further used throughout 
the paper. We can pose the question: is our choice of the 
3 + 1 decomposition for the GL(4,R ) group canonical in any 
sense? This problem remains open. 

(iii) For SO(3, 1) theories we have ten basic gravitational 
gauge variables, that is, such variables that are completely 
arbitrary. Six of them are related to the action of the local 
Lorentz group and four to the action of Diff M in the space 
of solutions. Generally, for GL(4,R ) theories we have 20 gra
vitational gauge variables: 16 corresponding to the action of 
the local GL(4,R ) group and four corresponding to the ac
tion of Diff M. Therefore, we have at least ten gravitational 
gauge variables in SOt 3,1 I-gauge theories and at least 20 gra
vitational gauge variables in GL(4,R ) theories. For particu
lar Lagrangians in both cases the complete set of gauge 
transformations may be larger than the basic set of gauge 
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transformations generated by the action of SOl 3, 1 ) 
X b Diff M or GL(4,R ) X b Diff M. Simultaneously, we have 
more gravitational gauge variables. For instance, in the 
SO(3,1)-Yang theory we have 13 gravitational gauge varia
bles. For the SO(3,1)-Einstein theory (the Einstein-Cartan 
theory) we have exactly ten gravitational gauge variables, 
but for the GL(4,R )-Einstein theory in vacuum we have four 
additional gauge variables and the total number of gravita
tional gauge variables is 24 (see Sec. V). 

(iv) The methods developed in the previous30,31,35 and 
the present paper enable us to determine the number of inde
pendent degrees of freedom for SO(3, 1) and GL(4,R ) theor
ies. Of course, it depends on the choice of gravitational and 
matter Lagrangians. For instance, for a general canonically 
regular SO(3, 1) theory we have 40 gravitational degrees of 
freedom (in the phase space) but for a highly degenerate 
ECSK theory we have only four of them. 3 1 Though for the 
GL(4,R )-Einstein theory in vacuum we have four additional 
gauge transformations, the number of independent degrees 
offreedom equals 4 as in the SO(3,1) case. In vacuum, the 
GL(4,R )-Einstein theory is equivalent to the Einstein-Car
tan theory. The situation changes if we couple both theories 
to matter fields. We prove in Sec. VI that for the GL(4,R)
Einstein theory with a Klein-Gordon-type vector field we 
have only six independent matter degrees of freedom com
paring to eight matter degrees of freedom for the SO(3,1) 
theory. 

(v) Both in the present and in our previous papers,30,31.35 
matter was described by tensor fields. We know, however, 
that real physical particles are hadrons and leptons, that is, 
half-spin fermions. (Bosons should be considered as quanta 
of gauge fields.) We can generalize the theory presented in 
Ref. 30 for spinor fields considering the bundle of spinor 
frames instead of the bundle of orthonormal covector (vec
tor) frames and the local SL(2,C) group instead of the local 
Lorentz group. Such a structure describing gravity coupled 
to Dirac, Fierz-Pauli, Weyl, and other spinor fields has re
cently been presented in Ref. 36. The general linear group 
has no finite-dimensional double-valued representations and 
therefore the problem ofGL(4,R ) spinors seems to be incor
rectly posed. Ne'eman and Sijacki37 have shown, however, 
that infinite-dimensional double-valued representations of 
GL(4,R ) have a relation to pbysics and could describe ha
drons. Mickelsson38 has recently constructed a first-order 
differential equation covariant with respect to the double
covering GL(4,R) of GL(4,R). The corresponding Dirac
type differential operator acts in the spaces of infinite-di
mensional representations of GL(4,R). With some natural 
assumptions this construction restricted to the subgroup 
SL(2,C) of GL(4,R ) is reduced to the standard Dirac equa
tion. 

II. GEOMETRY OF SPACE-TIME AND MATTER FIELDS 
IN GL(4,R)-GAUGE THEORIES OF GRAVITY 

In the Einstein theory of general relativity space-time 
M is endowed with a metric tensor g = (gpv)' This metric 
determines a scalar product for vectors tangent to M and 
space-time intervals between infinitesimally close events 
(points in M). A parallel transport of vectors tangent to M 
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between two infinitesimally close points in M is given by 
means of the Riemannian (Christoffel) connection 
'Y = (rA V p ) determined by g. 

In gauge approaches to gravity the metric is replaced by 
four linearly independent fields of covectors (or vectors) on 
M: 

(2.1) 

Tensor fields on M are described by means of their compo
nents with respect to dual bases (e(al) and (e(al)' that is, 

.... A. (a,) ... (akl (P,I (P,) (2 2) 
'!" = 'fJ (P,)".(p,) ® e(a,) ® ••• ® e(akl ® e ® '" ® e. • 

Components tP I = tP ~:i:::~,iJ are called anholonomic compo
nents of 4». 

Locally in a given coordinate system (x" ) on M we can 
describe a tensor field 4» by means of its holonomic compo-

nents tP ~::::~:, that is, its components with respect to coordi
nate bases a /axp

, dxv
• We have the following relations 

between holonomic and anholonomic components of a ten
sor field 4»: 

(2.3) 

where e~), eiPl are components of tetrad fields (2.1) in coor
dinate bases 

e(a) = e~) dxP , e(p) = eiP) a~v' (2.4) 

In the tetrad formalism affine connections are de
scribed by their anholonomic components 

r (a) v a (a) + r u (al v (2 5) 
A (PJ = - e(pJ AeV A veu e(p» • 

where r AU v are standard holonomic components of an affine 
connection r on M (see Ref. 39). Quantities rA (aJ(p) are ten
sors with respect to coordinate transformations in M. There
fore they represent a 9'44,R )-valued one-form r(a)(p)' 

The metric structure of space-time is given by a scalar 
product for fields of tetrads (2.1). Such a scalar product is 
defined by means of fields of symmetric 4 X 4 matrices 
[g(a)(P) ], [g(a)(P)] (with the signature + 2). We postulate 

e(a)'e(p) = g(a)(p), e(a)·e(P1 = tal(P), (2.6) 

and [tal(Pl] = [g(a)(PI] -I. From (2.3) and (2.6) we have 

(2.7) 
dxfL.dxV - rJ'V - e p eV ...{al(P I -6 - (al (P).';; • 

Formulas (2.6) and (2.7) define natural scalar products in 
spaces of tensors on M. 

For a tensor density F of weight r we define the follow
ing GL(4,R )-covariant derivative: 
!if q-p(al - a q-p(al _ ry r J'P(al + r p J'Tia) 

A V >1131 - A V >1131 A r >1/31 A r >1/31 

r r J'p(al + r (al J'P(rl r (r) J'P(al 
- A v r(P1 A (rl >1/3) - A (PI >1r)' 

(2.8) 

where the rA Er are holonomic components of the Rieman-
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nian connection 'Y determined by the metric gl''' on M. 
For GL(4,R )-tensor-valued differential forms the IiJ 

derivative reduces to Cartan's exterior covariant deriva
tive. 11 

Ifr = (rAI' ,,) is the difference tensor, 

(2.9) 

then we have 

I7Jr la) la) 17Jr" - r" (2 10) =Ael' =rA 1" =Ae(f3) - - A (13)' • 

In his Ph.D. dissertation Yasskin27 presented an interesting 
formalism of "two tangent spaces" and gave a geometric 
interpretation for the IiJ derivative. We have the standard 
definitions of the curvature and torsion tensors 

R la)(f3)I''' = al'r" la)(f3) - a"rl'la)IP) 

r ia) r IE) ria) r IE) + I' IE) v (13) - v IE) I' (13» (2.11) 

Q la) = IiJ ela) _ IiJ ela) = a ela) - a ela) 
J.LV J..L v v f-L J.L v v p. 

+ ria) elE) _ ria) elE) (2.12) I' lEI v v IE) 1" 

Remark: It is reasonable to define 
IiJ I' r" la) (13) = Ria) 113 )1'''' Connections on space-time for 
GL(4,R ) theories are metric noncompatible in general. That 
is, the nonmetricity tensor 

MAla)IP) =!IiJ Agla)(f3) (2.13) 

is different from zero. There are the important relations 
between the difference, nonmetricity, and torsion tensors: 

MAl''' = - !(rAI''' + rA"I')' QAI''' = rl' "" - r/I" (2.14) 

A fixed field of tetrads (ela
)), a metric [gla)(f3)]' and a 

?t{4,R )-valued connection one-form [r(al(f3)] define the 
geometric structure of space-time. It enables us to compute 
angles between vectors tangent to M and to transport them 
in a parallel manner. It is clear, however, that the structure 
defined by those three entities is too rich for these two pur
poses. If we rotate the given field of tetrads by means of a 
GL(4,R ) matrix [G la)(f3) ] and simultaneously transform the 
metric according to the appropriate tensorial representation 
of GL(4,R ), then the scalar products at every point of M 
remain unchanged. Of course, at every point x of M we can 
choose another matrix [G la)(f3)]' that is why we have an 
action of the local GL(4,G) group. Let 
x---+[ G(a)(f3) ]EGL(4,R )be a smooth field of 4 X4 invertible 
matrices on M. We define the transformations 

'ela) - G -I(a) e(f3) 
- IP)' 

, G(E) G(T) g(a)(f3) = (a) (f3)g(E)IT)' (2.15) 
'A. (a) _ G - Ila) G IT) A. IE) 
'I' (13) - (E) (13)'1' (T)' 

For components of connections one-forms we have 
'r (a) - G -I(a) G(T) r IE) _ G(E) a G -I(a) A (13) - (E) (13) A IT) (13) A (E)' 

(2.16) 

The formulas (2.15) and (2.16) give rise to tensor transforma
tion rules for the covariant derivative IiJ with respect to the 
action of the local GL(4,R ) group. 

In the present paper we deal with Lagrangian GL(4,R )
gauge theories of gravity. Physical systems under considera
tion are described by fields of tetrads (e la)), metric tensors 
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[g(a)(f3) ], ?t{4,R )-valued connection one-forms [r'a)(f3)]' 
and tensor fields cI» on M. These quantities are the variational 
potentials for our theories. The dynamics of a particular the
ory is determined by a Lagrangian being the sum of gravita
tional and matter fields Lagrangians. We assume that La
grangians depend on variational potentials and their partial 
derivatives of the first order. 

In a local coordinate system we write 

!L' -!L' (e(a)·r (a);g 'Q la) • 
5' - 5' 1" I' (13) (a)(f3) , 1''' , 

R la)(f3)I',,;MI'(a)(f3))' 

!L' '" =!L' ",(e,:);rl'(a)(f3);g(a)(f3);,pI;IiJI',pI). 

Let !L' be the total Lagrangian density 

!L'=!L'5' +!L'~. 

The Euler-Lagrange equations read 

(1f1Y"(a) = 8!L' flJe':) = 0, 

(1f2Y'la) (13) = 8!L' f8r':<1) = 0, 

(1f 3 )(a)(f3) = 28L f 8g(a)(f3) = 0, 

(1f 1)I = 8!L' f8,pI = 0. 

(2.17) 

(2.18) 

(2.19) 

We assume that Lagrangians !L' 5' and !L' '" are invariant 
with respect to the action (2.15) and (2.16) of the local 
GL(4,R ) group and with respect to the standard action of the 
diffeomorphism group of space-time. In the next section we 
derive important differential identities following from these 
assumptions. 

Remark: In the present paper the matter variational 
potentials are anholonomic components of tensor fields. We 
may say that matter is described by fields of G L(4,R ) tensors. 
With respect to (local) GL(4,R ) rotations such quantities are 
tensors but with respect to transformations of local coordi
nates in M they are scalars. In physics, however, we often 
need more general objects to describe matter fields. For in
stance, in Yang-Mills theories potentials are differential 
forms on space-time with values in the Lie algebra of the 
corresponding Yang-Mills group. For the Rarita
Schwinger field we have SL(2,C )-spinor-valued one-forms 
on space-time. In a general case, we may assume that matter 
potentials are differential k forms on space-time with values 
in an appropriate representation of the chosen gauge 
group. II In gravity we consider k forms with values in 
GL(4,R ) tensors. Such an approach to matter fields was in
vestigated profoundly in Ref. 36 for SL(2,C) [SO(3, I)] gauge 
theories of gravity. The results of this paper show that cases 
k > ° are essentially different from the case k = 0, which we 
treat in the present paper. In fact, by combining the methods 
and results of Ref. 36 and those of the present paper we are 
able to solve the problem also for GL(4,R )-gauge theories of 
gravity. 

III. FIELD EQUATIONS, CONSERVATION LAWS, AND 
CONTRACTED BIANCHI IDENTITIES 

This section contains a brief summary of the formulas 
and relations generalizing some facts well known for parti
cular classical field theories. We derive them from the invar-
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iance properties of gravitational and matter Lagrangians 
with respect to the action of the gauge group. These formulas 
are the starting point for the explicit Hamiltonian formula
tion of our theory. 

Invariance properties of Lagrangians with respect to 
the action of the gauge group lead to differential identities 
among partial derivatives of Lagrangians, which for classi
cal field theories are due to Belinfante, Rosenfeld, and 
Pauli40 (at least in their simplest form). The conditions of the 
invariance of the Lagrangian with respect to the action of the 
local GL(4,R ) group and the diffeomorphism group of space
time can be formulated as 

8 .Y = a.Y 8 ela) + a.Y 8 Qla) 
x a (a) X I' aQ(a) X 1''' 

el' 1''' 

where 8x denotes the action of a generator X of the local 
GL(4,R ) or the diffeomorphism group on the dynamical var
iables. For loc GL(4,R ), X = [L la)IP)] is a field of real 4 X 4 
matrices on space-time, 8L can be computed from (2.15): 

/jLe';:) = - L (a)lP)e't), 8Lrl'la)lP) = ~ I'L la)lPl' 

8L g(a)lP) = L IE)la)gIE)IP) + L IE)IP)g(a)(El' 

~ A. la) _ L (a) A. (E) + L IE) A. la) etc 
UL'I' IP) - - IE)'I' IP) IP)'I' IEl' ., 

(3.2) 

and the invariance of the Lagrangian gives rise to 8 L .Y = O. 
For the Diff M, X = (ZA ) is a smooth vector field on space
time and /jz is given as a standard Lie derivative of geometri
cal objects on M, i.e., /jz = .Y z; for invariant Lagrangians 
we have .Y z.Y = a A (ZA .Y). 

In order to give an elegant and natural form of differen
tial identities equivalent to (3.1) we have to introduce the 
notions of canonical momenta, hypermomentum, and ener
gy-momentum tensors. The canonical momenta of the gravi
tational field are 

2a.Y 
~I''' _ S' 

(a) - aQla) , 
1''' 

91''' IP) _ 2a.Y S' 
(a) - aR la) , 

IP)I''' 
(3.3) 

rl'(a)lP) = a.YS' 

aMl'la)lP) 

(in the above formulas we treat Q la)I'''' R (a)(p)I'''' MI'(a)lP) as 
independent quantities). 

The four-momenta and hypermomentum of the matter 
field are defined by (cf. Refs. 4, 34, and 41) 

I' _ a.Y m /1' IP) _ I' I" IP)~ A. A (34) 
jz. ~ - a~l'tP~' /l la) -jz. ~Jla) A'I" • 

wherei(a) IP)~ A are the generators of the GL(4,R ) representa
tion corresponding to the matter .field tP ~. 

The hypermomentum tensor can be decomposed into 
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its spin, dilatation, and the proper hypermomentum parts. 
The spin part is related to torsion of space-time. Two re
maining parts correspond to nonmetricity-to its trace and 
traceless components, respectively. We recall that a connec
tion with purely tracelike (diagonal) nonmetricity preserves 
angles of vectors under the parallel transport and a connec
tion with traceless nonmetricity preserves the volume ele
ment.4 

In theories with tetrads and metrics as independent var
iables we can construct two kinds of energy-momentum ten
sors: the canonical and the symmetric ones. There are some 
relations between them resulting from (3.1). The canonical 
energy-momentum tensors (tensor densities) of matter and 
gravitational fields are defined as 

!TI' = a.Y ~ !TI' = a.Y S' 
C~ (a) ala)' cS' la) a (a) • 

el' el' 
(3.5) 

The symmetric energy-momentum tensors (tensor densities) 
of matter and gravity are 

..?1a)lP) = 2 a.Y ~ ..?1a)lP) = 2 a.Y S' . 

~~ ag(a)IP)' ~S' ag(a)lP) 
(3.6) 

The invariance conditions (3.1) for gravitational and 
matter Lagrangians are equivalent to the following differen
tial identities: 

a.YS' a.Y ~ ----:-'-- = 0 = 0, 
ar la) , ar (a) I' IP) I' IP) 

c~!TI'" =/jI'".Y ~ -pI'~~"tP~, 
!TI' = /j I' .Y _ 91'£ IP)R (a) 

cS' " "g la) IP)"£ 

- ~1'£la)Qla)"E - rl'la)IP)Mv(a)lPl' 

~~ ..?1
a

)lP) - c~ ..?1
a

)(P) 

= ~ A/fA IP/a) + terms linear in (g:' 1).l;, 

..?1a) ..?1a) 
JS' IP) - CS' IP) 

= !~I'''IP)Qla)I''' + !(91'''lPt)R la)(Tl/t" 

_ 91''' la)R (r) ) _ 2rl'(a)(r)M Ir) IP)I''' 1'1P)(rl' 

~ A c~ !TAla) = c~ !TA
lr) Q Ir)(a)..t + J~ ..?1E)(r)M(a)(E)(r) 

+ /fA(r) (E)R Ir)IE)(a)A 

+ terms linear in (g' 1)~. 

(3.7) 

(3.8a) 

(3.8b) 

(3.9) 

Formulas (3.8a) and (3.9) are called the conservation laws for 
matter fields. 

Remark: The relations (3.8) coincide with those ob
tained in Szczyrba.5Ia) 

If the matter field equations are satisfied then the for
mula (3.9) can be transformed to 

ar <VA /A IP)R (a) la) ar /A IP) = A c~ J I' = /l la) 1P)p..t - r I' IP) = A /l la) . 

Now in the case /fAla) IP) = 0 we have from (3.8a) 
..?1a)lP) = ..?1a)lP) and ~ !TA = O. It is a somewhat 

.Jnl on Ant Jl 

surprising result because it follows from the Riemann-Ein-
stein conservation law VA m !TAl' = 0 that particles move 
along geodesics of the Riemannian metric. Therefore we see 
that in our theory spinless particles (or dust) move also along 
geodesics of the Riemannian metric. 

The left-hand sides (lhs's) of the field equations (2.19), 
rewritten in terms of canonical momenta and energy-mo-
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mentum tensors, read 

(~lY\a) =c?yA(a) +c~yA(a) _.@Jl~JlA(a" 

(~2)A(a) (P) = A'A(a) (P) + ~A (P\a) _ r A (P)(a) 

"" ClJ JlA (p ) 
- ;;z; Jl ;:r (a) , 

( ~3)(a)(p) = j71a)(p) + j71a)(P) _.@ VJl(a)(p) 
.J? .:Jnz Jl' 

(~..A'b: =/z -.@ ,/tJl.l;, 

where/·.l; = a.!f ~ lal/J.l; is matter current. 

(3.10) 

Proposition 1: If matter field equations (2.19d) are satis
fied, then the contracted Bianchi identities (CBI) hold: 

.@ A(~I)A(a) = (~I)A(T)Q(T\a)A. 

+ (~2)A(E) (T)R (E)(T)(a)A + (~3)(E)(T)M(a)(E)(T)' 
(3.11) 

.@ A(~2)A(a)(P) = (~3)(P)(a) - (~l)(P)(a). (3.12) 

Invariance properties of Lagrangians with respect to 
the action of the gauge group give rise to the existence of two 
families of conserved quantities f L and ~ L' The conserva
tion laws for these quantities are equivalent to the gravita
tional field equations (2.19). In order to construct them we 
rewrite (3.1) in the Noether form 

aAY~ + (~W(a)8xe~) + (~2)A(a)(P)8xrA(a)(p) 
+ (~3)(a)(P)8xg(a)(P) + (~..A').l;8xl/J.l; = O. (3.13) 

For infinitesimal rotations X = [L (a)(p) ], fi = Yi is 
called the hypermomentum vector density, and we have 

fA - ~AJl 8 eta) + f)JAJl (P)8 r (a) 
L - (a) L Jl (a) L Jl (P) 

+ !rA
(a)(P)8L g(a)(P) +/tA.l;8L l/J.l;, 

or 
fA - (~2)A (P)L (a) + a (f)JJlA (P)L (a) ) 

L - (a) (P) A (a) (P) • (3.14) 

For infinitesimal translations X = (ZA), ~~ = Y~ is called 
the energy-momentum vector density, and we have 

<VA _ f7l.AJl ~ (a) + ClJAJl (P)~ r (a) 
(0 Z - -« (a)uZeJl ;:r (a) Uz Jl (P) 

+ !rA
(a)(P)8z g(a)(P) + /tA.l;8z l/J.l; - ZA.!f. 

(3.15a) 
Noninvariance of the standard Lie derivative with respect to 
the loc GL(4,R ) rotations requires its replacing with the co
variant Lie derivative;.!f z in the formula for the generator 
of an infinitesimal action of Diff M in the space of dynamical 
variables. Substituting 8z = ;.!f z into (3.15a) and making 
use of (3.10) we obtain 

~~ = -(~I)AJlZJl-(~2)A(a)(P)YJl(a\p)ZJl 

_ a (~TA ZJl_ a (f)JTA (P)y (a) ZJl) 
T Jl T (a) Jl (P) • (3.15b) 

Here, Y A (a)(p) dxA = (rA (a)(p) - ;A (a)(p) )d.0 is a tensor-val
ued one-form on space-time determining the difference 
between the physical (dynamical) connection r A (a) (P) and the 
auxiliary (background) connection ;A (a)(p) defining the co
variant Lie derivative. (For details see Appendix C.) The en
ergy-momentum vector density (3.15b) is manifestly 
GL(4,R I-covariant, but taking;.!f z as a generator of infini
tesimal translations we are faced with some difficulties 
caused by the failure of the standard formula 
[.!f Z,' .!f Z2] = .!f [Z,.Z2]' A more detailed discussion of 
the problem is given in Appendix F. 
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From formulas (3.14) and (3.15) and the CBI, we have 
the following result. 

Proposition 2: If matter field equations (2. 19d) are satis
fied, then the conservation laws a A ~~ = 0 and aAfi = 0 
are equivalent to the gravitational field equations (2.19a)
(2.19c). 

It follows from the CBI that not all offield equations in 
the system (2.19) are independent. The following result 
holds. 

Proposition 3: The system (2.19) is equivalent to 

(i) (~W(a) =0 and (~2)A(a)(p)=0 and (~..A').l; =0 
(3.16) 

or 

(ii) (~2)A(a) (P) = 0 and (~3)(a)(P) = 0 and (~..A').l; = O. 
(3.17) 

For a special case of the Einstein gravitational Lagrangian in 
the GL(4,R ) theory this result was proved by Trautman." 

IV. THE HAMILTONIAN STRUCTURE OF THE THEORY 

In the papers35,42 a general construction of the symplec
tic formulation of arbitrary classical field theory based on a 
variational principle has been presented. Following the gen
eral idea of those papers, we construct the energy-momen
tum function ~ z and symplectic two-form {J on the space of 
initial data and establish the equivalence of the Hamilton 
equation and the Euler-Lagrange field equations. 

In order to formulate the evolution problem in relativis
tic field theories we have to fix a slicing [ u, J IER of space-time 
consisting of a one-parameter family of nonintersecting and 
diffeomorphic three-dimensional surfaces covering M. Let 
{Ir J tER be a one-parameter subgroup of Diff M preserving 
{u, J [i.e·,1s (u,) = Us +,]. We assume that the orbits oflr are 
u transversal, i.e., the vector field Z, 

d 
Z(x) = dtlr(x)lt=o, (4.1) 

is transversal to the surfaces u, . 
For an arbitrary surface O'E[ u, J we define the space of 

initial values of the field potentials and their u-transversal 
derivatives f f1 (u) as the set of fields 

x-FIx) = (e';:),rJl (a)(p) ,g(a)(p),l/J .l;,aze';:),aZrJl(a)(p)' 

azg(a)(p),azl/J .l;). (4.2) 

The infinite-dimensional space f f1 (u) carries a natural geo
metric structure, and according to the standard rules, a vec
tor 8F tangent to f f1 (u) is given by the values of variations 
of the field potentials and the values of variations of their Z 
derivatives on a: 

8F = 8e(a)~ + 8r (a) a 
Jl a (a) Jl (P) ar (a) 

eJl Jl (P) 

(4.3) 

The energy-momentum function and the symplectic two
form on the space f f1 (u) are defined as 
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if z(F) = i if~(F)1JM (4.4) 

{} (6 IF,/j2F ) 

_ f{£ rJ),AI-' /\1: (a)+£ /'ilJAI-' (JJ)/\1:r (a) - Jq UI -« (a) U2el-' UI;:;r (a) U2 I-' (JJ) 

+ !61 rA (a)(JJ) /\628'(a)(JJ1 + 6i/hA
I /\62r/yI J1JA' (4.5) 

where 1JJt aA J dxD /\dx l /\dx2 /\dx3
, and the symbol 

" /\" denotes antisymmetrization with respect to the sub
scripts 1 and 2. The variations c5o//AI"(ai' 
c59AI-'(a) (JJI, c5rA(al(P), c5fiA I are to be computed by means of 
(4.3) and (3.3), (3.4). The convergence of the integrals (4.4) 
and (4.5) can be assured by imposing appropriate boundary 
conditions or taking u compact without boundary. In the 
present paper we deal with the latter case. Nevertheless, sev
eral of our results do not depend on this assumption. 

We define the Hamiltonian vector field YE of the ener
gy-momentum function if z : 

Here, /jFis an arbitrary (sample) vector tangent to the space 
f [1 (u). The definition of the energy-momentum vector den

I 

df6'~(c5F) = {;.!/ zet')/jo//AI-'(a) +;.!/ zrl-' (a)(JJ)c59 AI-'(a) (JJ) 

sity if~ as a Noether current of covariant translations sug
gests to expect that the Hamiltonian vector field Y E of if z 
generates covariant translations in the space of canonical 
variables. That is to say, the symplectic components of the 
vector Y E coincide with the covariant Lie derivatives of the 
corresponding canonical variables in the direction of Z: 

+ .!/ 9!-"v (JJ) a 
; Z (a) a91-''' (JJ) 

(a) 

(4.7) 

The following basic result holds. 
Theorem 1: The functional Hamilton equation (4.6) and 

the evolution postulate (4.7) are equivalent to the variational 
Euler-Lagrange equations (2.19). 

Proof' Making use of (3.i5b) we obtain 

+ !;.!/ zg(a)(p)/jrA(a)(JJ) + ;.!/ zt/J I/jfiA I - ;.!/ z o//AI-'(a)8et') - ;.!/ z9AI-'(a) (P)6rl-' (a)(JJ) 

- !;.!/ zrJt (a)(f:l)6g(a)(PI - ;.!/ zfiA I6t/J I J {ZA (f6' lY'<a)8e~a) + ZA(f6'2}1-'(a) (f:l)/jrl-' (al(f:l) 

+ !Z A (f6' 3 )(a)(f:l lc5g(a)(JJ) + Z A (f6' ..4'hc5t/J I J + a I-' fYJ AI-', 

(4.8) 

where 
fYJAI" = (Zl-'o//AV(a) - ZAo//l""(a) - Z"o//AI-'(a))8e\;,) 

+ (Z I-' 9 AV(a) (f:l) _ Z A91""(a) (f:l) 

Z"9AI-'(a)(f:l))6r,,!'t)(f:l) +!(zl-'rA(a)(JJ) 

Z A rl-'(a)(f:l 1)c5g(a)(JJ) + (Z I-' fi A I - Z Afil" I )c5t/J I 

_zve(a)6o// AI-' _z"y(a) 69AI-' (JJ) 
v (a) ,,(f:l) (a)' 

The first bracket in (4.8) corresponds to the integrand in 
(4.5). Neglecting the boundary terms we get the formula 

iZA {(f6'l}l-'(al8et'1 + (f6'2}1-'(al (f:l)6rl-' (a)(f:ll 

+ !(f6'3)(a)(PI6g(a)(P) + (if ..4'h6t/J I J1JA = O. (4.9) 

From transversality of Z and the free choice of 8e;:I, 
6rl-' (a)(JJI' c5g{a)(f:l1' and 6t/JI, we conclude that (4.9) is equiva
lent to the Euler-Lagrange equations 

(f6' t}l-'(al = 0, (f6'2}1-'(a) (f:ll = 0, 

(f6'3){al(f:l) = 0, (f6'..4'h o. 
It is easy to show that the analogous result is valid for 

the Noether current of rotations f1, i.e., the vector 

Y 1: (a) a 1: rJ).I-''' a I=uLe --+"'+uL-« () + ... I-' ae(a) a Jo//I-'V I-' (a) 
(4.10) 
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I 
is a Hamiltonian vector of the hypermomentum function 
fL onf[1(u): 

fdF) = if1(F)1JA' (4.11) 

where c5 L is the operator of infinitesimal rotations given by 
(3.2). 

Up to now we did not make any assumption about the 
slicing {ut J (in general, the slices are not spacelike surfaces). 
The Hamiltonian approach presented in Theorem 1 is 
GL(4,R) covariant. For the evolution picture, however, 
much more important is the (3 + 1) picture for which the 
surfaces of the slicing are spacelike. 

Let us consider only tetrads and metrics such that we 
have the following. 

(i) g(O)(O) = e(O) oe(O) < O. 
(ii) Three-dimensional subspaces spanned by e(a)' 

a = 1,2,3, are spacelike. 
(iii) All submanifolds U t are spacelike. 

(iv) n(D) = e(O) 00 < 0, for the future directed (noZ < 0) vec
tor field 0 orthonormal to the slicing. We look for a matrix 
that transforms the tetrad (e(a)) into a tetrad (e(a)) such that 
e{O) = nand eta) are tangent to u (orthogonal to 0). Such a 
transformation is given up to GL(3,R) rotations. We can, 
however, single out the following transformations, which in 
some sense generalize pure Lorentz transformations 
(boosts). 
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Let us define a nonsingular matrix [B (a) Ifl) ] : 

B(a)(o) = n(a), B(O)(b) = nib)' 

1 - n n(a)n(b) 
B (a) _ t>(a) (0) + _-----'-'-

(b) - (b) 1 + n(O) 1 + n(O) , 

B - 1(0) - _ n B - I(a) - _ n(a) 
Ifl) - (PI' (0) - , 

1 + (0) n(a)n 
B - I(a) _ t>(a) n + (b) (4.12) 

(b) - (b) 1 _ n 1 ' 
(0) - n(O) 

where n = n(a)e(al' nlfl) = n(a)g(a)lfl) [it follows from (i), (ii), 
(iv) that n(O) > 0, and, of course n(a) n(a) = - 1]. The transfor
mation eta) = B 1fl)(a)elJ3 ) gives as we require e(O) = n, 

e(O) oe(a) = g(o)(a) = 0, and, in the case of the Minkowski metric 
g(a)lJ3) = 1](a)1fl1' it reduces to a boost transformation. 

By means of the field of matrices (4.12) we transform 
tetrads, metrics, connections and tensor fields: 

era) = B Ifl)(a)etfi) , e;:) = B - l(a)(p)eYl), 

~(a)lJ3) = B(E\a)B(T)IJ3)g(E)(T)' 

7i. (a) _ B - I(a) B (T) A. (E) 
'f' IJ3) - (E) Ifl)'f' (T)' 

r (a) - B -I(a) B(T) r (E) 
I-' IJ3) - (E) Ifl) I-' (T) 

+ B - I(a) a B (T) t 
(T) I-' Ifl)' e c. (4.13) 

From now on we use coordinate systems in M consistent 
with the slicing, i.e., 0", = {xEM:xo = t }. Such special co
ordinates in M are subject to the following transformations: 

xO' =XO'(XO), Xk' =xk'(X°,xS). (4.14) 

Th t 't' -(a) - r- (a) 7i. I ;:;r,l-'v ?7JI-'V (P) e quan lIeS el-' ,g(a)IJ3)' I-' (PI' 'f' , 7£ (al';/ (a) , 

etc. are tensors with respect to coordinate transformations in 
M. We can decompose them into normal and tangential 
(with respect to 0",) parts by means of the "bar" oper
ation. 3o,35 

The lapse function and the shift vector of the slicing 
{O",} are 

N=(_gOO)-1/2, Nk=gksgsO , (4.15a) 

where [r] is the inverse matrix of [gks ], k,s = 1,2,3. Let 
A ii v be a 4 X 4 matrix given by 

A 0 - N A 0 - 0 A 1< - N k A 1< _ £k 0-' s -, 0 - , s - U s' 

(A -1)°0 =N-I, (A -I)ko = _Nk/N, 

(A -1)0:; = 0, (A -I)ks = t>ks • (4.15b) 

The "bar" operation for a tensor density of weight ron Mis 
defined by 

-;;;II-""'I-'k = N - rA ii, ... A iik (A -1113,_ 
'f'V.···Vs a l ak f VI 

(4.16) 

The composition of the" -" and " - " operations, denoted 
by the caret "~" gives the (3 + 1) variables of our theory. 
Especially important in further considerations are covector 

A(a) A (a) •. A Ok A Ok 
fields e k ,r k Ifl)' vector denSIties 9i (a)' 9 (a) Ifl), scalar 

functions g(a)(b I'~ I, and scalar densities ~a)(b), ft ° I on 0", . 

It is easy to see that the (3 + 1) positions have clear geometri
cal meaning: (e~)) is a field of triads of covectors tangent to 
0"" (8"(a)(b)) is the metric tensor on 0", induced by the metric 
(g(a)IJ3)) on M, (i\ (a\b)) are anholonomic components [with 
respect to (e~))] of the connection 3r induced on 0", by the 
connection r on M [cf. Ref. 5(b)]. 

1718 J. Math. Phys., Vol. 26. No.7. July 1985 

Remarks: Applying the "bar" operation to tensor densi
ties on M we have (det[gl-'v ])- = det[gl-'v] 
= - det[gks] = -g. Applying the "caret" operation to 
tetrads and metric we obtain ej?) = 1, e~O) = 0 = e~), 
A IA 01 h aki" " ' g(O)(O) = - , g(O)(a) = . t means t at t ng caret vana-
bles we lose some information about geometric configura
tions. Therefore apart of e~) and g(a)(b) we have to take into 
account the lapse N, the shift ~ and seven rotational coeffi
cients n(a) , n(b) • 

Now we rewrite the energy-momentum function and 
the symplectic two-form in terms of (3 + 1) variables. For 0" 

compact without boundary we have 

r A ° -I-' A. ° IJ3)A (a) -I-' ~z(F)=-),,{(~I)I-'Z +(~2)(a) YI-' Ifl)Z}1]o, 

(4.17) 

n (t>IF,t>2F) 

r r £ f,)',Ok £ A(a) £ :0JOk (P) £ rA (a) 
=)"IUI-a (a)l\ u 2e k +UI;/ (a) l\u2 k Ifl) 

+ t>.,JiOI 1\t>2~I + ~t>I~a)(b) I\t>zi(a)(b) 

+ t>lnl(a) 1\t>2n(a) + t>lnl(a) 1\t>2n(a) }7Jo, (4.18) 

where nl(a) and nl(a) are linear combinations of (~2)0(a) Ifl) 
(see Appendix A), and 1]0 = dx\ dx~ dx

3
• 

Remarks: We choose n(a) and n(a) as independent varia
bles because n(O) can be determined from the condition 
n(a)n(a) = - 1. The integrals of a total divergence appear in 
(4.17) and (4.18) if 0" is not compact without boundary. 

The variables appearing in (4.18) are called the (3 + 1)
symplectic variables of the theory under considerations. 
Similarly, as in Ref. 30, we can prove that the lhs of the field 
equations (~I)o(a) = 0, (~2)0(a)lfl) = 0 depend only on sym
plectic variables and their spatial derivatives (see Appendix 
B). 

The Hamilton equation (4.6) and the evolution postu
late (4.7) can be formulated in terms of (3 + I)-geometric 
objects. To make corresponding formulas relatively simple 
we have to assume the following. 

(i) Transformations of M generated by the vector field Z 
preserve the slicing, i.e., 

Zo=ZO(XO), Zk=Zk(X°,xs), (4.19a) 

(ii) The auxiliary connection ;1-' (a)lfl) is consistent with 
the slicing, i.e., 

tfiJ pn(a) = 0, tfiJ I-'n(a) = 0 

or 
A A 
f' (0) _ 0 f' (a) - 0 
~I-' Ifl) - , ~I-' (0) - • (4. 19b) 

If the consistency conditions (4.19) hold then the O"-parallel 
partsoftheGL(4,R )-covariant Lie derivatives of the (3 + 1)
symplectic variables consist of two terms: the GL(3,R )-co
variant time derivative ~fiJ ° and the GL(3,R )-covariant 0"

intrinsic Lie derivative ~!f z with respect to the O"-parallel 
part II Z of the vector field Z (cf. Appendix C). The evolution 
postulate (4.7) reads 

Y (Z- ° 3 ar A(a) 3 CP A(a)) a 
E= t=oek+t..LZek --+ .. • 

ae~) 

+ (Z- ° 3 ar (a) + 3 CP (ah~ + t=Onl r..L Znl ~ ••• 
• anl(a) 

(4.20) 
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In virtue of (4.19b), there are no terms proportional to 
a / an(al , a / an(al in the above formula. 

We have a GL(3,R )-covariant version of the Theorem 1. 
Theorem 2: The Hamilton equation (4.6) and the evolu

tion postulate (4.20) are equivalent to the Euler-Lagrange 
equations (2.19). 

Proof' Following the proof of Theorem I and taking 
. ., A(al A (al ~ tlI mto account that vanatlons oek , or/J- IP), og(allb)' V'f' , oN, 

oN
k

, on lal , on(al are arbitrary, we obtain the following equa
tions: 

A ° (WI) lal = 0, 
A 

(?f 1)'lal = 0, 

3 rdr _ 0 3 q; lal - 0 
?;=O.ln(al - , ?;- o.ln - • 

(4.2Ia) 

(4.2Ib) 

(4.21c) 

Making use of the above equations, contracted Bianchi iden
tities (3.11), (3.12) and eX.l'licit form of ~al' .In(al , we get 
seven missing equations (?f 1)'(01 = 0 and (?f 3 )(Ol(al = O. 

The Hamiltonian dynamics gives us 20 constraint equa
tions (4.2Ia) for the initial dataFon 0", and the system (4.2Ib) 
and (4.2Ic) of dynamical equations for (3 + I)-symplectic 
momenta. The explicit form of these equations in terms of 
corresponding GL(3,R )-covariant operators is given in Ap
pendix B. It is well known that there is a deep connection 
between the contracted Bianchi identities and the problem of 
the initial value formulation of the theory. In fact, CBI en
sure the consistency of the Hamiltonian formulation. 

Proposition 4: If the constraints (4.2Ia) hold for XO = 0, 
the dynamical equations (4.2Ib) and .lnla) = 0, .In(al = 0 hold 
for all xO, then (4.21a) also hold for all xO. 

Remark: In the above proposition the conditions 
~al = 0, .ln

la ) = 0 m~y be replaced ~y (if2)0,a) 10) = 0 and 
(?f2)0101 (al = 0 or by (?f l)Slol = 0 and (?f3)10Ila) = O. 

We make the following observation. In the four-covar
iant picture the complete set of variational field equations 
(2.19) is equivalent to the reduced sets (3.16) or (3.17). That is, 
it is sufficient to take into account either the equations 

A A 

(?flY'lal = 0 or the equations (?f3)lal(.61 = O. In the (3 + I) 
picture, however, we must consider the equations 

A A 

(?f Wlal = 0 as well as (?f 3 )Iallb I = O. The reason is that in the 
Hamiltonian three-covariant approach the constraints 
(4.21a) are a priori satisfied only on the initial surface and the 
complete set (4.21b) is necessary to ensure the time mainte
nance of the Hamiltonian constraints (4.2Ia). 

In a general case, the gravitational field variables in a 
GL(4,R )-gauge theory of gravity may be divided into three 
classes: (~ dynamical symplectic variables ~Ok(a,. e~l, 

A Ok (.61 (al ~/"Oja)(b I A. • • I 9 lal ' r k (.6)';" ~(allbl' (B) 20 gravltahona gauge 
variables N, N \ n(a), n(al' rola\b); and (C) nondynamical var
iables ro(a\ol ,Fo(O)(.6J,:.. The matter dynamical symplectic var
iables are Ji!> I and tP I. For degenerate matter Lagrangians 
matter gauge variables may also appear, e.g., in Maxwell's 
electrodynamics, as well as nondynamical ones, e.g., Ein
stein-Cartan theory with matter fields.31lbl In the present 
paper we do not discuss the problem of matter variables 
more profoundly. Many interesting results concerning this 
subject were presented in Ref. 31(b). 
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Let us return to the gravitational variables. The quanti
ties of the set (A) are called dynamical variables because we 
have corresponding dynamical equations (4.21b) that govern 
their evolution [cf. (B5)-(B7)]. The quantities of the set (B) 
are called gauge variables corresponding to the action of 
Diff M and loc GL(4,R ). The group Diff M acts transitively 
in the space of N, N k and the local G L(4,R ) group acts transi-

" (a) Alai • tlVely m the space of n , nla), ro Ib)' Thatls to say, under the 
actions of these groups the variables of the set (B) can be 
transformed to arbitrary beforehand fixed values (at least 
locally). Moreover, the symplectic constraints (4.21a) do not 
depend on gauge variables. Therefore the gauge variables 
may be given arbitrarily on the whole space-time. 

For the nondynamical variables (C) we have no equa
tions governing their evolution. These quantities may cause 
essential difficulties in the dynamical analysis of the theory 
in question. In Sec. V and VI we show how to solve this 
problem for the Einstein gravitational Lagrangian. For oth
er Lagrangians this question should be treated individually. 

Only for canonically regular gravitational Lagrangians, 
that is, for Lagrangians assuring a one-to-one correspon
dence between the symplectic momenta and the time deriva
tives of the symplectic positions all the variables in (A) are 
dynamical. For canonically degenerate Lagrangians some 
quantities in the set (A) cease to be dynamical and should be 
classified either as gauge variables or as nondynamical ones. 
Similarly, some of the nondynamical variables become 
gauge variables. In Secs. V and VI we show that for the 
Einstein Lagrangian (with the presence of a matter field) 
r k la\b I becomes nondynamical (~O"'lal and ;-O(allb I are also 
nondynamical but trivial). The nondynamical variables 
r k la)(b I' r J,::)(01' r ° 10\b I can be eliminated from the field equa
tions and r A (°\0) are four new gauge variables. 

V. THE EINSTEIN GRAVITATIONAL LAGRANGIAN IN 
THE METRIC-AFFINE THEORY 

We have 

2'y =-r=gR, 

-r=g = ( - det[g/J-v] )1/2 = det[ et)] ( - det[g(a)(.6,])1/2, 

(5.1) 
9/J-Vla) (.6) = -r=g(efa)e(.6lv - e!a)e(.6)/J-), 

~/J-v(a) = 0, y/J-la)(.61 = 0, 

~Ok (0) _ 0 ~Ok (0) EAk IAk 
;:r 10) - , ;:;r (a) = Vgela) = 2ela)' 

~Ok Ib)-O 
;:;r (a) -, 

~Ok Ib) _ IAk ~cllb) 
;:;r 101 - lelc)/) , 
~rs (bl _ I(Ar eA(b)s _ AS eA(b)1 
;:;r (a) - lela) ela)' 

9 rs (0) - 0 9 rs (0) - 0 9 rs Ib) - 0 
(0) -, la) -, (0) - • 

(5.2) 

(5.3) 

The symplectic two-form of the gravitational field reads 

n (OIF,02F) 

= 1[OI(F~)Ao2rk,a\0) 

+ ~ (IAk gAIC)lb l) 1\ 0 r (0) UI lelcl 1\ 2 k Ibl 

+ Ol.lnla ) A 02n(al + Ol.lnlal A 02nlal 1170' (5.4) 
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Unfortunately, in virtue of the symmetry properties ofg(a)(b), 

the quantities e~) and e~)ge)(b) are not independent. We re
write (5.4) in the following form: 

n (8IF,82F) = i (81~~) /\ 82K~) 
+ 8Ig

a
)(b) /\82K(a)(b) + rn termsJ7Jo. (5.5) 

Here, 

Ak 2 F;;Ak KA (a) l(rA (a) rA (0) ~e)(a)) 
e(a) = 'ige(a), k = 2 k (0) + k (e)~ , 

(5.6) 
A I F;; A (0) Ak A (0) Ak 

JY(a)(b) = 2'ig(r k (a) e(b) + r k (b) e(a) ). 

We have no primary constraints between the gravitational 
symplectic variables 

Ak KA (a) ~a)(b) ~ 
e(a), k.s· ,en (a)(b)' 

Remark: We have the following relations: 

g = det[grs] = (det[e~)])2 det[g(a)(b)]' 

detp~d = 8gdet[g(a)(bd l/2
• 

(5.7) 

(5.8) 

Therefore, having ~~) and g(a)(b) we are able to determine e~) • 
The field equations: We have 

( ~2)" (/3) = h" (/3) _ ~ fj'Jr" (p) = 0 
~ ~ r ~ . 

It follows from (5.2) that fj'Jr"(a) (a) = 0 and therefore 

h " (a)-o (a) - • 

In the (3 + 1) picture we have the following system: 

A'0 (0) _ AS K(e) + 2~ ~e)(d) - 0 
(0) e(e) S (e)(d)~· -, 

'/0 (0) 13 1'771 ~ IrA (0) AS 0 
/l (a) + z .;z.; s«(a) + 2 s (O)e(a) = , 
'/0 (b) + 131'771 A(b)s IrA (0) A(b)s - 0 
/l (0) z .;z.; s e - Z s (0) e -, 

'/0 (b) + AS KA (b) ,.., ~ gA(e)(b) - 0 
/l (a) e(a) s - £.<7l (e)(a) -, 

'/k (0) + I Ak FA (c) _ I A(e)kF
A 

(0) - 0 
/l (0) 2e(e) 0 (0) ze 0 (c) - , 

'/k (0) 131'771 Ak IAk FA (0) 
/l (a) - 2 .;z.; Oe(a) - 2e (a) 0 (0) 

_ IrA (0) (AS eA(e)k _ Ak eA(e)s) - 0 
2 s (c) e(a) eta) -, 

'/k (b) _ 131'771 (Ak ~e)(b)) + IA(b)kr
A 

(0) 
/l (0) 2 .;z.; 0 e(e)~ 2e 0 (0) 

+ IF (c) (AS eA(b)k _ Ak e(b)s) = 0 
2 s (0) e(e) e(e) , 

'/k (b) _ 131'771 (AS eA(b)k _ Ak eA(b)s) 
/l (a) 2 .;z.; s e(a) e(a) 

- !as InN(~ia)e(b)k - ~~)e(b)s) 

+ IA(b)krA (0) IAk FA (b) 0 
2e 0 (a) - 2e (a) 0 (0) = . 

(5.9) 

(5.10) 

(S.lIa) 

(S.llb) 

(S.llc) 

(S.lld) 

(S.lIe) 

(5. lIt) 

(S.llg) 

(S.lIh) 

Equations (S.lld) are symplectic constraints, Eq. (S.lla) fol
low from (S.lld) and (5.10). Equations (5. lIb), (S.lIc), and 

A A "'-

(S.llh) enable us to compute ro(O\a)' ro(b)(o)' and r k (a\b)' We 
get 

fgFo(O\a) = !~ia) as In N + !A'(a)(o) (0) + !A'(S)(s)(a) 

1 A'(s) 1 A'0 (0) lA'O 
- 4 (a)(s) - 4 (a) - 4 (O)(a) , 

F;;g-r (b) _ F;;g-r (0) ~a)(b) _ A'(b) (0) 
'iK 0 (0) - 'II; 0 (a)~ (0) , 

A A 
F;;r (a) ~ (a) ( F;;r (0) 

'ig k (b) = 'igYk (b) + 'ig k (0) 

lA'O + lA'O (0) + 1'/ (0)) 
- 2 (O)k i k '2/lk(O) 

X £(a) + 1 '/(a) + 1 '/ (a) 
U (b) 2/l (b)k i/l(b)k 

_ IA' (a) + lA'O (OIe(a) 
'2 k (b) 4 (b) k 
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(S.12a) 

(S.12b) 

(S.12c) 

Remark: In the process of calculations we use the fol
lowing formulas: 

3 ~ s e~) = 3rs (a)(e) e~) = 4ys (a)(e) e~), 

3 ~ ek __ 3
r 

(c) ek 3 ~ e(b)s = 3
r 

(b) e(e)s 
s (b) - s (b) (e)' s s (c) , 

31'771 A (3 3) 
.;z.; sg(a)(b) = - rs(a)(b) + rs(b)(a) • 

Weare not able to compute 1\ (0)(0) fromEqs. (5. 11)(!). Equa
tions (S.llt) and (S.llg) give us the dynamics of the symplec
tic variables ~~) andga)(b). We get 

3 Ak A A(c)k ! ~ Oe(a) + JY(a)(e)e 

A ~e)(d)Ak IA (0) A(e)k 
- JY(e)(d)~ eta) + Vila) (c) ]e 

IAk FA (0) '/k (0) - 0 + 2e (a) 0 (0) - /l (a) - , 

fg 3~cKa)(b) _ ~ie)K~e)ga)(b) 

+ fg(K (a)(b) + K (b )(a)) 

+ 2~ ~e)(d)~a)(b) 2~a)(b) 
(e)(d)~ ~ -

(S.13a) 

_ 2fgg(a)(b)F
o

(0\0) + A'Ha)(b))(O) _ A'Ha\O) (b)) = O. (S.13b) 

Here, K (a)(b) = K ~a)e(b Is. 

Let us observe that from 18 equations (S.llt) and (S.llg) 
we have obtained only 15 equations (5.13). Therefore, we 
should have additional information from (S.llt) and (S.llg). 
In fact, we are able to compute the skew-symmetric part of 
r
A 

(0) W 
(a) (b) • e get 

fgF[(a) (O\b)] = - !(A'O[(a)(b)] + A'[(a) (O\b)] + A'[(a)(b) ](0)). 

(5.14) 

Finally, we observe that Eqs. (S.lle) follow from (S.llh) and 
(5.10), and the analysis of the system (5.11) is complete. 

Remark: Formulas (5.12) are special cases of the results 
presented in Ref. SIb). 

The Einstein equations are 

(~l)"(a) = c?Y"(a) + c~Y"(a) = 0, 

where 

(5.15) 

c? Y"(a) = ~ - g Re('a) - ~(R "(a) + R "(r)(a) (r)). 

In the (3 + I) decomposition, Eqs. (5.15) can be written in 
the following form: 

(~I )0(0) = fgR - fg(R 0(0) + R o(r)(O) (r)) + em .ro(O) = 0, 
(S.16a) 

(S.16b) 

(S.16c) 

(~w(O) = - fg(R k(O) + R \r)(o) (r)) + em 3-\0) = O. (S.16d) 

For (S.16a) and (S.16b) we get explicitly 
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Eg- 3 R + 2K (a)ef ~ JUe)(d) 
"8 s (a) (e)(d)8 

'n)-1/2(K JUe)(d»)2 
- \6 (e)(d)5 

A (a)(b) A EA (0) 
- 2K (K(a)(b) + "grl(a) (b)]) 

+ 'n)-I12K ~C)(d) 
\6 (e)(d) 

ErA (0) rA [(e) (d)] ~ - 0 +"g [(c) (d)] (0) + c~J ·(0) - , 

Eg- e, eS (2(3 g; K (c) _ 3 g; K (C») 
'/5 (e) (a) 's s, 

+ F (0) 3 g; JUc)(d) _ r (0) 
,(d) s5 s (d) 

X 3 g; JUc)(d) + F (0) (F (e) _ F (O)(c») 
,5 s(O) ,(0) , 

A A A A - r, (0\0) (rs (c)(O) - rs (O)(C»)} + C~ ,<TO(a) = O. 

(S.16a') 

(S.16b') 

Remarks: (i) The fo~ula for rk(a)(b) (S.12c) contains 
undetermined quantities r k (0\0); in the expression for 3R, 
however, these quantities do not appear. Taking into ac
count formula (S.14) we see that the lhs of (S.16a') is a func
tion of symplectic variables, their spatial derivatives, and the 
components of hypermomentum and the canonical energy
momentum tensor. 

(ii) If we unfold the 3g;s operato.!.s in (S.16b') then, by 
virtue of (S.12c) all terms containing rs (0)(0) cancel. Hence, 
the lhs of(S.16b') depends only on the symplectic variables, 
their spatial derivatives, and the components of hypermo
mentum and the canonical energy~momentumtensor. 

(iii) By virtue of (S.6) and (S.14), Fs (a)(O) and F/O\b) are 
functions of the symplectic variables and the coefficients of 
hypermomentum. The quantities 3 R k(a) + 3 R ~c)(a) (el, 

3 fH>r rA (a) rA (0) rA (a) d 3 fH>r rA (0) + F (0) r (0) 
;;:z; s 0 (0) - , (O~ 0 (01' an ;;:z;, 0 (b) s (0) 0 (b) 

are independent of rs (0\0» cf. (S.12c). 
If we use (S.12) and (S.13b) then the field equations 

(S.16c) read 

2 Eg- 3 g; Y (a) _ 2 Eg-K (a)'r. (0) 
"8 0''' s "8, 0 (0) 

A A + .jg(3 R (a)s + 3 R (a)(c)s (c») - c~ .91a
), + !e~a) tr C~ Y 

+ (terms depending on the gravitational symplectic 

variables, the coefficients of hypermomentum and 

a,lnN)=O. (S.16c') 

By virtue of the general theory (Sec. IV), Eqs. (S.16d) follow 
from the time-maintenance of equations (S.llb), (S.llc). We 
assume that Eqs. (S.lIb) and (S.lIc) are satisfied on the 
whole M. Hence, Eqs. (S.l6d) follow from other equations 
and do not give us new information. 

Equations: 

( ~3)(a)(p) = y<a)(p) + yta)(p) = O. 
J? JNl 

(S.17) 

Making use of (S.12), (S.13), and (S.8) we get from 
(~3)(a)(b) = 0, 

3 fH>r £.0 2 ~ r.A 
(0) 

;;:z; (Y7t (a)(b) + eTt (a)(b) 0 (0) 

+ ..;ge R(a)(b) + 3 R(b )(ad - .'" Y(a)(b) 

+ (terms depending on the gravitational symplectic 

variables, coefficients of hypermomentum and 

aslnN)=O. (S.18) 

The general theory tells us that the equations (~3 )(o)(a) = 0 
are consequences of the time-maintenance conditions for the 
equations (~2)0(a) (0) = O. Therefore these equations do not 
give us new information. 

The (3 + 1) analysis of the metric-affine theory of gra
vity with the Einstein gravitational Lagrangian and with the 
phenomenological description of matter can be summarized 
as follows. 

The gravitational dynamical variables (S.7), the zero 
components of hypermoment~m h o(a) (P), and the canonical 
energy-momentum tensor C~ §1l(a) are subject to 9 + 4 = 13 
constraints (S.lld), (S.16a), and (S.16b). 

The time evolution of the gravitational dynamical var
iables is determined by Eqs. (S.13a), (S.13b), (S.l6c'), and 
(S.18). 

Equations (S.14) enable us to expressFk (a\O) andFk (O)(b) 

by means of symplectic variables. 
The variables Fk (a)(b I' FO(O)(b I' Fo(a)(o) are to be computed 

by means of (S.12). 
The variables F k (0)(0) do not appear at all in the field 

equations. 
The variable ro(O\O) appears always together with the 

3g;0 terms. 
The quantities FO(a\b) are arbitrary GL(3,R i-gauge var

iables. 
In the phenomenological picture the hypermomentum 

current as well as the canonical and symmetric energy-mo
mentum tensors have to satisfy the conservation laws (3.8a) 
and (3.9). Moreover, in the Einstein case 

/A (a) _ 0 d q-(a) q-(a) - 0 (S 19) 
/l (a) - an c~J (a) - ,;~J (a) -. • 

We assume that the components of the symmetric energy
momentum tensor ,;~ .7-ta

)(b), as well as the spatial compo
nents of hypermomentum ,4'k(a) (P), and the spatial compo-

"'k nents of the canonical energy-momentum tensor C~ Y (a) 

are known functions on space-time. If we make use of Eqs. 
(S.12) and (S.14) then the conservation laws (3.8a) and (3.9) 
determine the dynamics of ,4'o(a) (P) and un §-u(a)' We write 

{

functions of the gravitational symplectic variables, } 
/0 (P) ~ h . bl N N k rA (a) = /l (a) ,c~.':/ (a)' t e gauge vana es , , 0 (b)' • 

3 g; oc~ §-uta) their Xk derivatives as well as of the variable Fo(O\o) 

(S.20) 

It is very important that the quantities F k (0\0) do not appear 
in Eqs. (S.20). This fact can be checked directly. We only 
have to make use of relations (S.19). The manifest ~pen
dence of the right-hand sides of(S.20) on the quantity ro(O\O) 

can be supressed if we pass from the GL(3,R i-gauge varia-
A (a) /' (a) A (a) ~(a) rA (0) bles rO (b) to the new ones ro (b) = ro (b) - U (b) 0 (0)' 
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If such a transformation is performed then the quantity 
Fo(O\o) disappears also from the dynamical field equations 
(S.13), (S.16c), and (S.18). 

Let us sum up. In the phenomenological picture the 
Cauchy-Kowa1ewska initial value problem may be formu
lated as follows. 
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(i) We assign 30 gravitational symplectic variables and 
20 components h o(a) (fJ), em .r(a) on the initial surface (7 such 
that 13 constraints (S.l1d), (S.16a), (S.16b), and Eqs. (S.19) 
are satisfied. 

(ii) Values of 20 gauge variables N, N\ 1"O(a\b) , n(a), nIb)' 

and values of the quantities ~k (fJ) yk ,71a)(b) are (a) 'ern (a)' .>rn 

fixed on space-time. 
Then, the dynamical gravitational equations and the 

conservation laws (S.20) give us the evolution of the system. 
Four quantities 1"). (0)(0J.- are not determined by this proce
dure. The quantity Jm 5'10)(0) is to be determined from (S.19). 

The appearance of four further arbitrary quantities in 
the dynamical formulation of the theory becomes clear if we 
recall that in the metric affine theory the Einstein gravita
tional Lagrangian is invariant with respect to the following 
transformations (cf. Refs. II and 43): 

efL·~'e~a) = e~a), g(a)(fJ)--'g(a)(fJ) =g(a)(fJ» 

r). (a)(fJ) __ 'r). (a)(fJ) = r). (a)(p) + X).o(a)(p)' 

We have 

'R (a)(fJ)/l" = R (a)(fJ)/l" + (a/lX" - a"X/l)o(a)(fJ) , 

'Q(a) = Q(a) +X eta) -X eta) 
pv f.lV J..l v v f.l ' 

'M).(a)(fJ) =M).(a)(fJ) - X).g(a)(p» 

(S.21) 

(S.22) 

and the tensors R ).(a) + R ).(E)(a) (E), R (a)(fJ) + R (p)(a) are invar
iant with respect to the transformations (S.21). 

If 

'.If). (P)-.If)' (fJ) '!T). -'!T). 
(a) - (a) 'em (a) - em (a)' 

;m S1a)(fJ) =;m S1a)(P), (S.23) 

then the field equations (S.l1), (S.16), (5.17) are invariant 
with respect to (5.21)-(5.23). Moreover, in virtue of relations 
(S.19) the conservation laws (3.8a) and (3.9) are also invariant 
with respect to the transformations (5.21)-(5.23). 

In the caret variables we have 

'rA (0) rA (0) + - (5.21') 
). (0) = "(0) X). . 

Therefore, gauge transformations (S.21) can change the var
iables1"" (°\0) arbitrarily. Now it is clear why the dynamics of 
these quantities cannot be obtained from the field equations. 
It is interesting to note that gauge transformations (5.21) do 
not affect the dynamical quantities of the theory. 

ARemark: In the phenomenological picture the quanti
tiesr). (0\0) are arbitrary and they cannot be determined from 
the field equations. If, however, matter is described by a La
grangian, then the theory is not invariant with respect to 
transformations (S.21), and the 1"). (0\0) are not arbitrary 
quantities. In the next section we show how to determine 
them by means of relations (5.19). 

The above-presented dynamical analysis of the metric 
affine Einstein theory of gravity shows that the results pub
lished in Ref. S were incomplete. In particular, those papers 
do not contain dynamical equations for the symplectic varia
bles Kia). Moreover, as we show in the next section, for La
grangian matter field relations (S.19) give rise to additional 
symplectic constraints and the analysis of these constraints 
is essential for the dynamics. Also, this problem was not fully 
clarified in the previous papers. 
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VI. THE METRIC-AFFINE EINSTEIN GRAVITY COUPLED 
TO A VECTOR FIELD 

In the previous section we discussed the Einstein gravi
tational equations in the framework of metric-affine geome
try with matter characterized by its hypermomentum and 
two energy-momentum tensors. In the present section we 
consider a Lagrangian matter field described by a vector po
tentialf(a) and the Lagrangian 

.Y m = (A 12)[=g iiJ ~(a)iiJ "j(fJ)gIl"g(a)(fJ) 

(6.1) 

whereA is an arbitrary constant and - Vis a potential func
tion. We have 

&').(a) = ~ - g iiJ J(fJ)g"Tg(a)(fJ» 

.If).(a) (fJ) = &').(a{(fJ), 

av 
,ita) =..r=i af(a)' 

(6.2) 

The matter field equation and the energy-momentum ten
sors read 

(1f 1)(a) =,i(a) - iiJ). &').(a) = 0, (6.3) 

em !T).(a) = eta).Y m 

- ~ - giiJ "f(E)iiJ J(fJ)g""g(E)(fJ)e'[a» 

S1a)(fJ)=g(a)(fJ).,? +~ -giiJ fia)iiJ j(fJ),.,p,,, 
';'rn nz f.l v. 15 

av 
+2[=g--. 

ag(a)({3) 

In the (3 + I) variables we obtain 

9 0 - A ~g-(a fiO) + 1" (0) fA (0) + 1" (0) fA (c») 
(0) - VI!' 0 ° (0) 0 (c) , 

(6.4a) 

(6.4b) 

9 0
(a) = - A.Jge iiJ 0 fic) + 1"o(C)(O) )(O»)8"(c)(a) , (6.5a) 

9 k = _ A ~g-(a fA (0) + 1" (0) fA (0) + 1" (0) fA (cl\nsk 
(0) '1115 s s (0) s (c) 16, 

9 k = A ~g-(3V fA (c) + r (c) fA (d) 
(a) '1115 s s (d) 

+ 1"s (c\O) )(O»)g'k8"(c)(a) . (6.5b) 

Here, 3V s is the Riemannian covariant derivative on slices 
defined by means of (Bla), where the 1"k(a)(b) are replaced 
with the anholonomic Riemannian coefficients 3y k (al(b) • 

Relations (6.Sa) determine the dynamics of the variables 
)(0), )(al; the dynamics of the conjugate momenta is given by 
matter field equations 

(~1)(0) = - 3 iiJ 090(0) - e iiJ s + as In N)9s
(0) 

r
A 

(0) ~o A (0) ~ + 0 (O);:;r (0) + rs (O);:;r s(O) 

r
A 

(c) ~O rA (c) ~s A. 0 + 0 (O);:;r (c) + s (O);:;r (c) + /(0) = , 
(6.6a) 

We remember that the Einstein gravitational Lagrangian 
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gives rise to the primary constraints h ).(a) (a) = 0 (S.lO). In the 
(3 + 1) picture we have 

'" A A A " hO (a) - 9 0 flO) + 9 0 f(a) - 0 
(a) - (0) (a) -, 

~k (a) _ 9k fA (0) +:i7Jk fA (a) - 0 
(a) - (0) ;;r (a) -. 

(6.7a) 

(6.7b) 

Equation (6. 7a) is a symplectic constraint, whereas Eq. (6. 7b) 
toget~r with (6.Sb) lead to relations for the unknown quan
tities r k (0\0)' Making use of (6. Sb) we observe that relations 
(S.12c), (S.14), and (6.7b) give rise to a linear system of equa-
. fi rA (a) A (0) A (0) • bons or k (b),r[(a) (b)l,andrk (o).Thissystemcanbe 

solved by means of simple algebraic methods presented in 
Ref. 31. If the conditions (here 12 = l(aJ"a) ) 

rj(0»)2 _ 1 2=j:.0, (1 + iAI2)=j:.0, 

(1 + !A12)=j:.0, (1 -!A rj(O)f)=j:.O, 

(1 + (!A + -hA 212)((1(0»)2 - 12))=j:.0, 

(I +!A (12 - (1(0»)2))=j:.0 

(6.8) 

h ld th rA (a) rA (0) d rA (0) • I fi o , en k (b)' [(a) (b) l' an k (0) are rattOna unc-
tions of the gravitational symplectic variables, matter sym
plectic variables, as well as of Xk derivatives ofl(o),'j(a) , e~), 
and g1a)(b)'lf we a,llply relations (S.12a) and (S.12b) for the 
quantities ro(a){O) ' rO(O)(b) ' then the structure of the field equa
tions is almost clear. The only undetermined quantity is 
Fo(O)(o)' In order to find an equation for Fo(O\o) we investigate 
the time-maintenance property of the symplectic constraint 
(6.7a). 

This constraint is preserved in time if 
r;x /). (a) 0 
;;z;).n (a) = , 

or, in virtue of the field equations, 

E. A ?-ta) :i7J0 2 A 0 A 0 Ma)(b) 
A -vg ](a) J. + (;;r (od - 9 (a) 9 (b)5 

A k A S _ '" k '" s - Ma)(b) 
- 9 (0) 9 (O)gks + 9 (a) 9 (b)gks5 = O. 

(6.9) 

(6.10) 

If we substitute relations for Fk (a)(b)' F[(a) (O)(b) l' Fk (°\0) and 
(6.Sb) into (6.10), then we obtain a constraint for the gravita
tional and matter symplectic variables. The maintenance of 
the secondary constraint (6.10) in time leads to a new rela
tion. The analytic form of this condition can be obtained 
either by means of the direct 3 Pfl 0 differentiation of the rela
tion (6.10) or, more elegantly, from the relation 

(6.11) 

Taking into account the matter field equations and commut
ing the second-order derivatives, we obtain 

A (- g)Pfl E(( - g)-!12,/(a/(a») 

+ 2&,v(a)gEI' Pfl v( &,1' lP)gla)IP») 

+ 2A FiR (a)IP)EJIP)&,v(a) 

_ all' alv g r;x ..(a)(,6) - 0 
;;r (a);;r IP) I'V;;z; £5 -. (6.12) 

Taking E = 0 in the "A" form of(6.12) we get an equation for 
Fo(O)(o)' In Appendi~ G it is proved that this is a line~ alge
braic equation fo.!, ro(O)(O) (it does not depend on akrO(O)(O)!) 

and, eventually, ro(O\O) is a rational function of symplectic 
variables, their first and second spatial derivatives as well as 
of ak In N. Of course, the solvability of(6.12) requires some 
additional regularity conditions for initial values of symplec-
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tic variables [cf. (6.8)]. In the weak field approximation, that 
!s, if~e neg~t terms of higher than quadratic order inl(O), 
.fa), &,°(0)' &,o(a)' the regularity condition has the following 
simple form: 

(9 0 )2 _ 9 0 90 Ma)(b)...,LO 
(0) (a) (b)5 -r. 

Summing up: In the metric-affine theory of gravity with 
the Einstein gravitational Lagrangian and with the matter 
Lagrangian (6.1), we have 30 gravitational symplectic varia-
bl Ak K'" (a) ~ Ma)(b) d' h . es e(a~ k 'A <7l (a.!!!')' 5 A an elg t matter symplectIc var-
iables &,0(0)./10), 9°(a)./(a). Thirteen gravitational symplec
tic constraints (S.l1d), (S.16a), and (S.16b) are related to the 
actions of the diffeomorphism group of space-time and the 
local GL(3,R ) group in the space of symplectic variables. 
Therefore they reduce 2·13 = 26 degrees of freedom. The 
matter constraints (6.7a) and (6.10) eliminate two degrees of 
freedom. Therefore, we have four gravitational and six mat
ter degrees of freedom (in the phase sllace). 

Th t 't' rA (a) rA (0) r'" (a) rA (0) rA (0) 
A e quan 1 Ies k (b)' [(a) (b) l' 0 (0)' 0 (b)' k (0)' 

ro(O)(O) are u~quely determined by means of algebraic for-
mulas. The rO(a\b) are arbitrary GL(3,R I-gauge variables 
and N, N* are arbitrary Diff M-gauge variables. 

In our example, it is very important that the time-main
tenance condition for the secondarY constraint (6.12) leads to 
a linear, algebraic equation for 1'0(0\0)' This feature of the 
theory does not depend on the particular choice of a vector 
matter Lagrangian and it is related to the structure of the 
gravitational Einstein Lagrangian. 

The matter Lagrangian (6.1) is canonically regular, that 
is, the relations (6.Sa) give us a one-to-one correspondence 
between the time derivatives of matter potentials 3 Pfl ol(a) 

and the matter momenta 9 0
(a)' For canonically nonregular 

matter Lagrangians some time derivatives of matter poten
tials cannot be determined by the momenta. In such cases we 
have additional primary matter constraints and the corre
sponding secondary constraints. The time-maintenance con
ditions for these secondary constraints give rise to linear dif
ferential equations for the values of undetermined time 
derivatives of matter potentials on the initial surface u. Now, 
the classical Cauchy-Kowalewska procedure is based not 
only on differential and algebraic operations but also re
quires finding solutions of those linear differential equations. 
Several examples of such a situation were considered in Ref. 
31(b) in the framework ofthe ECSK theory. 

Let us briefly describe the main differences between the 
gravitational theories with the Einstein gravitational La
grangian in metric-affine and in Cartan space-time (metic 
compatible connections). In metric-affine space-time the 
Einstein gravitational Lagrangian is invariant with respect 
to projective transformations!1·43 (S.21) and this fact leads to 
additional matter constraints and, thus, it reduces some mat
ter degrees of freedom. In the ECSK theory, the gravita
tional Lagrangian loses its projective invariance, we have 
less matter symplectic constraints and more matter degrees 
of freedom. For instance, for the regular vector Lagrangian 
(6.1) we have six independent matter degrees offreedom in 
the metric-affine Einstein theory but eight of them in the 
ECSK theory.3! However, the number of independent gravi
tational degrees of freedom is equal to 4 in both theories. 
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APPENDIX A: THE "CARET" OPERATION FOR GL(4,R)
COVARIANT DERIVATIVES 

The bar and tilde operations applied to a tensor density 
§ "Y~l give a family of tensorial objects (Pfl "Y~ipl ) A on 
particular slices. In Refs. 31 and 35 it was proved that for a 
tensor density of weight r, 

(Pfl YI'(a»)A _ CJ YI'(a! _ ~ r YI'(a) 
" .;p) -" .;p) • '" r .;p) 

+ Y
A I' y7ja) _ yA r YI'(a) 
"r >'(13) "v Ti,j3) 

A. A A A 

+ 
r (a) YI'(r) _ r (r) YJi(a) 

" (r).;p) "(13) >,(r)' (AI) 

where 

CJ" = (A -IrA: ar , 

YA I' _y- I' -Ail (A -I)E_(A -I){j r 
" v - A v - 7 A "YE (j 

+AilrCJ,,(A -1)\. (A2) 

The symplectic momenta m(a)' m(a) are 

1 ~ 
nz(a) = - n(O) (W2)0 (a) n n(e) (W2)0 (e) 

l+n~ ~ -n~l+n~ ~ 

n(a) A n(e) A 

+ n(O)(l _ n(0/ifi'2)0(e) (e) - 1 + n(O) (~2)0(e) (a) 

(A3b) 

_ n(O)n(e) (W2)0 (0) 
n(O) (e) 

(0) + 2 (0) 
n(O) - n n n(O) W2 ° (e) 

+ n(O)(1 + n(O»)( 1 - n(o) ) (e) 

(b) ((0) (0) ) 
n n(e) n - n n(O) - n(O) (W2)0 (e) (A3c) 

n(O)( 1 + n(O»)( 1 _ n(O») (b) • 

These formulas enable us to determine (W2)0(a) (0) and 
A ° (b (~2) (0) ) as functions of nz(a» nz(b), n(a), n(b) as well as of 
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other symplectic variables and their spatial derivatives [cf. 
(B4)]. 

APPENDIX B: GL(4,R)-COVARIANT DIFFERENTIAL 
OPERATORS 

In the (3 + 1 )-picture we use caret quantities, which are 
GL(3,R )-covariant tensorial objects on particular slices. We 
define the following GL(3,R )-covariant differential opera
tors for a tensor density (of weight r) Y~ipl on u: 

A _ A A A 

3 Pfl YI'(a) - a YI'(a) r 3y 7 YI'(a) + 3y I' y7ja) 
k >'(13) - k >'(13) - k 7 >'(13) k 7 >'(13) 

_ 3y T YI'(a) + 3 r (a) YI'(7) 
k v rjp) k (7) .;p) 

_ 3r (7) YI'(a) (B1a) 
k (13) >'(7)' 

A _ A A 

3 Pfl YI'(a) _ a YI'(a) r 30': 7 YI'(a) 
° .;p) - ° .;p) - ° 7 .;p) 

A A 
+ 3eT, I' y7ja) _ 3eT, T YI'(a) ° 7 1'(13) ° v Ti,j3) 

+ 3 r (a) YI'(T) _ 3 r (7) YI'(a) (B 1 b) ° (T) >'(13) ° (13) >'(T)' 

where 
3r (a) _ £ (a) £ (b) rA (a) 

I' (13) - U (a)U (/3) I' (b)' 

3y I' _ 81' 8s yA r 
kv- r vks> 

(B2) 

Remarks: Formulas (B1) and (B2) are covariant with 
respect to transformations (4.14) of local coordinates and 
with respect to local GL(3,R ) rotations (even XO dependent). 

For 3y k rs = r k rs are Christoffel symbols of Levi-Civita 
connection on u and 3rk (a)(p) determine a GL(3,R) connec
tion on u, the formula (Bla) corresponds directly to (2.8) 
(valency of a tensor on u is determined by the number of 
nonzero indices). 

The lhs of the Hamiltonian constraints (4.21a) written 
in terms ofGL(3,R )-covariant objects read 

(W 1 )°(0) = eg YOlO) + em YOlO) + 3 Pfl s ~ OSlO) - rs (7)(0) ~ OS(T) , 

(B3a) 
~ ° _ ~ ~ 3"" ~.Os A (0) ~.Os (01) (a) - egY (a) + em Y (a) + = s -u (a) - rs (a) -u (0)' 

( W2)0 (0) _ A'0 (0) _ ro(O) + 3 Pfl 90s (0) 
(0) - (0) (0) s (0) 

_ r (T) f)0s (0) + r (0) f)Os (T) 
s ~ ~ s ~ ~, 

( W2)0 (0) = A'0 (0) _ ro(O) + 3 Pfl 90s (0) 
(a) (a) (a) s (a) 

_ r (0) 9 0s (0) + r (0) 90s (T) 
s (a) (0) s (T) (a)' 

( W2)0 (b) _ A'0 (b) + ~O(b) 
(0) - (0) (0) 

_ ro(b) + 3§ 90s (b) 
(0) s (0) 

_ r (T) 9 0s (b) + r (b) 90s (0) 
s (0) (T) S (0) (0)' 

( W2)0 (b) = A'0 (b) + ~O(b) 
(a) (a) (a) 

_ ro(b) + 3Pfl 9 0s (b) 
(a) s (a) 

_ r (0) f)0s (b) + r (b) 90s (0) 
s (a) (0) s (0) (a)' 

For the dynamical equations (4.21b) we have 
W k Ak Ak 

( 1) (a) = egY (a) + em Y (a) 

+3Pflo~Ok(a) +ePfls +as InN)~sk(a) r (0) ~Ok r (0) ~sk - ° (a) (0) - s (a) (0)' 
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(B4b) 

(B4c) 

(B4d) 

(B5) 
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( ~2)k (0) _ '/k (0) + ;'i),k(O) rk(O) 
o (0) - n (0) -« (0) - (0) 

+ 3fiJ 90k (0)+(3fiJ +a InN)9 Sk (0) o (0) s s (0) 

A A A A _ r (T) q;)"k (0) + r (0) q;)"k (T) 
).. ~ ~ ).. ~ ~, (B6a) 

( ~2)k (0) _ ~k (0) + ~k(O) rk(O) 
(a) - (a) (a) - (a) 

+ 3 fiJ 9 0k (0) + (3 fiJ + a In N)9 Sk (0) o (a) s s (a) 

_ r (0) 9)"k (0) + r (0) 9)"k (T) (B6b) 
).. ~ ~ ).. ~ ~, 

( ~2)k (b) _ ~k (b) + ~k(b) rk(b) 
(0) - (0) (0) - (0) 

+ 3 fiJ 9 0k (b) + (3 fiJ + a In N)9 Sk (b) o (0) s s (0) 

_ r (T) 9)"k (b) + r (b) 9)"k (0) (B6c) 
).. (0) (T) ).. (0) (0)' 

( ~2)k (b) = ~k (b) + ~k(b) _ rk(b) 
(a) (a) (a) (a) 

+ 3fiJ 90k (b)+(3fiJ +a InN)9 Sk (b) o (a) s s (a) _ r (0) 9)"k (b) + r (b) 9)"k (0) 
).. (a) (0) ).. (0) (a)' (B6d) 

( ~3)(a)(b) = .7-<a)(b) + .7-<a)(b) _ 3fiJ ro(a)(b) 
G = 0 

- efiJs +as InN)rs(a)(b) 

_ r (a) r)"(O)(b) _ r (b) r)"(O)(a) 
).. (0) ).. (0) , (B7) 

(~vRb: =)x - 3 fiJrJ.-°x - e fiJ s + as In NWx 

+ r (O)A r (0) ;().. 
J(O) x).. (oy< A 

r (O)A rA (a) A).. r (b)A rA (0) ;().. ( ) + J (a) X).. (00 A + J (0) X).. (b y. A' B8 

It follows from the relations (A3) and (B4d) that the lhs of 
(B4aHB4c) are functions of the gravitational symplectic var-
. bl (a) (b) ;'i),Ok A(a) ~Ok (P) rA (a) 
1~ es nl(ap n ,nl ,n(b)' -« (ap ek,;:;r (a) 'A k (P)' 

r<>!a)(b ), and §ia)(b ), the matter symplectic variables It ox, and 
¢ x, as well as their spatial derivatives. Therefore, from 
(~4aHB4c) we can determine seven quantities ~Ok(Op 
r<>!a)(O) in terms of the symplectic variables and their spatial 
derivatives. By means of these relations we are able to ex
press the rhs of (B3) in terms of symplectic variables and 
their Xk derivatives. We may say that (4.2la) are really sym
plectic constraints. 

APPENDIX C: THE COVARIANT LIE DERIVATIVE 

The covariant Lie derivative31
•
36 of a tensor density of 

weight r on M with respect to a given connection 
~ = (t!' (a)(p)) is defined as 

~.!f zY~\ = Z)..~fiJ )..F~\ + rY~\fiJ )..Z).. 

- Y~)fiJ TZ!' + Y':}p\fiJ "ZT, (Cl) 

where ~fiJ denotes the covariant derivative (2.8) with respect 
to the connection ~ (in this paper ~ is a fixed background 
connection). It is natural to take the definition 

U? r (a) Z T R (a) 
~-Z- z~!, (P) = ~ (P)T!, , (C2) 

where ~R (a)(plIt" is the curvature tensor of the connection~. 
If the conditions (4.19) are satisfied then we have the follow
ing (3 + 1) decomposition of the covariant Lie derivative for 
a GL(4,R )-tensor-valued covector field tP).. x and skew-sym
metric two-covariant tensor density Y!'v X on space-time: 

x A -03 A X 3 A X 
(~.!fZtPk ) =Z ~fiJOtPk +~.!fZtPk (C3) 
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and 
U7 CTOk A -03 r;;r ~Ok 3 U7 ~k 

(~-Z- zY x) = Z ?;.;;z/oY I + ~-Z- zY x. (C4) 

Here ~.!f z denotes the u-intrinsic covariant Lie derivative 
for geometric objects on u [with respect to the connection 
3~ = (tk (a)ltl) on u, taken in the direction of the u-parallel 
part liZ = Zk a/axk ofZ]. For(~.!f ztPO

X
) and (~.!f ZYSkX)A 

we have more complicated and less elegant formulas31 but 
fortunately such expressions do not appear in the Hamilton
ian analysis. 

APPENDIX D: THE TIME DERIVATIVES FOR rAND 9 
For the anholonomic coefficients 'h (a)(b) of the Rieman

nian connection on u, we have 

or equivalently 

3fiJ ork(a)(b) =!.f"P!eVk +ak InN)3fiJ~ps 

+ eVs + as InN) 3fiJ~pk - eVp 

+ a p In N) 3fiJ~ks Je~a)e(b) 

-e(b)eVk +ak InN)3fiJoe~a). (D3) 

The time derivatives 3 fiJ ~rs can be computed by means of 
the relations grs = e~a)e~b)g(a)(b) and formulas (5.8) and (5.13) . 
Another method of computing of these quantities is based on 
the formula 3 fiJ ~pq = 2yp 

0 
q and the relations 

-0 -ro -0 -ro -0 
r p q = p q - rp q = IP q) - rIP q) 

_ l(rA (0) A(a) rA (0) A(a») _ - 0 
- l p (a)eq + q (a)ep rIP qp 

,fg''/q = _ ~pq(~icJgij + ~iiO) 
+ ~Pi~i01jq + ~q)ip 0 + ~pj~O/ (D4) 

APPENDIX E: THE (3 + 1) DECOMPOSITION OF 
NONMETRICITY, TORSION, AND CURVATURE 

We have 

MA _ 0;:. (0) MA _ 1(0;:. (0) 0;:. (e) A ) 

0(0) (0) - 1 0 (0)' O(a)(O) - 2 1 0 (a) - 1 0 (O)g(e)(a) ' 

MA 13fiJ A MA 13r;;r A 3M 
O(a)(b) = '2 ~(a)(b I' k (a)(b) = 2 .;;z/ kg(a)(b) = k (a)(b I' 

A _ A (0) A (e) A 

Mk(a)(o) -!(rk (a) - r k (o)g(e)(a))' 
(El) 

A A (0) 
Mk(o)(o) = r k (0); 

QA (0) = _ r. (0) e(e) + a In N + r (0) 
sO 0 (e) s. s (0) , 

QA (0) = r (0) e(e) _ r (0) e(e) 
sr s (e) r r (e) s , 

A A 

Q (a) sO = rs (a)(O) - 3 fiJ oe(a) s' (E2) 

QA (a) = 3Q (a) = 3 fiJ e(a) _ 3 fiJ e(a). 
sr sr sr rs' 

RA (0) (3 r;;r a I N IrA (0) 3 r;;r r (0) 
(O)sO = .;;z/ s + s n 0 (0) - .;;z/ ()£ s (0) r (0) 0;:. (e) rA (0) A (e) + s (e)1 0 (0) - 0 (e)rS (0)' 

RA (0) 3 r;;r rA (0) 3 r;;r rA (0) 
(0) sr = .;;z/ s r (0) - .;;z/ r s (0) 

+r (0) r (e) r (0) r (e) 
s (e) r (0) - r (e) s (01' 
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RA. (a) _ (3 .G! a I N IrA. (a) 3.G! r (a) 
10)sO - .;;v s + s n 0 (0) - .;;v (}" s (0) 

rA. (a) rA. (0) j:; (a) rA. (0) + s (0) 0 (0) - 1. 0 (0) s (OP 

RA. (a) _ 3.G! rA (a) 3.G! rA. la) 
10)sr - .;;v s riO) - .;;v r s (0) 

+ ria) r (0) r (a) r (0) (E3) 
s (0) r (0) - r (0) s (0)' 

A. (0) (3 .G! a A. (0) 3.G! A. (0) R (b)sO= .;;vs+ slnN)ro Ib)- .;;v oF. (b) 

rA. (0) rA. (0) rA. (0) rA. (0) + • 10) 0 (b) - 0 (0) s (b l' 

R (0) - 3 ~ r (0) 3 ~ r (0) 
(b)sr - • r (b) - r s (b) 

rA. (0) rA. (0) rA. (0) rA. (0) + s (0) r (b) - r (0) s Ibl' 

R (a) - 3 ~ r (a) + r (a) r. (0) r. (a) r (0) 
(b)sO - - (}" s (b) s (0) 0 (b) - 0 10) s (b I ' 

RA. (a) _ 3R (al rA. (al rA. (0) rA lal rA (0) 
(blsr - Iblsr + s (0) r (bl - r (01 s (bl' 

APPENDIX F: THE BASIC GRAVITATIONAL GAUGE 
GROUP 

Let [L (aI
IPI (·)] be an element of the Lie algebra of the 

local GL(4,R ) group. Such an element generates infinitesi
mal transformations 8L of field potentials (3.2). If Z is a 
vector field on space-time, that is, an element of the Lie alge
bra ofthe diffeomorphism group and ~ = (;p (a)IP)) is a fixed 
connection then the infinitesimal operators 8z = ~!f z are 
defined by (CI) and (C2). These operators satisfy the follow
ing commutation relations: 

[ 8z , ,8z ,] = 8[z,.z, ] + 8 L 3 ' 

[8L, ,8L,] = 8[L,.L, J' [8L,8z ] = 8L4 , (F!) 

where [Z), Z2] is the commutator of vector fields Z),Z2; 
[L),L 2] is the commutator of corresponding matrices (the 
right multiplication); and 

L (al - R (al ZPzv 
3 IPI - - ~ IPlpv) 2> 

L (al - Z A .G! L (al 
4 IPI- - ~.;;vA (Pl' 

The relations (F!) satisfy the Jacobi identity and the set of 
operators 8z , 8L carries the structure of an infinite-dimen
sional Lie algebra ? Let us observe that the operators of 
infinitesimal rotations 8 L form an ideal in ? but the opera
tors of infinitesimal translations 8 z even do not form a subal
gebra. It is clear that if we integrate the algebra? to a group 
G then the operators 8 L generate local GL(4,R ) rotations in 

I 

Applying the dynamical equations (5.13b) and relations 
for Ys or (D4) we obtain a linear equation for ro(O)(OI' If we 
make use of relations (E3) we see that the term 
RA. (al JA (P)~s • A. (0) A. (01 

(PIO ;;r (al contams not only ro (01 but also vsro (01' 
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the space of field potentials. Now we explain how to define 
GL(4,R I-covariant translations. First of all, we have to as
sume that there exists a one-to-one correspondence between 
a neighborhood &0 of zero in the (vector) space of vector 
fields on M and a neighborhood ~ id of the identity in Diff M 
called the exponential, mapping exp: & o-~ id' 

Let Z belong to &0 and tP = exp(Z ). For the unit inter
val we have the curve [0, 1] 3t-tPt = exp(tZ) in Diff Mjoin
ing id with tP. Let x be a point in space-time. We have the 
curvet-x(t) = tPt (x) in Mjoining x and tP (x). The covariant 
translation of geometric objects with purely holonomic in
dices (space-time objects) from the point x to the point tP (x) is 
accomplished by the standard action of Diff M. The covar
iant translation of geometric objects corresponding to ap
propriate representations of GL(4,R) [GL(4,R) tensors or 
connection coefficients] consists in their ;-parallel transport 
along the curve t_x(t ) from the point x to the point tP (x). 
Now it is clear that if curvature of ~ is not trivial then the 
composition of two covariant translations is not a pure trans
lation but can be obtained as the composition of a covariant 
translation and the local rotation corresponding to an ele
ment of the holonomy group of~ [cf. (FI)]. 

The set G"&;d of pairs ([1, tP) where [1 is the field of 
GL(4,R) matrices and tPE~id eDiff M carries the natural 
bundle structure over ~ id e Diff M. The fiber over a fixed 
point of the base is isomorphic to the local GL(4,R) group. 
We write GOk;d = loc GL(4,R )X b ~id (the bundle product) 
or formally G = loc GL(4,R )XbDiff M [G is the basic gra
vitational gauge group for GL(4,R ) theories and it is parame
trized by 20 "functions" on space-time]. 

We would like to emphasize that the above given con
struction requires an appropriate choice of topology and the 
differentiable structure in the space of vector fields on M as 
well as in Diff M in order to assure the existence of an expo
nential mapping. Necessary mathematical foundations are 
given in Ref. 44. 

APPENDIX G: THE ANALYSIS OF THE ZERO EQUATION 
IN THE SET (6.12) 

In the (3 + I)-variables we get, from (6.12), 

Therefore, at first glance, the Eq. (GI) is a linear first-order 
differential equation for Fo(O\ol' In o;:der to prove that (G 1) 
is, in fact, an algebraic equation for ro(O\ol we make the fol
lowing observations. 
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(i) In virtue of formulas (6.5b), (D2), (E3), 
A A A 

R (a)(fJ'Ps/(fJ)g;s(a) is a function of symplectic variables, 
as In N, spatial derivatives of these variables, as well as of 

3 ~ o(rs (a\b) - Fs (0)(0) 8(a)(b»)' 3 ~ :rl(a) (O\b)]' and (3 ~:rs (0\0) 
3V rIO) ) 

- s 0 (0)' 

(ii) On the other hand, Eq. (5.12c), (5.14), and (6.7b) can 
be rewritten in terms of the symplectic variables as well as of 
(3VJA (0) + F (0) reO») (3VJA (a) + F (0) rIa») F (0) and 

A s (O~ , s (O~ , [(a) (b) l' 

(r/a)(b) - rs (OJ(0)8(a)(b»)' Moreover, the dependence of these 
equations on the variables belonging to the last four groups is 
linear. 

(iii) We take 3 ~ 0 derivatives of the rewritten equations 
(5 .12c), (5.14), and (6. 7b) and make use of the relations 

3 ~ oeV)(O) + Fs (0\0[<0») 

= (3~ r (0) _ 3V r (0) )fA (0) + C 
0" s (0) s 0 (0) , 

3 ~ 0(3V ita) + Fs (O\o/(a») 
A A A 

=e~J/O)(o) -3Vsr o(0\0»)f(a)+D, (G2) 

where C and D denote terms depending on the symplectic 
variables, as In N, first and second spatial derivatives of 
these quantities, and linearly on Fo(O\o)' 

(iv) We obtain a system of linear equations for un
knowns 
3 /;)f A (a) A (0) J/(a) 

;;:u o(rs (b) - rs (0) U (b»)' 
3 /;)f r (0) (3 /;)f r (0) 3V rA (0) ) 
=0" [(a) (b)]' =0" s (0) - s 0 (0)' (G3) 

If the regularity conditions (6.8) hold then this system can be 
solved in a similar way as was solved the system (5.12c), 
(5.14), and (6.7b) for ~a)(b,.F[(a) (O\b)]' and Fs (0\0)' Thus, the 
unknowns (G3) are functions of symplectic variables, 
as In N, first and se~nd spatial derivatives of these quanti
ties, as well as of ro(O)(O) (with the linear dependence on 
A (0) 
ro (0»)' 

(v) In virtue of (i) and (iv) the quantity R (a)(fJ)Os 1({3) 9 (s)(a) 

depends on Fo(O)(o) linearly and it does not depend on 
A (0) , 

vsro (0)' 
We see that (91) is a linear algebraic equation for F 0(0\0) 

and, eventually, ro(O)(O) is a rational function of symplectic 
variables, as In N as well as of first and second spatial de
rivatives of these quantities. 
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The pseudo-Riemannian nature of the Kerr solution is exploited to obtain a special relativistic 
analysis. Lorentz contraction and time dilation factors are found that represent the metric 
coefficients. The special relativistic treatment is extended to the study of the hypersurface at 
r = o. A nontrivial topology is revealed and new extensions of the metric are found. 

I. INTRODUCTION 

One of the unsatisfying features of the general theory of 
relativity is that it admits numerous spurious solutions. Any 
problem is inevitably solved by keeping those solutions that 
correspond to realistic stress energy tensors and eliminating 
the vast majority of solutions that do not. Every symmetric 
metric can be used to solve Einstein's equations. Hence, just 
the mere existence of Einstein's divergenceless tensor is not a 
complete theory, as it gives no criteria for culling through 
the countless possible solutions. 

Special relativity, on the other hand, is the most accura
tely tested of physical theories. One of the strongest motiva
tions for the general theory is that "locally" special relativity 
should hold throughout space-time. This form of the equiv
alence principle is insured by choosing a pseudo-Rieman
nian manifold to represent space-time. 

The only solution of Einstein's equations that has been 
experimentally verified (even though, only in an asymptotic 
sense) is the Schwarzschild solution for the external gravita
tional field of a nonrotating mass. For both the Schwarschild 
and Kerr metrics, the right-hand side of Einstein's equations 
vanishes. The equations take on the degenerate form RJ.tv 

= o. Alternatively, one might view these vacuum solutions 
as those that inject a minimal amount of curvature (i.e., 
Ricci = 0 and Riemann#O) and are asymptotically flat as 
well. 

Perhaps, equations are not applicable to all physical 
problems. Certain geometries might be fundamental to na
ture due to their symmetries. In order to investigate this 
possibility, the pseudo-Riemannian nature of the Kerr ge
ometry will be analyzed in this article. In particular, locally 
flat coordinate patches (flat at one point) will be examined. 
The motivation for this is to define a description of the Kerr 
solution that is independent of general relativity, but relies 
heavily on special relativity. In an effort to raise the level of 
this article above that of a pedagogical exercise, it will be 
shown using the methods developed in the text of the paper, 
that the geometry of the hypersurface at r = 0, in the Kerr 
space-time, has many interesting properties. It is not just a 
disklike obstruction as is assumed in the maximal analytic 
extension of'Boyer and Lindquist.l The fascinating geome
try of this surface implies that it is a source for the external 
geometry. This might be the reason that the Kerr solution is 
physically important, regardless of any theory that "pre
dicts" this solution. 

Our method will be as follows. The Kerr solution will be 
broken down into locally flat regions that are realized by 
orthonormal bases that are carried by freely falling observ-

ers. At each point of space-time, there exist such flat frames 
in which special relativity holds (at one point). By looking at 
time dilation and Lorentz contraction in the appropriate 
sense, the global Kerr solution will be reconstructed (the 
feasibility of such a procedure is suggested in the book by 
Misner, Thome, and Wheeler).2 

In order to do this, one needs a globally well-defined, 
continuous frame field which can be achieved momentarily 
by a Lorentz boost from the freely falling frames at each 
point of space-time (momentarily, since in general there will 
be accelerations and precessions between the two frames). 
This global frame should give a natural 3 + 1 splitting of 
space-time. Such a splitting is possible if three of the four 
vector fields of the tetrad span a completely integrable distri
bution in the four-dimensional space-time. An equivalent 
condition for this is that the fourth leg of the tetrad is a 
hypersurface orthogonal vector field. Thus, the image of the 
freely falling frames under Lorentz transformation in the 
completely integrable frame will locally define the tangent 
space to a manifold at each point of space-time. Consequent
ly, the continuity of the global frame field combined with the 
fact that the three-dimensional submanifolds foliate space
time (actually, when horizons are involved, one has to split 
space-time into various regions) allows the application of the 
Gauss-Codacci relations to the whole manifold to get back 
the Kerr metric. 

The frame field that can be chosen to do this is not 
unique. However, certain ones lend themselves to physical 
interpretation. For example, in the limit of infinite r, in 
Boyer-Lindquist coordinates, the zero angular momentum 
frames become the stationary frames at infinity. Also, it will 
tum out that the local boost that realizes the zero angular 
momentum frame (to be denoted as the O-L frame from now 
on) is characterized by a velocity less than the speed of light 
all the way from asymptotic infinity to the event horizon in 
the case a < m and all the way to r = 0, when a> m. For 
these reasons, the O-L frames will be used in this article. 

It should be noted that the ideas in this paper are coor
dinate independent, since they depend only on orthonormal 
frame fields. However, in order to do many of the calcula
tions one must analyze the geometry in some coordinate sys
tem. The Boyer-Lindquist coordinates are chosen, since 
they lend themselves to physical interpretation, as they are 
asymptotically spherical coordinates in the usual sense. 

II. THE SCHWARZSCHILD SOLUTION 

As a simple example of the methods of this paper, one 
can analyze the Schwarzschild solution outside of the event 
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horizon. In Schwarzschild coordinates, the metric is 

ds'l = - (1 - 2mlr)dt2 

+ r sin2 () d¢ 2 + r d(}2 + (1 - 2mlr)-1 dr. 
(2.1) 

It was implied in the introductory remarks that certain 
frames hold a more fundamental role in the geometry than 
others. In particular, the freely falling frames are the most 
fundamental as they "move" with the local geometry. For 
the special relativistic treatment to follow, these frames will 
be associated with the lab frame as they are at rest with re
spect to the local geometry. For a freely falling observer that 
is released from rest at infinity, his tetrad will be labeled by 
ea, with ea . en = 1Jan and (ea' en ),y = 0 at all points along 
his world-line (the connection coefficients vanish in this 
frame along his world-line). Thus, special relativity holds in 
this frame on his world-line. 

The choice of a frame that can be integrated to foliate 
space-time is a very natural one in these coordinates, since 
a I at is a hypersurface orthogonal vector field. The orthonor
mal frames with four-velocity a I at are the static frames. The 
legs of this tetrad will be labeled as e~ . 

At each point of the world-line of a freely falling observ
er, there exists a boost to the static frame at that point. Using 
the relation for the four-velocity, u· u = - 1, it can be 
shown that the radial velocity of a particle released from rest 
at infinity is 

v' = u'luo = (1 - 2mlr)(2mlr)I/2, 

as measured from infinity.3 The locally measured velocity 
between the static frame at r and the freely falling frame at 
that point can be found using clocks that flow at the local 
ratedt = (1 - 2mlr)I/2 dtand the locally measured distance 
elementdr = (1 - 2mlr)-1/2 dr. These relations give the lo
cally measured velocity between the two frames at r (the 
boost velocityf 

d~ = ( 1 - 2m) - 1 dr = (2m)1I2. 
dt r dt r 

(2.2) 

It is interesting that this is the precise value predicted by 
Newtonian theory. 

The boost velocity allows one to determine the image of 
the freely falling frame in the basis of the static frame at the 
coordinate value of r by means of the transformation laws of 
special relativity 

eh = yeo + yve" (2.3a) 

e; = yveo + ye,. (2.3b) 

Each tetrad is composed of four vector fields. Two of 
the vector fields are unaltered by the boost, but the "0" and 
"r" fields are affected as in (2.3). The flow of time in the 
inertial frame is characterized by a rate corresponding to the 
length of the vector eo. If time flows at a unit rate in the 
inertial frame, it appears to flow at a rate y-l in the static 
frame. This corresponds to the projection on the timelike 
vector field eo, y-1eh, with all other ej = 0 (time dilation). 

To measure the length of the image of the vector field e, 
in the static frame, the base and tip ofthe vector e, must be 
simultaneous in the frame of measurement. Consequently, 
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one must use the inverse transformations 

eo = yeh - yve;, 

e, = - yveh + ye;, 

(2.4a) 

(2.4b) 

with eh = 0 being the condition of simultaneity. A unit flow 
along the e, direction in the freely falling frame corresponds 
to a flow ye; in the static frame. The image of the freely 
falling tetrad as viewed in the static frame can be pictured as 
in Fig. 1. It is convenient to label the legs of this image by Ea 
(i.e., Eo = y-1eh and E, = ye;). 

The images ofthe three spacelike legs of the freely fall
ing tetrad represent the tangent space to a manifold or equiv
alently, the best linear approximation to the manifold in a 
neighborhood of each point. The image of the fourth leg is 
the normal vector to the manifold and represents the rate of 
flow of proper time. The whole manifold can be pieced to
gether by using the Gauss-Codacci relations. In order to 
implement these equations, one needs to know the metric of 
the three-dimensional submanifold that is generated by the 
completely integrable distribution. First, using (2.2) 

r = (1- 2mlr)-I. (2.5) 

Then, the metric of the three-dimensional submanifold is 

i~=Ej .Ek =rsin2(}d¢2+rd(}2+rdr. (2.6) 

The normal vector to this three-surface is Eo = y-1eo' If one 
writes this vector as a unit vector in Schwarzschild coordi
nates 

na = N- 1(1, _Nm), 
then the Gauss-Codacci relations give a four-metric2 

/

N'N _N2 Ns / t,4) = s 

f.'y Ns ir 
= 1-(1-

0
2mlr) 0 I ir . 

Equation (2.7) is the same as (2.1). 

(2.7) 

This procedure is no longer defined at the event hori
zon, where the boost velocity approaches c. This is what one 
would expect as this is the static limit. 

III. STATIONARY FRAMES 

One might initially feel that since the observers with 
four-velocity a I at worked in the treatment of the Schwarzs
child metric that they would work in the Kerr solution. 
However, the stationary frames (with four-velocity a lat) do 
not play the same role in the Kerr geometry, since a I at is not 
a hypersurface orthogonal vector field. As an example of 

e,' 

FIG. 1. The image of the freely falling tetrad (left) in the static basis (right), 
with one dimension suppressed. 
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why this fails, consider the case of the rotating disk as first 
discussed by Einstein.4 Zel'dovich and Novikov show that 
the metric becomes5 

ds2 = (e2 - fl 2r'2)dt 2 - 2flr,2 d¢ , dt 

_ dz'2 _ r,2 d¢,2 _ dr,2. 

If one tries to interpret the disk as being a spacelike submani
fold that is orthogonal to the timelike vector field a/at then 
one encounters the ambiguity that clocks cannot be synchro
nized on the disk. The reason for this is that the three legs of 
the tetrad that are orthogonal to a/at do not lie in the tan
gent space to a manifold, since a/at is not hypersurface or
thogonal. In particular Xl' X 2 , and X3 do not close under 
commutation, [Xi ..¥;] #CtXk, where each of the i,j, or k 
can run over the spacelike indices 1,2, or 3. 

As a consequence, one would assume that the method 
of this article applied to these frames is a fruitless enterprise. 
Actually, it is not. Utilizing the results of Appendix A, one 
can derive Carter's equations of motion for freely falling 
frames. However, no global analysis can be deduced from 
the stationary frames. 

In a space-time with a metric containing off-diagonal 
terms, the spatial distance element is given by6 

dl 2 
= [gaP - (gOagop)/goo]dxa dxP. (3.1) 

The Kerr metric is given in Boyer-Lindquist coordi
nates by the line element 

dr =p2(dr/~ +d0 2) 

+ [(r2 + a2)sin2 0 + (2mra2/p2)sin4 0 ]d¢ 2 

- (4mra sin2 O/p2)d¢ dt - (I - 2mr/p2)dt2, 
(3.2) 

where p2 = r + a2 cos2 0, a is the angular momentum per 
unit mass, and ~ = r - 2mr + a2. Consequently, azi
muthal displacements are found by combining (3.1) and (3.2) 

dl 2 = [(r + a2 - 2mr)/(1 - 2mr/p2)]d¢ 2, (3.3) 

(3.4) 

In order to interpret relation (3.4), one can call on a fact 
about orthogonal boosts from special relativity.3 If rl- 2 

= (I - /3 i ) and r 2- 2 = (I - /3 ~), then the combined orthog
onal boost Lorentz contraction factor is given by 

r-2 = rl- 2r2- 2. (3.5) 

So if g;; I = Y and g,~ I = r,- 2 as in the Schwarzschild case 
and if (3.5) is written as y = J1, fr, then 

(3.6) 

This looks like the Lorentz contraction due to rotational 
motion with a lever arm length of p sin O. 

One can obtain Carter's equations of motion for a freely 
falling particle by using Eq. (A3) of Appendix A. These 
Wigner rotated velocities are appropriate since Carter's 
equations essentially piece together local coordinate patches 
along the world-line of the freely falling particle as viewed in 
the global frame of the stationary observers. The Wigner 
rotation is important for labeling coordinates and directions 
because each coordinate patch is Wigner rotated by a differ-
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ent amount with respect to the stationary frames. 
In order to implement (A3), the boost velocities must be 

written in terms of a local coordinate basis. Using the defini
tion of L", in (3.4), the obvious choice of basis is 

L - I a ( . 0 )-1 a d - I a e", = '" -= y",psm -an e, =r, -, 
a¢ a¢ ar 

(3.7) 

where r", and r, are taken to be constant in the local coordi
nate neighborhood. Then (3.6), (3.5), and (A3) (with i\ = ii, 
and v2 = v",) combine to give the four-velocity of a freely 
falling particle 

, (2mr - a2 sin2 0 )1/2 _ I a 
u = ~ 1/2 y, ar 

(2mr - a2 sin2 0 )1/2 a 

par' 
(3.8a) 

u'" = ( I - 2mr) - 112 a sin 0 L _ I ~ = !!.... ~. 
p2 ~ 1/2 '" a¢ ~ a¢ 

(3.8b) 

These are the radial and azimuthal components of Carter's 
equations of motion. 

There are four constants that must be determined if one 
desires to solve Carter's equations. They are M, the mass of 
the particle, the energy E = M, since the particle is released 
from rest, Lz , the angular momentum of the particle about 
the symmetry axis, and 22, which can be found from the 
other three, since Pe = 0 (Ref. 2). To find Lz , one need only 
to evaluate "near" infinity, since it is a conserved quantity. 
At asymptotic infinity, the dynamics are Newtonian for 
small rotational velocities. One has L z = Mv", relfective' The 
value of relfective is the lever arm lengthp sin 0 found in (3.6). 
The rotational velocity is determined from Eq. (A2). One is 
not interested in Wigner rotated velocities in this case. The 
azimuthal velocity of interest is the velocity that the freely 
falling frame is observed to have in the stationary frames 
"near" infinity. No matter how much the tetrad of the freely 
falling observer rotates, his azimuthal velocity will be the 
same as measured in the stationary frames 

v", = a sin O/p, therefore L z = Ma sin2 O. (3.9) 

Notice that L z is not equal to zero for a particle that is re
leased from rest at infinity even though v", _ O. The fourth 
constant is 

22 = M 2a2 cos2 0 sin2 O. 

Carter's equations are2 

dO =0 
dJ. ' 

dt M(r+a2) 
dJ. ~ 

dr M(2mr - a2 sin2 0 )1/2 - = --'--------'---. 
dJ. P 

d¢ Ma 
dJ. =-=t. 

(3.10) 

(3.lIa) 

(3. lIb) 

(3.llc) 

(3.lld) 

Equations (3.lIc) and (3.lId) reproduce (3.8a) and (3.8b) if 
one defines the affine parameter as dr = M dJ.. 
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This treatment is well defined as long as the boost veloc
ity is less than the speed oflight. From Eq. (A4), v = c at the 
stationary limit as expected. 

IV. THE ZERO ANGULAR MOMENTUM FRAMES 

From Carter's equations of motion and azimuthal sym
metry, one knows that the freely falling frames spiral down a 
surface of revolution toward the event horizon. At each 
point along this trajectory, there is a boost from the Riemann 
normal coordinates of the freely falling frame to the zero 
angular momentum frame (O-L frame) at that point (Fig. 2). 
These boosts will correspond to a relative velocity between 
the frames that has both a radial and azimuthal component. 
In general, the boost can only realize the O-L frame to zeroth 
order (at the point), since there will be an acceleration and 
precession between the two frames in addition to a relative 
velocity. As long as there is a unique boost for every point 
along the world-line of the freely falling observer, there is no 
ambiguity in neglecting the first-order effects of acceleration 
and precession. 

As in the Schwarzschild example, one wants to find the 
image of the inertial tetrad ea in the frame with a hypersur
face orthogonal four-velocity (with legs e~). Thus, one has 
the special relativistic transformations for two combined or
thogonal boosts3 

eb = yeo + ylvlel + Y2v2e2' 

ei = rvleo + Ylel + rvlv2e2' 

e; = rv2eo + rvlv2el + Y2e2' 

(4.1a) 

(4.1b) 

(4.1c) 

(4.1d) 

from which one can deduce as in the discussion following 
(2.3) that the clocks of the inertial observer appear time dilat
ed in the O-L frame, with time dilation factor (3.5), 
y- I =Yi IY2- 1

• 

The inverse equations are 

t Lorentz Boost 

A~ 
I 
I 
I 

~ 
I 
I 

I 

~ 
O-L frames Freely falling 

frames 

(4.2a) 

FIG. 2. There exists a Lorentz boost from the freely falling observer (right) 
to a O-L frame (left) at each point along his world-line. 
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el = - rvleb + Yle; + rvlv2e;, 

e2 = - rv2eb + rvlv2e; + Y2e;, 

e3 = e3· 

(4.2b) 

(4.2c) 

(4.2d) 

In analogy to the discussion following (2.4), if one associates 
the first boost with the "radial" direction and the second 
boost with the azimuthal direction, then a meter stick placed 
along the azimuthal direction in the inertial frame appears 
longer in the O-L frame by a factor Y ¢>. Similarly, a meter 
stick aligned with the radial direction in the freely falling 
frame appears longer by a factor Y, in the O-L frame. 

The legs of the image of the freely falling tetrad as they 
appear in the O-L frame are labeled as Ea. Pictorially, this 
image is given in Fig. 3. 

The boost velocities can be deduced using the results of 
Sec. III and the coordinate transformation from the station
ary frames to the O-L frames 3 

where eb is the four-velocity of the O-L frame, ea are the basis 
vectors of the stationary frame, and w== - g¢>t /g# . The cor
responding transformation for the coframes is given at the 
beginning of Appendix B. Using the natural isomorphism 
between vectors and covectors, (w¢>,e¢» = 1, the orthonor
mal covectors of the stationary frame at infinity are 

w¢> = r sin (J dcp, Wo = dt. (4.4) 

These relations can be used to rewrite the transformation of 
the covectors in Appendix B in terms of orthonormal co
frames 

(4.5) 

Equation (4.5) can be used to find the velocity between 
the freely falling frames and the O-L frames. One can make 
the approximation that w~ and the other basis forms are not 
exact differentials, but infinitesimal displacements 

... ~, 
" ,\ 

~, 
el' 

e~ 

FIG. 3. The image of the freely falling tetrad (left) in the O-L basis (right), 
with one dimension suppressed. 
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w~ -aninfinitesimalazimuthal displacement in theO-L 
frames, 

dl/J -an infinitesimal angular displacement in the sta
tionary frames at asymptotic infinity. 

The magnitudes of these displacements are obtained by 
taking the inner product of the forms with themselves 

(w~ ,w~) = w2g.p,p (wo,wo) - 2wg",,,, (wo,wl/J ) 

+g",,,,(rsin In-I(w,,,,w,,,). 
The metric coefficients in the orthonormal basis at asympto
tic infinity are gOO = - 1, t4> = 1, and jt>O = O. Thus, 

I ' 12 - 2 d 2 d",2 W'" -wg.p,p t +g",,,, 'I' • (4.6) 

Define the magnitude of the azimuthal displacement in the 
O-L frameas.Jx", ;::::;w",. Then, rewriting (4.6) in approximate 
form 

(4.7) 

(4.8) 

The quantity V~2 =g.p,p(.Jl/J/.Jtf can be recognized as the 
azimuthal velocity between the stationary frames and the 
freely falling frames. This is a pure velocity with no Wigner 
rotation as in (A2) and (3.9). Consequently, the azimuthal 
velocity [in the sense of (A2)] between the freely falling frame 
and the O-L frame at a point of space-time is 

2 2 +,2 V'" = - w g",,,, v'" . (4.9) 

This equation makes sense, since if v", = 0, then v~ = wg!/./, 
which is the velocity of the O-L frames as viewed from 
asymptotic infinity. 

Equations (3.9) and (3.2) can be inserted into (4.9) to give 

2 _ (1 +2mr/p2)(r+a2-2mr) 2' 28 
v .. - 2 a sm. (4 10) 

'I' P (r + a2) + 2mra2 sin2 8 . 

Remembering that v", = v",(l - V;)1/2, Eq. (A2) implies 

~ = [(r+a2)+(2mra2/p2)sin28]1p2. (4.11) 

Equivalently, 

~p2 sin2 8 =gw (4.12) 

The lever arm lengthp sin 80f(3.6) appears in Eq. (4.12) 
as well. The reason for this is that the relative motion 
between the O-L frames and the stationary frames is entirely 
in the azimuthal direction (both are defined at fixed values of 
rand 8). An azimuthal boost is perpendicular to the lever 
arm. Thus, this length would not be Lorentz contracted un
der a transformation from one frame to another. 

If one is to understand Eq. (4.12), then knowledge of the 
lever arm is essential. This is because Lorentz transforma
tions are made between vectors with dimensions of length. 
But, the O-L frames are defined with angular variables (a 
curvilinear basis). To give the dimensions of length to an 
angular displacement usually involves the introduction of a 
lever arm distance in the form e; = (the effective lever arm 
distance) e~, where e~ is a unit vector. Thus, one can define a 
rectangular basis locally as 

e; = e;, e2 =p sin 8e~, e3 =pe~, 

(4.13) 
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and e~ = u, the four-velocity of the O-L frame. 

Combining Eqs. (4.1), (4.2), and (4.13), the image of the 
freely falling tetrad in the O-L frame is (Fig. 3) 

E -I -I, 
0= Yr Y", eo, 

Er = Yre;, 

E", = Y",P sin 8e~, 

(4. 14a) 

(4.14b) 

(4.14c) 

Eo =pe~. (4. 14d) 

These can be evaluated explicitly using the fact that the 
O-L frames are defined at a fixed value of r. Thus, Yr will be 
the same as the value found for the stationary frames (3.5). 
Using this and (4.12), the completely integrable distribution 
spans the tangent space to a three-dimensional submanifold 
with a metric, as in (2.6), g\!) = E; . Ek 

t:r) = t;) = p2/.J , (4. 15a) 

g~~ = ~p2 sin2 8 

= (r + a2)sin2 8 + (2mra2/p2)sin4 8, 

g~J =p2. 

Employing (3.5), the time dilation factor is 

_ I [ r + a2 - 2mr ] 112 

Y = (r + a2) + (2mra2/p2)sin2 8 . 

(4.15b) 

(4.15c) 

(4.16) 

Not coincidentally, the length of the vector eo + we", is y- I 

as well. From (4.3) the four-velocity of the O-L frame is 

, _ eo + we", 
eo -

leo + we", I 
(4.17) 

Thus, one can conclude that y- I is the time dilation associat
ed with the proper time that flows along e~ in space-time 
orthogonal to the three-dimensional spacelike manifold. If 
one writes this normal vector as a unit vector in Boyer-Lind
quist coordinates 

na = N -1(1, _ N m ), 

then 

N"'= -w, N", =g",f' andN",Ns-N 2 =g". (4.18) 

The indices have been raised and lowered with the three
metric. Finally, one applies the Gauss-Codacci relations 
(2.7) in conjunction with the results (4.15) and (4.18) to get 

~~v) = [g" g"'t] . lSi- (3) = Kerr metnc. 
g",t g;k 

Inspection of (4.16) shows that the boost velocity ap
proaches c at the event horizon. Consequently, in order to 
study the space-time inside of the horizon, one must treat it 
as a separate space that asymptotically approaches the exter
nal space at the horizon. 

v. BETWEEN THE TWO HORIZONS 

There are two event horizons, at 
r ± = m ± (m 2 

- a2 )1I2. The region in between the horizons, 
! r/r + ;'r;'r _ J, is considerably different from the external 
region that was discussed in the preceding sections. The co
ordinate r is a measure of time in this region and the four
velocity of the O-L frames becomes a spacelike basis vector. 

Brian Punsly 1732 



                                                                                                                                    

The result is that the region is dynamical. The spacelike part 
of this region, in the O-L splitting of space-time, is actually an 
infinite cylinder with a cross section which is a two-dimen
sional spheroid of revolution (azimuthal symmetry). At r + 
and r _ this cross-sectional surface becomes lightlike. The 
two-dimensional spheroidal cross section varies with proper 
time r. The coordinate corresponding to eb = u is the mea
sure of length along the cylinder. This region is sometimes 
called an Einstein-Rosen bridge. The space is invariant un
der displacement along the u direction. Thus, frames at dif
ferent points on the bridge are best labeled by values of the 
proper time r. The main difficulty in applying the formalism 
of this paper is that the boundaries of this space are both null. 
The result is that the boosts that are described in this section 
are very near the speed oflight. An analysis along the lines of 
the previous sections will not be very enlightening, but is 
included for the sake of completeness. 

The best that can be done in the framework of this paper 
is to consider the region I r/r + - E;;,.r;;,.r _ + El for E an 
arbitrarily small positive number. The procedure for the 
most part is the same as for the external space-time. The 
hypersurface r = r + - E becomes identified with asympto
tic infinity. The O-L frames can still be used, since eb remains 
hypersurface orthogonal, except now to a hypersurface of 
signature (2,1). The Gauss-Codacci relations still apply to 
such a splitting of space-time. 

In the external space-time, the freely falling frames 
were released from rest. However, this is a very special case. 
Freely falling frames also exist with an initial velocity. This is 
the case of interest in the region between the horizons. In 
order to find this velocity, first note that the boost velocity 
from the freely falling frames to the O-L frames approached c 
in the radial direction at r = r + (4.16). But, v", was less than 
c at the horizon. So, there is reason to choose v'" (as defined in 
Appendix A) continuously across the horizon. In analogy to 
the external space-time, choose the boost from the freely 
falling frames to the O-L frames to have no radial component 
Vu = 0 at infinity (r + - E). This defines what will be called 
the preferred freely falling frames. The boost from the "stat
ic" frames at infinity r + - E that realize the preferred freely 
falling frames, is given by a velocity in the u direction 

2 2(m 2 - a2)1/2E 
Vo = 1 - (5.1) 

(r ~ + a2) + (2mr + a2 / p2+ )sin2 () 

This is approximately c, since the static frames (those that 
move with the local geometry) at the actual infinity r + are 
the outgoing principal null congruences. Thus, an observer 
at a constant value of the u coordinate (Le., any frame with a 
boost component Vu = 0 with respect to a O-L frame) would 
be moving at the speed of light with respect to the local ge
ometry as in (5.1). Of course, at r + - E, these statements are 
only approximate. 

This equation has interesting implications for the pre
ferred set of freely falling frames. One can define this Lor
entz frame in terms of the coordinates of the static frames at 
infinity that "move" with the local geometry. Consequently, 
as before, the static frames at asymptotic infinity will play 
the role of the lab frame. The legs of the tetrad of the pre
ferred freely falling observers, labeled E ~ can be written in 
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terms of the clocks and meter sticks of the static frame at 
infinity, labeled ea , as in (5.2) 

(5.2) 

This is still an inertial frame; one can think of the transfor
mation law as saying that the preferred freely falling observ
ers carry a coordinate grid that is not cubical, but rectangu
lar (actually the boundaries of extremely thin rectangular 
solids). The "natural" rate of time flow and distance mea
surement is given by the basis that is at rest with respect to 
the local geometry ea' This basis is an orthonormal basis. 
But, these observers stay on the null surface of the horizon 
forever. Therefore, they are useless for the purposes of this 
paper. The preferred freely falling observers fall the entire 
length of the bridge. Hence, they can be assimilated into the 
formalism of this article. However, the preferred freely fall
ing basis is necessarily an orthogonal basis in contrast to the 
static frames. Since it is an inertial frame, these observers 
transport this same rectangular grid as they fall from r + to 

The boost that realizes the O-L frame in the preferred 
freely falling basis is characterized by 

v~ = 1 - [2(m2 - a2)1/2E/(2mr - a2 - r)] 

xg",,,,(r,())/g,,,,,,(r + ,()), (5.3) 

and by the continuity of v"', Y '" is given by (4.11). 
Equations (4.1) and (4.2) give the image of the preferred 

freely falling tetrad in the O-L frames, in analogy to (4.14). In 
addition, one must employ (4.13) and (5.2) 

(5.4a) 

(5.4b) 

E", = Y",P sin ()e~, (5.4c) 

Eo = pe~. (5.4d) 

Then, using the explicit expressions (5.1), (5.3), (5.4), 
and (4.11), one can find the metric of the three-manifold of 
signature (2,1) that is generated by the completely integrable 
distribution 

is 

(5.5a) 

(5.5b) 

tJb = Eo . Eo = p2. (5.5c) 

The length of the normal vector to this three-manifold 

_ 1 [ r + a2 - 2mr ] 1/2 

Yu Yo = (r + a2) + 2mra2/p2)sin2 ()' (5.6) 

Implementation of the Gauss-Codacci relations (2.7) pro
ceeds exactly as in Sec. IV. Application of the explicit values 
in (5.6) and (5.5) results in the Kerr metric in this region. 

VI. INSIDE OF THE INNER HORIZON 

The region I r/O<;r<;r -l is very similar to the external 
space-time except that the situation is somewhat inverted. 
Both regions are bounded by a null hypersurface. However, 
they are distinct in character. Inside of the horizon, the null 
hypersurface plays the role of asymptotic infinity. The simi
larity is that the boost from the preferred freely falling 
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frames to the O-L frames is characterized by a radial velocity 
that approaches c near the horizon, as is the case in the exter
nal space-time. 

Inside of r _, r is again a spacelike coordinate and eo is 
timelike. In analogy to Sec. V, one defines a set of preferred 
freely falling frames so that v", is continuous across the hori
zon as in (5.1) and v, ---,> I at the horizon as in the external 
space-time. The boost from the static frames at infinity that 
realizes the preferred freely falling frames is in the radial 
direction and is given by the four-velocity 

u = Icos OI-I(I,sin 0,0,0). (6.1) 

These frames are special because as they fall freely, they 
come to rest on the hypersurface at r = 0. They simply rotate 
around the surface, azimuthally, at the end of their fall. As in 
(5.2), the legs of the tetrad of the preferred freely falling 
frame E ~ can be written in terms of the natural clocks and 
meter sticks of the static frames at infinity ea 

E; = Yo- Ie" and Eo = yio. (6.2) 

The boost from the preferred freely falling frame to the 
O-L frame is given by 

(6.3) 

and y", is given by (4.11), since v", is continuous. 
As in (5.4), the image of the preferred freely falling 

frame in the O-L frame is 

E -I -I , 0= y, y", yoeo, 

E, = y,Yo- Ie;, 

E", = y",p sin Oe~, 

(6.4a) 

(6.4b) 

(6.4c) 

EI} = pe~. (6.4d) 

The metric of the three-manifold that is spanned by the 
completely integrable distribution is obtained by using 
(4.11), (6.1), (6.3), and (6.4) 

t;; = E,. E, = Yryo-2 =p2/.:1, 

t:~ = E", . E", = np2 sin2 0 = (4.15b), 

ttJ = EI} . EI} =p2. 

(6.5a) 

(6.5b) 

(6.5c) 

The length of the normal vector or time dilation is 

y,-Iy",-I yo = (4.16). (6.6) 

Using (6.5) and (6.6), the calculations in the Gauss-Co-
dacci relations proceed in exactly the same way as in Sec. IV 
to regain the Kerr metric inside of the inner horizon. 

VII. THE KERR SOLUTION FOR a2 > m2 

The region inside of the inner event horizon is the same 
type of region, in the context of this paper, as the entire 
space-time for the case a2 > m 2

• The difference between the 
two regions is that asymptotic infinity is no longer a null 
hypersurface. In this situation, it is the limit as r ---,> 00 that is 
characterized by the stationary frames as in Sec. IV. The 
preferred freely falling frames have the same initial boost 
velocity from those frames that move with the local geome
try at infinity as in (6.1). Also, the boost from the preferred 
freely falling frames to the O-L frames is the same as in the 
last section, namely (6.3) and (4.11). The only difference is 
that r need not be less than r _, but can extend to infinity. 
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In this section, it will be shown that these boost veloc
ities in the previous paragraph are consistent with Carter's 
equations of motion. In Sec. III, the boost from the freely 
falling frames to the stationary frames was used to deduce 
Carter's equations of motion. Then, in Sec. IV, a coordinate 
transformation was implemented in deriving the boost to the 
O-L frames. This time, Carter's equations will be used to give 
the boost from the preferred freely falling frames to the sta
tionary frames and then a coordinate transformation to the 
O-L frames will result in a boost that is consistent with (6.3) 
and (4.11). 

To start with, one must determine the four constants of 
motion that characterize the preferred freely falling frames. 
The mass M will be the same as in Sec. III. The energy picks 
up a Lorentz contraction factor from (6.1) 

E= (cos O)-IM. (7.la) 

Then, as in (3.9) 

Lz = Ea sin2 0 = Ma sin2 Olcos 0, 

and since PI} = 0, 

f) =0. 

(7.lb) 

(7.lc) 

Carter's equations of free fall for a particle with the 
given initial conditions are 

dr M(r sin2 0 + 2mr cos2 0 )1/2 
-= (7.2a) 
d)' p cos 0 

d,p = Ma , (7.2b) 
d)' .:1 cos 0 

~ = M (r + a2
) (7.2c) 

d)' ..1 cos 0 

~=O. (7.2d) 
d)' 

These expressions can be related to a boost from the 
stationary frames by starting with (3.4), which is transcribed 
as (7.3) 

dl 2 = g,-; Ig ,-; Ip2 sin2 0 d,p 2=L ~ d,p 2. 

Then, (6.5) says 

g,-; I = r,- Iyo, 
-I - - -I 

g" = y,y", Yo . 

As in (3.7), a local coordinate basis is chosen 

(L )-1 a (- . Ll)-I a 
e", = '" a,p = y",P sm v a,p , 

(7.3) 

(7.4a) 

(7.4b) 

(7.5a) 

e = Yo ~ (7.5b) , r, ar' 
Equation (7.2) can be expressed in analogy to (3.8) as 

, _ (r sin2 0 + 2mr co~ 0)1/2 
U - e, (7.6a) 

..1 1/2 cos 0 ' 

'" asinO 
u = (I _ 2mrlp2) I 12 .:11/2 cos 0 e",. (7.6b) 

Utilizing Eqs. (A3) and (7.4), the boost parameters corre
sponding to (7.6) are 

v; = (r sin2 0 + 2mr cos2 0 )lp2, 

V~2 = a2 sin2 0 1..1. 
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The analysis leading to (4.8) goes through in the same 
way except there is an extra time dilation factor from the 
initial velocity of the preferred freely falling frames 

(
_.::iX-,--", )2 = _ w2g + g ( .::irp )2 
Yo- I .::it "'''' """ Yo- I .::it . 

(7.8) 

Equation (4.9) becomes 

v~ = - w2g""" cos2 e + v:r (7.9) 

Recall a fact from (A2) that as in (4.9), v", 

= v",(l - V;)1/2. Then, (7.9) can be used to give the azi
muthal boost parameter from the preferred freely falling 
frame to the O-L frame 

-2 (1 + 2mrlp2) 2 . 2 e (7.10) v", = a sm . 
(r + a2 )(2mra2 I p2)sin2 e 

Equation (7.10) is identical to (4.11) and since both the 
stationary frames and the O-L frames are defined at fixed 
values ofr, (7.7a) is equivalent to (6.3). One can conclude that 
Carter's equation's of motion are consistent with the local 
analysis involving the preferred freely falling frames. 

VIII. THE TWO-SURFACE AT f= 0 

The metric (3.2), restricted to r = 0, is 

ds2 = - dt 2 + cos2 e dr + a2 cos2 ede 2 + a2 sin2 e drp 2. 

(8.1) 

The metric of the hypersurface at r = 0 is the same as (8.1) 
with dr = O. The set r = 0 is a three-dimensional cylinder 
with a constant time cross section that is a two-dimensional 
spacelike surface. The techniques that have been developed 
in the previous sections can be used to obtain a physical 
understanding of the metric coefficients in (8.1). The ulti
mate nature of the hypersurface at r = 0 depends on the ex
tension of the metric through the ring singularity. It is com
monly assumed that the spacelike surface at r = 0 is an 
arbitrary separation of the space-time that results from the 
choice of coordinate patches that are used to cover the mani
fold. The two-surface at r = 0 is treated, trivially, as an ob
structive membrane that has no physical significance and 
can simply be extended through by choosing negative r val
ues. 1 It is the aim of this section to show that this surface is a 
fundamentally important structure in the space-time. Fur
thermore, there exist natural extensions that endow the two
surface with a topology that is not homotopically trivial, as is 
commonly assumed. 

It is possible to gain insight into the global properties of 
this two-surface by using special relativity in the manner 
that has been elaborated on in the previous sections. First of 
all, using (4.11) and (6.3) or (7.7), the four-velocity that real
izes the O-L frames in the preferred freely falling basis at 
r = 0 is azimuthal 

u = lcos e 1-1(I,O,sin e,O). (8.2) 

Furthermore, at r = 0, e~ = u (the four-velocity of the O-L 
frames) reduces to the vector field a lat. Consequently, (8.2) 
represents a boost to the stationary frames at r = O. One 
should recall the remark made in Sec. VI that the preferred 
freely falling frames are special as they come to rest on this 
two-surface and simply rotate around azimuthally. 
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acosBsin86cp 
~ 

Preferred freely 
fa II ing frame 

asin86cp 

-~ 
Boost~ 

Stationary frame 

FIG. 4. The induced mapping of azimuthal rings as viewed by the preferred 
freely falling observers to their image in the stationary frames. 

Now, some amazing results occur that allow one to 
piece together the entire two-surface. To see how this works, 
first notice that the four-velocity ofthe O-L frames is hyper
surface orthogonal everywhere on the surface. Then, by (8.2) 
and azimuthal symmetry, there is an induced map of azi
muthal rings as measured by the locally inertial observers to 
azimuthal rings as measured by stationary observers (Fig. 4). 
The next thing to notice is that in Appendix C, (C7), it is 
shown that the stationary frames do not precess with respect 
to the preferred freely falling basis at r = O. The only first
order effect is a radial acceleration that can be attributed to 
the rotational boost between the frames about the symmetry 
axis, (C8). As a result of Appendix B, (B3), it is also known 
that the surface has zero intrinsic or Gaussian curvature. 
Consequently, there is nothing to prevent one from placing 
one ring on top of another to get the induced mapping of 
global two-surfaces as pictured in Fig. S. 

In the stationary frame, one has a spherical shell corre
sponding to a radius oflength a. However, this surface is not 
geometrically a sphere, since the meridians turn out to be 
twisted. This point will be expounded on in the next few 
paragraphs. This shell appears to the stationary observers to 
be rotating at the maximum velocity that is permitted by 
special relativity, as v", = c at the equator 

v", = wa sin e = c sin e. 
The flat geometry of the inertial frames implies that the 

geometry of the two-surface, as viewed in this basis, is what 
one would expect by embedding the surface in a Euclidean 
three-space. The surface is two spheres of radius !a that are 
tangent at a point on the symmetry axis. The surface is para
metrized by 

r(e,rp) = alcos e I(sin e cos rp,sin e sin rp,cos e). (8.3) 

Preferred freely 
falling frame 

Lorentz 
Boost 

-------

Stationary frame 

FIG. 5. The global map of the two-surface as viewed by locally inertial ob
servers to its image in the stationary frames. 
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The metric coefficients are 

- (a a) 2 20. 2 0 g",,,, = a</J' a</J = a cos sm , 

- (a a) 2 
g9() = ao' ao = a . 

(8.4a) 

(8.4b) 

In order to explain the metric coefficients in (8.1), one 
must look at the image of this two-surface in the stationary 
frame. The g""" coefficient is an immediate consequence of 
the preceeding discussion of Lorentz contraction in this arti
cle applied to (8.2) and (8.4a). The gee coefficient in (8.1) can 
be understood by analyzing the headlight effect on null rays 
on these surfaces by means of the Doppler formula 

cos til = (cos t/J - P )/(1 - P cos t/J), (8.5) 

where t/J' and t/J are the angles that the null rays make with 
the direction of relative motion (azimuthal direction) in the 
rocket (stationary) and lab frames (freely falling), respective
ly. First, look at the Doppler formula for a photon along the 
direction a lao (meridian) in the two-surface that is embed
ded in the Euclidean three-space of the inertial frames. Thus, 
cos t/J = O. Sincep = 1 sin 0 I, cos t/J' = - 1 sin 0 I. Therefore, 
locally, one has the situation that is pictured in Fig. 6. Piec
ing the local geometries together, globally, the transformed 
null trajectories appear on the spherical shell as in Fig. 7. 

The projection of the transformed null meridians of the 
inertial surface on the latitudinal direction of the "spherical" 
stationary surface can be found by looking at local coordi
nate patches in the stationary frame (Fig. 8). The arc length 
of the meridian of the surface in Euclidean space was found 
in (8.4b) to be a dO. Since there is no relative motion between 
the frames in the 9 direction, the image of the null meridian 
in the stationary frame will also have length a dO. From Fig. 
8, the component of this arc length along a meridian of the 
stationary surface is a cos 0 dO. In conclusion, gee as mea
sured in the stationary frames is a2 cos2 0 in agreement with 
(8.1). 

The length of the bottom leg of the triangle in Fig. 8 is 
a sin 0 dO. The metric coefficient g",,,, implies that dO 
= ± d</J. Thus, the vector field that generates the trans

formed meridians is a lao + a I a</J or - a lao + a I a</J. By 
construction, these twisted meridians are the natural merid
ians of the surface (geodesics). 

It is amazing that special relativity can be used to de
scribe the geometry of the two-surface. The proof that it does 

~...--____ ala.s. 
ljI' 't' 

a 

Upper Hemisphere 

ala a 

a 
ljI' 

1"-.l..:..------ola4> 

Lower Hemisphere 
FIG. 6. The headlight effect as observed in a local coordinate patch in the 
stationary frame applied to the null meridians of the inertial two-surface. 
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Preferred freely 
falling frame 

Lorentz 
Boost 

Stationary frame 

FIG. 7. The global headlight effect in the stationary frames. 

is given by an explicit solution for the geodesic vector fields 
in the Kerr geometry restricted to r = O. In Appendix B, 
(B4), it is shown that the obstruction to a trivial normal bun
dle (normal Euler characteristic) is zero. The hypersurface at 
r = 0 is a trivial bundle. Thus, the spatial projections of the 
null geodesics in the hypersurface are the same as the geodes
ics of the two-surface. If X is a geodesic field, then V xX = O. 
To solve this equation, expand X in the orthonormal O-L 
basis. 

X=a",(sin O)-I~ + ae(cos O)-I~. 
a</J ao 

(8.6) 

All of the covariant derivatives involving O-L basis vector 
fields can be found from the connection coefficients of Ap
pendix B, (B2). Applying azimuthal symmetry and time 
translation invariance, the geodesic equation reduces to two 
coupled equations 

ae(a cos O)-I~(ae) + a~( - a sin 0)-1 = 0, (8.7a) 
BO 

aea",(a sin 0)-1 + ae(a cos O)-I-b!a",) = o. (8.Th) 
ao 

There are four null vector fields that are solutions in the 
hypersurface 

(8.8a) 

(8.8b) 

-+----4---- ali, 
FIG. 8. The projection of a transformed null meridian on the basis vectors 
a / ae and a / atjJ in a local coordinate patch of the stationary frame. 
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a a a 
ao + a¢ - at' (S.Sc) 

a a a 
ao - a¢ - at' (S.Sd) 

It should be noted that these are geodesics in the hypersur
face, but not in the bigger four-dimensional manifold. The 
solutions (S.S) are the same as those found from the special 
relativistic treatment. 

With these models of the hypersurface, one can make 
some remarks on the global topology of the two-surface at 
r = 0, by exploring the global geodesic structure. The twist
ed spherical shell that the stationary observers detect is topo
logically equivalent to the real projective space RP 2. 

A geodesic beginning at the north pole of the twisted 
spherical shell and ending at the equator is given by (S.Sa). 
Call such a geodesic with an initial azimuth, ¢ = 0, X (0) 

X (0) = Icos 0 I ee + sin Oe~ 0..;;0";;!1T. (S.9) 

This geodesic reaches the equator at the point 0 = ~1T, 
¢ = !1T. 

Define another geodesic that starts at 0 = !1T, ¢ = !1T, 
that is like solution (S.Sd). 

Y(O) = -Icos 0 I ee + Isin 0 I e~, O,,;;O,q1T. (S.lO) 

At 0 = !1T, Y (0) reaches the north pole. Thus, both X (0) and 
Y (0) are geodesics that connectthe same point on the equator 
to the north pole (Fig. 9). Conjugate points are a parameter 
distance !1T from each other. This is exactly what happens 
under the natural map of S 2 __ RP 2. 

Alternatively, if one continues a geodesic smoothly 
through the singularity at 0 = !1T to the lower hemisphere 
and then back to the north pole, one gets a global closed 
continuous geodesic which is always being dragged in the 
+ c!» direction by the headlight effect. Remembering that the 

coordinate 0 is bounded from above by 1T, there is a unique 
geodesic path Z (0 ) that is drawn in Fig. 10 

Z(O) = {X(~) 0";;~";;1T, (S.l1) 
Y(O) 1T";;0..;; 21T. 

If one propagates along Z (0) from the north pole in the 
+ 9 direction for a parameter distance !1T, then one has a 

geodesic starting at ¢ = 0, 0 = 0 that ends at the point 
¢ = !1T, 0 = !1T on the equator. If one propagates along Z (0 ) 
from the north pole along the - 9 direction for a parameter 
distance !1T, then one has a geodesic starting at ¢ = 1T, 0 = 0 
that ends at the point ¢ = !1T, 0 = !1T on the equator, as be
fore. The global geodesic structure identifies antipodal 
points on the equator. Consequently, the equator is topologi
cally RP l. A sphere with antipodal points identified on the 
equator is topologically equivalent to a disk with antipodal 
points on the boundary identified. This is a standard model 
of RP2. In terms of the previous discussion of conjugate 

1737 

FIG. 9. Two null geodesicsX(8) 
and Y(8) connect the same point 
on the equator to the north pole 
on the surface as viewed in the 
stationary frames. 
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FIG. 10. A continuous closed ge
odesic path on the two-surface in 
the stationary frames. 

points, the cut locus is RP l, which is characteristic of RP 2. 

Clearly, this is not the complete story. In Appendix B, it 
was found that K = O. The only compact two-surfaces that 
can be embedded with K = 0 are the Klein bottle and the 
torus (Rp 2 is compact). Thus, knowledge of the extension 
through the ring singularity is necessary for the determina
tion of the global structure of the surface. If one assumes that 
the surface is compact, then the most natural choice is the 
Klein bottle. The reason for this is the elementary topologi
cal fact that the Klein bottle is RP 2 # RP 2, where # denotes 
the connected sum.7 The connected sum is obtained by cut
ting out a region that is homotopically equivalent to a disk 
out of each RP 2 and then gluing them together along the 
boundary of the cut. 

The most general Kerr-Schild solution depends on a 
complex function. 8 For the Kerr metric, this function has a 
quadratic branch point at r = 0, 0 = !1T. The Klein bottle 
description is consistent with this. Thus, the manifold can be 
thought of as two sheets, with each RP 2 lying on a different 
sheet. Since r = 0, 0 = 11T is a quadratic branch point, one 
must pass through the ring singularity twice in the same 
direction to get back to the original sheet. This is precisely 
what happens with a Klein bottle. As one travels around the 
"outside," after one revolution, one ends up on the "inside." 
It takes two revolutions to get back to the outside. 

The most natural choice for the second RP 2 is obtained 
by the discrete isometry of the Kerr metric ¢ __ - ¢ and 
t __ - t. One can employ (S.Sa) and (S.Sd) to get the global 
closed geodesics on thisRP 2, in analogy to (S.ll). ThisRP 2 is 
distinct from the first. Even though RP 2 is not orientable, 
RP 1 is. As stated before, a model for RP 2 is a disk withRP 1 as 
a boundary. Thus, under the discrete isometry, the boundar
ies of the two disk models of RP 2 have opposite orientations. 

This choice of the extension has the property of inter
changing the roles of the ingoing and outgoing principal null 
congruences on each sheet. Explicitly, under discrete iso
metry 

(S.12) 

This interchange of principal null congruences was a moti
vation for the maximal analytic extension of Boyer and 
Lindquist.l Clearly, a different Rp 2 could be chosen for the 
connected sum, but this one is particularly natural and the 
metric is analytic. 

Once these properties of the two-surface have been ob
tained, it is of interest to know if this is just a random slicing 
of space-time or is it physically significant? To investigate 
this point, the role of the principal null congruences on this 
surface will be explored. One can use the Doppler shift dis-
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cussion that explained the metric coefficientg(}(} to interpret 
g" in (8.1). The surface as viewed by the locally inertial ob
servers is treated as if it is embedded in a Euclidean three
space. Thus, g" = 1. As with the null meridians, one can 
shoot light rays normal to this surface. The headlight effect 
is clearly exactly the same as before, so g" = cos2 (J. The 
transformed null rays as viewed in the stationary frame are 
the outgoing principle null geodesics. At r = 0, kout = (I, I, 
a-I,O)andk;n =(1, -1,a-I,O)(Ref.I).Thus,byinverting 
the argument, the spatial part of the outgoing principal null 
congruence is the normal vector field of the inertial two
surface. Similarly, as in (8.12), the ingoing principal null con
gruence corresponds to the normal vector field of the two
surface on the other sheet of space-time. 

APPENDIX A: COMBINING ORTHOGONAL LORENTZ 
BOOSTS 

Define two Lorentz boosts as L (VI) and L (v2 ), where VI 
= tanh-I(vn v2 = tanh-I(vn The quantities v~ and v! are 

the velocity parameters of L (VI) and L (v2), respectively. The 
corresponding Lorentz contraction factors are YI 
= (I - vi )-1/2 and Y2 = (I - V~ )-1/2. For a single boost, VI 

would be the three-velocity of the boost. In the case of com-
bined boosts, the component of the three-velocity in the di
rection that is labeled by I depends on both VI and v2• This 
will be defined explicitly. 

In this paper, VI corresponds to a radial boost and V2 
denotes an azimuthal boost. Since boosts do not commute, 
the order is important. In the Lorentz algebra, the product of 
two boosts is another boost composed with a Wigner rota
tion 

L (vl)L (v2 ) = L ((In)L (V3)' 

The explicit results are derived for orthogonal boosts. L ((In) 
is a rotation about the unit vector n, which is normal to the 
plane spanned by VI and V2' L (V3) is a boost that is character
ized by the four-velocity 

u = (I - Vi)-1/2(1 - V~)-1/2(I,vI,V2(1 - Vi)1/2,0). (AI) 

The three-velocity is given by Vi = ui/UO. 

V3 = (v l ,v2(1 - Vi)1/2,0). (A2) 

Since the Wigner rotation is in the plane spanned by VI 
and V2' sometimes one might be interested in V3 in a Wigner 
rotated basis. The combined effects of the rotation and the 
boost are defined by the velocities below: 

u = (I - Vi)-1/2(1 - V~)-1/2(I,vI(1 - V~)1/2,V2'0), (A3) 

v = (v l (1 - V~)1/2,V2'0). (A4) 

APPENDIX B: THE STRUCTURE EQUATIONS AT r = 0 

The structure equations will be solved in the orthonor
mal coframe of the O-L observers 

~= & [ 
r + aZ - 2mr ] 112 

(r + a2 ) + (2mraZ / p2)sin2 (J , 

, [r + a2 cosz(J ] liZ 
W = dr, 

r+a2-2mr 
w() = (r + aZ COSZ(J )1/2 d(J, 
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w¢> = sin (J [(r + a2) + (211'1ra2 / p2)sin2 (J ] 1/2 

X [d¢ - 2mra dt]. 
p2(r + a2) + 2mra2 sin2 (J 

The structure equations are dwa = w~ A wY• The solutions 
to these equations are very complicated at an arbitrary point 
of space-time. But, when these solutions are restricted to the 
hypersurface r = 0, w' = 0, one gets particularly simple ex
pressions 

wr
() = 0, w'(} = 0, w¢>, = 0, w¢>(} = d¢, 

Wi, = (m/a2 cos3 (J )dt - (m sin2 (J /a cos3 (J )d¢, (BI) 

w¢>, = (m sin (J /az cos3 (J)dt + (m sin3 (J /a cos3 (J )d¢. 

The first results that can be found from these solutions 
are the connection coefficients in the O-L frame 

(B2) 

Secondly, one can derive the second-order structure 
equations from (B 1), which give the topological invariants of 
the two-surface at r = ° 

R I'v = dwl'v + wI' a Awa
v, 

where RI' v is the curvature two-form, which is equivalent to 
the Riemann tensor. By direct calculation, when their values 
are restricted to r = 0, dw¢> () = ° and so does w¢> a A wa 

(). 

Thus, at r = 0, R¢> () = 0. Recall the relation from Cartan's 
method of moving frames 

dW¢>(J = -KdA +R¢>(}, (B3) 

where K is the Gaussian curvature of the spacelike two-sur
face at r = ° and dA = w(} A w¢> is the element of surface 
area. One can conclude that K = ° on this surface. 

The obstruction to the existence of a trivial normal bun
dle (the normal Euler characteristic), in curved space, is the 
integral over the surface of the two-form dw', 

dw', = - (m/a3 coss (J )(2 + sin2 (J )w() Aw¢>, (B4) 

L dw', = 0. (BS) 

APPENDIX C: THE ACCELERATION AND PRECESSION 
BETWEEN FRAMES 

The O-L frame is not an inertial frame, since by the 
results of Appendix B, the connection coefficients do not 
vanish. However, at anyone instant, there exists an inertial 
frame that is momentarily at rest with respect to the O-L 
frame at any point of space-time. This frame will not remain 
at rest, since in general there is a precession and acceleration 
between the two frames. This inertial frame is not one of the 
preferred freely falling frames, but can be obtained from 
them by a Lorentz boost. Consequently, in order to find the 
precession and acceleration of the preferred freely falling 
frames with respect to the O-L frames, one proceeds in two 
steps. First, find the acceleration and precession of the local 
inertial frame that is momentarily at rest with respect to the 
O-L frame at a point. Second, Lorentz boost this result, as a 
second-rank tensor, into the preferred freely falling frame at 
the point. 

The acceleration and precession of the first step can be 
determined from the connection coefficients defined in (B2), 
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as follows.2 Instantaneously, one can choose both frames to 
have the legs of their tetrads labeled e~. The four-velocity of 
the O-L observers as measured in their own frames is u = (1, 
0, 0, 0). This can be used to calculate the components of the 
antisymmetric tensor [JafJ that is defined by the equation 

(Cl) 

or, since u = (1,0,0, 0), Voe~ = [J~ep. One can define an 
expression for the antisymmetric tensor involving accelera
tions and precessions 

[JILV = aILuV _ ulLaV + uawpE"PILV. 

This allows one to identify components as [J,o = [Jo' 
= goc/1 0, = ar> the radial acceleration between frames [note 
that the metric expressed in terms of the O-L basis gatJ is 
diag( - 1, 1, 1, 1)]. Similarly, [J",' = - [J,'" = w, the 
precession of the O-L frame. From (C1) and (B2), one con
cludes that r ~ = [J ~. Then, from the expression for [JILV 

ljkO = - WiEOijk and rjOO = aj' 

Thus, at r= 0 

a = - (m/a cos3 (J Ie;, 
W = - (m sin (J /a 2 cos3 (J )e~. 

(C2) 

(C3) 

The second part is more complicated. The preferred 
freely falling frame is not at rest with respect to the O-L 
frame, even in a momentary sense. There is a boost to the 
inertial frame that is momentarily at rest. This boost has 
been found in (8.2) to be azimuthal with boost velocity 
c sin (J. LetAafJ be the generator of this boost. Then, rewrit
ing (Cl), one can get the acceleration and precession with 
respect to the preferred freely falling tetrad ea 

-A a{}P , -A anP(A -I)l! 
- Y aep - yU a pel!' 

The relative acceleration between the two frames is given by 
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Vueo =A g[J~(A -I)~el!' 

and the precession is given by 

VA =A f[J~(A -I)~el!' 

Explicitly, one has 

Vue", = (a,Pr+ yw)e" 

Vue, = - (f3ra, + yw)e", + (ra, + pyw)eo• 

Vueo = (ra, + wPr)e,. 

(C4) 

(C5) 

(C6a) 

(C6b) 

(C6c) 

Since the boost goes in the opposite way of (8.2), 
13 = - c sin (J and r = (cos (J )-1. Thus 

Vue", =0, 

Vue, = - (m/a2 cos2 (J leo, 

Vueo= -(m/a2 cos2 (J)e,. 

(C7a) 

(C7b) 

(C7c) 

There is no precession between the O-L frame and the 
preferred freely falling frame at any point on the two-surface 
at r = O. The acceleration vector is 

a = - (m/a2 cos2 (J Ie,. (C8) 
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Separation of variables for the Rarita-Schwinger equation on all type 0 
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We present a separable master equation governing Rarita-Schwinger spin-~ fields, valid in the 
whole class of type D vacuum backgrounds. 

I. INTRODUCTION 

One of the most striking uses of separation of variables 
as a tool for studying the properties ofa space-time was made 
by Carter,l who, while seeking to determine the geodesics of 
the Kerr solution in order to show that the analytic exten
sion he had constructed for it was maximal, was the first to 
realize that the Hamilton-Jacobi equation for the non-null 
geodesics and the Klein-Gordon equation for a massive 
spin-zero field are solvable by separation of variables when 
the Kerr metric is expressed in advanced null coordinates. 
Teukolsky2 subsequently extended Carter's result to higher 
spin wave equations when he studied gravitational perturba
tions and test electromagnetic and neutrino fields on the 
Kerr background. Assuming an algebraically special Petrov 
type D vacuum background (the class of which we shall de
note by g; 0 in what follows) he obtained a set of decoupled 
equations for the components of maximal spin weight 
s = ± 2, ± 1, ± ~ of these fields. He then showed that these 
equations, when expressed for the Kerr solution using 
Boyer-Lindquise coordinates and a Kinnersley4 tetrad, can 
be unified into a single separable master equation. The case 
of spin-~ fields was subsequently studied by Giiven,5 who 
considered linear perturbations of a Kerr black hole by a 
Rarita-Schwinger field in his proof of the no-hair conjecture 
for the uncharged black holes of supergravity theory.5-6 He 
succeeded under the assumption of a type D vacuum back
ground to obtain decoupled equations for two scalars which 
completely determine those solutions of the Rarita
Schwinger equations which cannot be generated from a 
vacuum by supersymmetry transformations. He then 
showed that these equations are separable when expressed 
for the Kerr solution using Boyer-Lindquist coordinates 
and a Kinnersley tetrad. 

In view of the validity of Teukolsky's and Giiven's de
coupling procedure for every solution in g; 0' one is lead to 
conjecture that the separation of Teukolsky's and Giiven's 
equations can be performed for the whole class g; o' This 
conjecture has been proved for Teukolsky's equations by 
Kamran and McLenaghan,8 who, thanks to the exhaustive 
integration and the single expression recently obtained by 
Debever, Kamran, and McLenaghan9- 12 for the general so
lution of the type D vacuum and electrovac field equations 
with cosmological constant, combined Teukolsky's equa
tions expressed for the g; 0 solutions as presented in Ref. 11 
(hereafter referred to as DKM) into a single separable master 
equation valid for gravitational, electromagnetic, and neu-

aJ Present address: CRMA, Universite de Montreal, Case Postale 6128, Suc
carsale "A," Montreal, P. Q. H3C 317, Canada. 

trino field perturbations. They also showed 13-14 that Chan
drasekhar's separation procedure 15 for the Dirac equation in 
the Kerr solution could be extended to the whole class g; 0 in 
the massless case. 

In the present paper, we are able to prove the above
mentioned conjecture for Giiven's equations by showing 
that they can be combined into a single equation which is 
solvable by separation of variables in the whole class g; 0 of 
type D vacuum solutions. In the proof, we use the symmetric 
tetrad and coordinates of DKM for the g; 0 solutions, thus 
showing that a Kinnersley tetrad is not necessary for separa
tion-a fact first pointed out for Teukolsky's equations in 
the Kerr case by Carter and McLenaghan. 16 

II. SEPARATION OF VARIABLES FOR THE RARITA
SCHWINGER EQUATION IN THE CLASS g; 0 

Using Debever's complex vectorial formalism,17 the 
Rarita-Schwinger equation on a curved background space
time may be written as 

(}2 /\HI _ (}3 /\H2 = 0, (2.1a) 

(2.lb) 

where the two forms HI and H2 are defined in terms of the 
components of the Majorana spinor-valued one-form t/! rep
resenting the spin-~ field 

t/!=( ~) , (2.lc) 

-FI 
by 

HI = dFI + 0'2 /\FI + 0'3/\F2' (2.2a) 

H2 = dF2 - 0'2/\F2 - 0'1 /\Fi' (2.2b) 

and where in Eqs. (2.2a) and (2.2b), the one-forms (11' 0'2' and 
0'3 are the complex vectorial components l8 of the matrix (£Jab 

of connection one-forms. 
Giiven shows in Ref. 5 that if the background space

time has a Petrov type D Weyl tensor and satisfies the Ein
stein vacuum field equations, there exists a null tetrad of 
basis one-forms and a supersymmetry gauge in which 

HI = aiel, H2 = b2e 2, (2.3a) 
where a l and b2 are scalars of Geroch, Held, and Penrose 
(GHP)19types { - 3, OJ and {3, OJ, respectively, and where, 
denoting by 1J12 the only nonvanishing GHP component of 
the Petrov type D Weyl tensor, 

e l :=1JI2(}2/\()4, e2:=1JI2()I/\()3. (2.3b) 

The scalars a 1 and b2 , which are invariant under supersym
metry transformations and gauge invariant in the sense of 
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Stewart and Walker,20 satisfy the following euqations: 

[(I" - ,0')(1' + 2p) - (d' - r)(d + 21') - W2]a l = 0, (2.4a) 

[(I' - ,0)(1" + 2p') - (d - r')(d' + 21") - W2]b2 = 0. (2.4b) 

The components FI and F2 of the Rarita-Schwinger 
field are completely determined by the scalars a I and b2 

through the relations (25)-(34) of Ref. 5, which indicate that 
a l and b2 may be interpreted as scalar Debye potentials for 
the Rarita-Schwinger field, analogous to those introduced 
by Cohen and Kegeles21 for neutrino, electromagnetic, and 
gravitational perturbations of space-times. 

Guven then shows that Eqs. (2.4a) and (2.4b) are solv
able by separation of variables when expressed in the Kerr 
solution using Boyer-Lindquist coordinates and a Kinners
ley tetrad. 

We now consider Eqs. (2.4a) and (2.4b) written in the 
single expression given in Theorems 1 and 2 ofDKM for the 
general solution of Einstein's field equations for the class ~ 0 
of Petrov type D vacuum metrics, using the symmetric null 
tetrad given by Eqs. (3.37)-(3.39) ofDKM. The separability 
result of Guven can be generalized through the following 
theorem, which is stated using the notations of DKM for the 
~ 0 solutions. 

Theorem: Guven's equations (2.4a) and (2.4b) when ex
pressed in the coordinates and symmetric null tetrad given in 

I 

Theorems 1,2 and Eqs. (3.37)-(3.39) ofDKM admit, for all 
solutions in the class ~ 0 and R -separable, 22 a solution of the 
form 

tP ± 312 (u,v,w,X) = ei(ru + qV)T (w,x) - 1/2Z (W,X)3/4 

xe-i3/H1(w,x)W ±3/2(W,x), (2.5a) 

where 

W ± 3/2 (w,x) = G ± 3/2 (w)H ± 312 (x), 

df!iJ = Z -1(€lm' dw + €2P' dx), 

Z: = €IP(w) - €2m(X), 

and where rand q are arbitrary real constants. 

(2.5b) 

(2.5c) 

(2.5d) 

The integrability condition for Eq. (2.5c) is equivalent23 

to the condition that the metric defined by DKM Eqs. (2.5) 
be of Petro v type D. We prove the above theorem by showing 
that tP ± 3/2 satisfies Guven's equations (2.4a) and (2.4b) if 
and only if W ± 3/2 satisfies the equation 

(DwsLws - DxsLxs + Fs(w,x))Ws(w,x) = 0, (2.6a) 

where s is a discrete parameter taking the values ~ and - ~ 

and where 

o fW a 2 [1 ( lsi) 1 (1 lsi )j2]W- I(p' .) IljW' Lws:= - -+--- - 1 +- -- -- Ir-€2'q - s , 
aw 1 +j2 2 s 2 s 

(2.6b) 

Lxs: = iX~ + l1x -1(€liq - mir) + ilslx', 
ax s 

(2.6c) 

Dws: = W~+_2_(~(1 +l1)j-~(l-l1)j-l)w-I(pir-€ziq) + W'(l-lsl), 
aw l+P 2 s 2 s 

(2.6d) 

Dxs: - iX~ + ~X-l(€liq - mir) + iX'(lsl- 1), 
ax lsi 

(2.6e) 

Fs: = - 2€IZ -I( - p' + im')(lslfs)(pir - €2iq) + ~j(W2)'€IZ -I( - p' + im') 

+ jW2€IZ -2 [EJJ'( - p' + im') + p"Z + €I( - p' + im')2] + 2€2Z -I(P' - im')(lsI/S)(€liq - mir) 

+ ~i(X2)'€2Z -I(p' _ im') + X 2€2Z -2[ - i€2m'(P' - im') - m"Z - €2(P' - im')2] - 2ZT-2W2, (2.6t) 

and where W(w) and X (x) are related to the DKM metric 
functions U(w) and V(x) by W= U l/2 andX= Vi/2. 

We shall prove that for all the solutions in ~ 0 and for 
s = -~,~, the functionFs defined by Eq. (2.6t) is of the form 

Fs(w,x) =.f.(w) + g.(x), (2.7a) 

in which case Eq. (2.6a) separates into the pair of decoupled 
ordinary differential equations 

(DwsLws + .f.(w) - As)Gs(w) = 0, 

(DxsLxs - gs(x) - As)Hs(x) = 0, 

(2.7b) 

(2.7c) 

where As is the separation constant. It should be noted that 
although the first-order operator Dw _ 3/2 is not defined for 
j= 0, the second-order operator Dw_ 312Lw- 312 reduces to 
a well-defined operator in this case. 

We now proceed with the proof of our theorem. By Eqs. 
(2.5b), (2.5c), and (2.5d) we have for s = ~ 
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(I" + 2p')tP3/2 = ei(ru + qV)2 -1I2T 1/2Z 1/4e - i3/4B 

X [Lw3/2 - jW€ IZ -I( - p' + im')] W3/2, 
(2.8a) 

(d' + 21")tP3/2 = ei(ru+qv)2-1/2TI/2Z 1/4e -i3/4B 

andfors = - ~ 

(I' + 2p)tP -3/2 

X [Lx3/2 - X€2Z -I(p' - im')] W3/2, 

= _j-Iei(ru+qV)2-ITI/2Z1/4e-i3/4B 

X [Lw_ 3/2 - jW€IZ -I( - p' + im')] W -3/2' 

(d + 21')tP -3/2 = - ei(ru +qv)2-1/2TI/2z 1/4e - i3/4B 

(2.8b) 

(2.8c) 

X [Lx _ 312 - X€2Z -I(p' - im')] W -3/2' 

(2.8d) 
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TABLE I. Explicit form of F3/2. 

Case 

4.j2(w + ix)ir + 2a%(w2 + x 2) - a(flx + glw) 
4irik + ix) + i(X2)'(k - iX)-1 - 2X2(k - ix)-2 - ~(k + ix)(k - iX)-2( - 6klz + 3igl ), where X2: = - f~2 + glx + k 21z 

4iriw + il) - f(W 2)'(w - il)-I + 2jW2(W - il)-2 - !(w + il)(w - il)-2( - 6ilg2 + 3fd, wherejW2: = - g2W + flw + l2g2 

- v'2xr-x-I(X2)' + 2x-2X 2 - (w +x-I)A, whereX2: = -fox' + f lx
3 

- f~2 + Ax 
o 

Moreover, if we define the functions 

Kw: = TZ- I/2Z -1/2[ WEIZ -I(ip' - (i/4)m') 

- 2-IWT-I~w], (2.9a) 

Kx: = T2- 1/2Z -1/2 [XE2Z -I( - !p' + i i m') 

+ 2-liXT-I~x], (2.9b) 

we have 

~ -p- - 2- 1/ 2Z -1/2TD + K .,.. - w312 w' 

(2.9c) 

IT'T-I/2Z3/4e-i3/4e6}'T, - 0 
- Y'2 Y' ± 3/2 - • 

It is then straightforward to show that Eq. (2.10) is identical 
to Eq. (2.6a). To complete the proof of the theorem, one has 
to show that Fs as defined by Eq. (2.6t) splits into the sum of a 
function of wand a function of x for every solution in ~ 0 and 
for s =~, -~. In order to do this, we calculate for each of the 
above values of s the expression of Fs using the expressions 
given after Theorem 2 ofDKM for the metric functions p, m, 
W, X, and T in the class ~ o. The explicit form of Fs for the 
vacuum case of each element of the exhaustive set 
fA *,Bo_ ,Bo+, C*, COO) ofcasesfortheclass~oenumer
ated after Theorem 2 of DKM is given in Table I. This is 
done for s = ~ only since the substitution s~ - s in Fs 
amounts simply to the replacement of rand q by - rand 
- q therein. 

From Table I, we see that Fs is indeed of the form given 
by Eq. (2.7a). This completes the proof of our result. 
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It' - p' = -/(2 -1/2Z -1/2TDw _ 3/2 + K
w

), 

(2.9d) 

where the operators Dw ± 3/2 and Dx ± 3/2 are, respectively, 
obtained from the operators DW±3/2 and DX±312 by per
forming the substitutions ir--+iJlau and iq--+iJlav. 

Now, by Eqs. (2.8) and (2.3), we can combine Eqs. (2.4a) 
and (2.4b) into the following single equation valid for both 
the positive and negative values of s being considered; that is, 
for s = - ~ and ~: 
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This paper deals with exact solutions of the Einstein-Maxwell equations. The solutions belong to 
a metric form which is a special case of the Robinson-Trautman form. The chosen metric form 
admits positive, zero, and negative Gaussian curvature (labeled E = 1,0, - 1, respectively) of its 
two-dimensional angularlike part. Some general properties of the solutions are given for all the 
values of E. All the explicit solutions for E = ± 1 are presented. They are of the Petrov type II. The 
physical meaning of E is discussed. 

I. INTRODUCTION 

The present paper deals with the exact solutions of the 
Einstein-Maxwell equations (without currents) 

Gpv = - Agpv + 2(FppF,/ + !,gpvFprFP7"), (Ua) 

F[pv,p] = 0, FPv;v = 0. (1.1b) 

The solutions are limited to a special case of the Robinson
Trautman metric form,1 namely 

d~ = ds~ + n dq2, (1.2a) 

where 

d~: = 4p2(1 + Eyy)-2dYdY + 2dp dq - Edq2, (1.2b) 

n: =p-2(2mp + f). (1.2c) 

No additional limitations are assumed. 
The meanings of the symbols are as follows: Gpv,gpv' 

and Fpv are the Einstein, metric, and electromagnetic field 
tensors, respectively; A is the cosmological constant; Y is a 
complex coordinate; p and q are real coordinates; m is an 
arbitrary real constant; f is a disposable real function that 
belongs to class C 2 and depends on all four coordinates Y, Y, 
p, and q; and E is a discrete parameter equal to 1, 0, or - 1. 
Here and below, every symbol with an overbar means a com
plex conjugate quantity of the given symbol. 

The signature is + + + - and the Ricci tensor is 
assumed as Rpv: = RPpvp ' Units are chosen such that 
c = K = 1, where c is the speed of light and K is the gravita
tional constant. 

The form d~ is the flat part of form (1.2a), while n 
determines the curvatures of space-times (1.2). Iff = 0, then 
Eqs. (1.2) are the well-known explicit solutions ofEqs. (1.1a) 
for A = Fpv = ° (i.e., of Rpv = 0), namely, that of Schwarzs
child for E = 1, that of Levi-Civita for E = 0, and that of 
Levi-Civita (anti-Schwarzschild) for E = - 1. Our aim is to 
find the explicit expressions off that fulfill Eqs. (1.1). 

In Sec. II some general properties of the solutions are 
briefly reviewed. In Sec. III all the explicit solutions for 
E#O, i.e., for E = ± 1, and their Petrov classification are 
given. All the explicit solutions for E = ° have been present
ed in another paper. 2 In Sec. IV the physical interpretation of 
parameter E is given. 

The present paper should be considered as a whole with 
Ref. 2 to encompass all the explicit solutions of Eqs. (1.1) 
with limitation (1.2). 

II. SOME GENERAL PROPERTIES 

When solving Eqs. (1.1) under condition (1.2) the 
known results3 that include explicit expressions ready for 
integration4 were used. After easy integration of a part of 
those expressions one finds that 

f = - !Ap4 + pA - BB. (2.1) 

From Eqs. (1.2) and (2.1) it is easy to see that function A 
must be real and that conditions A = A I + real const and 
A = A I are equivalent for every real expression A I since m is 
arbitrary. 

Ifwe assumeB #0, then from Eqs. (1.1), (1.2), and (2.1) 
we obtain 

A ,p = B,p = B,y = 0, (2.2a) 

A,yyB - A,yB,y + 4B,qB2(1 + Eyy)-2 = 0, (2.2b) 

A,yA,y(l + Eyy)2 - 8A,qBB = 0, (2.2c) 

and 
- --2 

F yp = 0, F yy = (B - B )( 1 + E YY) , 

Fpq = - ~p-2(B + B), (2.3) 

Fyq =!p-1B,y -!A,yB- 1. 

The electromagnetic field (2.3) vector potential Vp (that ful
fills the general equations Fpv = Vv,p - Vl',v and is deter
mined with an accuracy up to the gradient of an arbitrary 
function) is as follows: 

Vy = f B (1+EYY)-2 dY, Vy = f B(I+Eyy)-2dY, 

Vp = 0, Vq = -!A (B -I +B -I) + !p-I(B +B). (2.4) 

It is well known that the introduction of A into the Robin
son-Trautman metrics is very simp1e.5 This is the cause of 
the absence of A in Eqs. (2.2). Thus Eqs. (2.2) and (2.3) are 
special cases of the more general equations that have been 
given by Robinson et al.6 ,7 

As regards B = 0, it is easy to prove, making use ofEqs. 
(1.1b) and the explicit expressions mentioned at the begin
ning of this section, the following implication: if E#O, then 
A = const (i.e., A = 0). Thus if we assume E#O and B = 0, 
then we have no electromagnetic field and Eqs. (1.2) and (2,1) 
are the well-known Schwarzschild(E = l)-Levi-Civita 
(E = - l)-de Sitter solutions. If E = 0, then electromagnetic 
fields may exist for B = 0, namely, we then have 
Fyy =Fyp =Fpq =0, Fyq = C,A,y =A,y =A,p =0, and 
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A = 2Ce, where C is an arbitrary complex function of one .q 

real variable q only.2 
The curvature and electromagnetic field invariants and 

pseudoinvariants of space-times (1.2) and (2.1) are 

RJ1-vprR J1-vpr = 4p-8[(2mp + [f + (2mp + [- 2Blif 

+ (2mp + [ - Bli + Ap4)2] , (2.5a) 

RJ1-vprR prSrrRsa J1-v = 4p -12 [2(2mp + [)3 

+ 2(2mp + [ - 2Bli)3 

- (2mp + [ - BB + Ap4)3] , (2.5b) 

v 0 R R prS"R JLV - 0 (2 6) RJ1-vprR J1-vpr =, J1-vpr sa - , . 
FJ1-v F "'v= _p-4(B2+B2), (2.7) 

F,..]""'v = ip-4(B 2 _li2), (2.8) 

where R"vpr and F"v are dual with respect to the R"vpr and 
F"v tensors. We also have 

(F"v + iF,..v)(F"v + iF"V) = - 4p-4B2. (2.9) 

Equations (2.5)-(2.9) hold for both B #OandB = 0, and 
for all the values of E. Equation (2.9) means that our electro
magnetic fields are null if and only if B = O. This and the 
remarks given above imply that the electromagnetic field is 
either zero or non-null for E # 0 and may be nonzero and null 
forE = O. 

Vector k ": = lJ ~ is important for the space-times (1.2) 
in view of the Goldberg-Sachs theorem (generalized) and the 
concepts of principal null directions of the Weyl and electro
magnetic field tensors. In fact, the following conclusions (cf. 
Sec. 3 in Ref. 3) are obtained from Eqs. (1.2): k" is null, 
geodetic, shear-free, rotation-free, its expansion does not 
vanish, and if a given space-time (1.2) is not conformally flat, 
then k" is a double Debever-Penrose vector. We also con
clude from our F,..v that k["Fv1pk P = 0, i.e., k" is here a 
principal null vector of the electromagnetic fields. Since 
dq = k,.. dx" and vector k" is null for space-times both 
curved (1.2a) and flat (1.2b), Eqs. (1.2) represent the Kerr
Schild metric form. 

III. EXPLICIT SOLUTIONS FOR E#O AND THEIR 
PETROV CLASSIFICATION 

In this section we only consider the cases E = ± 1, 
since case E = 0 has been presented in another paper.2 If the 
presence of an electromagnetic field is assumed, it suffices to 
solve Eqs. (2.2) only (see Sec. II). The explicit solutions of 
Eqs. (2.2) are the following: 

A = 0, B = cP (Y), (3.1) 
where cP is an arbitrary analytic function of Yonly, and 

A = 2a In[(l - YY)(l + Y)-1(1 + y)-I] +!a In q, 

B = (aq)1/2eih, aq>O, E = - 1, (3.2) 

A = 2a In(1 + Err) +!a In q, B = (aq)1/2y, aq>O, 
(3.3) 

where a and b are arbitrary real constants. 8 

The limitations aq>O [the case a = 0 can be treated as 
an effect of the limiting transition B ---+ 0, which is admitted 
by Eqs. (2.2) and (2,3), see Eq. (AI) in Appendix A] result 
from Eq. (2.2c), which gives A,q >0, and can be reversed by 
the transformation q = - q'. The fact that the values of q 
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(for every given a # 0) are of one sign agrees with an invariant 
property of solutions (3.2) and (3.3). Indeed, it results from 
Eqs. (2.1) and (2.5) that for these solutions the strongest (sca
lar) singularities occur for q = 0, and also for p = 0 and in 
the cases E = - 1 for YY = 1. Thus space-times (3.2) and 
(3.3) cannot be extended beyond the boundaries P::' 0 or 
q = 0, and in the cases E = - 1 beyond boundaries YY = 1. 
Thus, each one of the solutions (3.2) and (3.3) represents 
more than one space-time for a given value of E( #0). 

Solution (3.2) exists only for E = - 1 and it does not 
have a counterpart in the Schwarzschild branch E = 1. This 
means that solution (3.2) is specific for the tachyon (see Sec. 
IV). Such a fact was probably unknown for the Robinson
Trautman-type solutions hitherto.9 

Solutions (3.1)-(3.3), together with Eq. (2.1), represent 
all the exact solutions of Eqs. (1.1) under limitation (1.2) for 
E#O. A proof of this theorem is given in Appendices A-E. 

Solution (3.1) has been given by many authors.3
,6,10 So

lutions (3.2) and (3.3) seem to be new. 11 

When determining the Petrov types we used Lemma 1 
from Ref. 3, since the premise of that lemma holds for the 
metric form (1.2). The following conclusions have been 
drawn: solution (3.1) is of the Petrov type [2, 1, 1] (Penrose's 
notation) if and only if (iff for short) cP,y #0, it is of type [2, 2] 
iff cP,y = 0 and at the same time cP #0 or m#O, and it is 
conformally flat iff cP = m = 0 (cf. p. 369 in Ref. 3); solutions 
(3.2) and (3.3) are of type [2, 1, 1] iff 0#0, they are of type [2, 
2] iff 0 = 0 and m#O, and they are conformally flat iff 
o=m=O. 

IV. ON THE PHYSICAL MEANING OF PARAMETER E 

Parameter E, equal to + 1 or 0 or - 1, is geometrically 
the sign of the Gaussian curvature of every two-dimensional 
surface defined by the conditions p = const # 0 and 
q = const. I ,12 

Physically E is of course a kinematic parameter and is 
commonly related to a speed of the singular source of the 
field that produces the curvature of a given space-time. 
Cases E = 1, since they belong to the Schwarzschild branch, 
have commonly and naturally been related to such sources 
moving slower than light (bradyons). Cases E = 0 and 
E = - 1 have been related to such sources moving with the 
speeds equal to (luxons) and greater than (tachyons) the 
speed of light, respectively. These interpretations for E = 0, 
- 1 have been given by many authors without l2

,13 as well as 
with justifications. A short justification treating cases E = 0 
as the limiting ones has been given on p. 470 of Ref. 1. Justifi
cations based on the shapes of singularities have been given 
for cases E = - 1 (see Refs. 14 and 15). 

Here another justification will be presented. 
Let us take the following coordinate transformations: 
Y = [z' + EI(X

2 + y2 + Z'2)1/2]-I(X + iy), 

p = Ez(X2 + y2 + Z'2)1I2, (4.1) 

q = t' + E2(XZ + y2 + Z'2)1/2, 

for E = 1; 
Y = (z' + t ')-I(X + iy), 

p = ~(z' + t'), (4.2) 

q = (z' + t ')-I(X2 + y2 + Z'2 _ t '2), 
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forE= 0; and 

Y = [t' + EI(t,2 - x2 - y2)1/2]-I(X + iy), 

(t 12 x 2 y2)1/2 p=E2 - - , 
, (t,2 x2 y2)1/2 q=z -E2 - - , 

t 12:>X2 + y2, (4.3) 

for E = - 1; where E/ = E/ = 1 and coordinates x, y, z', 
and t' are real. Coordinates z' and t' are additionally in
volved in the Lorentz transformations 

z' = (1 - V2)-1/2(Z - vt), t' = (1 - V2)-1/2(t - vz), 

0<V2 < 1. (4.4) 
These transformations give us by Eq. (1.2b) that 

d~ = dx2 + dy2 + d~ - dt 2, (4.S) 

for all the values of E. 

Now let us change our choice of units (Sec. I) so as to 
bring to light the gravitational constant K keeping c = 1. Let 
us also put A. = 0 and assume a non-null electromagnetic 
field, i.e.,B #0. Keepingn as in Eqs. (1.2c) and (2. 1) we must 
then replace n by KIl in Eq. (I.2a). The justification consists 
in switching off the gravitational interactions by the limiting 
transition K -+ O. Then from Eq. (1.2a) we obtain ds2 = ds~, 
thus we find ourselves in the flat space-time where the elec
tromagnetic field still exists and Eqs. (2.7) and (2.8) hold. 
Using the pseudo-Cartesian coordinate system [Eq. (4.S)] we 
can clearly determine in the flat space-time every geometri
cal shape including the shapes of physical singularities. In 
our case the latter are the shapes of p = 0 regions. These 
regions are singular sources of the electromagnetic fields by 
virtue of Eqs. (2.7) and (2.8), since B #0, in the space-time 
representation. From relations (4.1), (4.4), and (4.S) we see 
that the region p = 0 is a timeIike line for E = 1 and from 
relations (4.2), (4.4), and (4.S) that the regionp = 0 is a null 
hyperplane for E = 0 (see Ref. 16). Thus, in space we have the 
pointlike singular source moving with a speed less than that 
oflight (pointlike bradyon) for E = 1, and the plane singular 
source (perpendicular to the z axis) moving with the velocity 
of light (plane luxon) in the direction - z for E = O. 

The justification presented above has been given by Ple
banski.17 

Let us apply this justification to the cases E = - 1. 
Then from relations (4.3)-(4.S) we find that the regionp = 0 
is a null hypersurface. 18 The field of its normal vectors (that 
are null ones) is well behaved on the whole regionp = 0 ex
cept for the spacelike line x = y = t ' = O. Thus this line is 
geometrically distinguished on the hypersurface p = O. In 
fact, it is the edge of the p = 0 light wedge. 19 Thus it can be 
identified as a world-line of a pointlike tachyon. In space, in 
the reference frames characterized by v # 0 the singular 
source has the shape of a circular cone with the axis z. The 
cone expands along its normals (in space) with the speed of 
light and in consequence its vertex moves along the axis z 
with a velocity V = v - I. Since I V I > 1 and c = 1, this looks 
as if a pointlike tachyonic singular source moved along the 
axis z and generated its "ballistic" conical shock surface, 
which is the singular source of the electromagnetic field. In 
the v = 0 frame the source of the field has the shape of a 
cylinder with radius (x2 + y2)1/2 equal to t at every moment 
t> 0 and with axis z, i.e., it expands radially with the speed of 
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light, and the pointlike tachyon has infinite velocity along 
axis z at moment t = 0 (see Ref. 19). 

The above justification, consisting in the formal cancel
lation of the gravitational interactions (K -+ 0), seems to be 
reasonable if it is combined with the natural physical inter
pretation of the irremovable geometrical singularities of 
curved space-times. This natural interpretation consists of 
assuming that these singularities are a mathematical ideal
ization and that in the physical reality they represent appro
priately high but finite concentrations of physical fields (orl 
and matter) including, of course, the gravitational field (cf. 
Sec. 2 of Ref. IS). 

APPENDIX A: INTRODUCTORY REMARKS AND THE 
FIRST STEP OF THE PROOF 

To prove the theorem, saying that Eqs.(2.1) and (3.1)
(3.3) are all solutions of Eqs. (1.1) with limitation (1.2) for 
E = ± 1, the way of direct calculation was used. The main 
problem consisted of finding a relatively short path among a 
large number of possibilities. The relatively short path pre
sented below has been in fact a ghastly sequence of calcula
tions. Therefore, we give here only its scheme, putting em
phasis on the more important items so as to permit anybody 
interested to carry out easily the proof himself in detail. 

NotationforallAppendicesA-E:TheD,E,F,G,H, ... are 
complex functions of~o variables, Yand q, analytic in Y (or 
ofYand q analytic in Y for the symbol with an overbar). The 
g, h, j, k, I, ... are disposable complex functions of one real 
variable q. The a and b are arbitrary real constants. An in
teger subscript at any symbol does not change the above 
general meaning of the symbol. The y,;, 1/, {J, fP, and 1/1 are 
integer indices (1/, {J, fP, and 1/1 are defined in Appendix C). 

To obtain new solutions, i.e., involving the electromag
netic fields, fOfE#Owe must assumeB #0 (see Sec. II). Thus 
it suffices to solve Eqs. (2.2). Taking into account (2.2a) and 
integrating (2.2b) we get 

A,y = 4B [D + EB,qy- l (1 + Eyy)-I], (AI) 

where D is a disposable function. 
Assuming B = 0 we easily obtain from (AI) and (2.2c) ,q 

thatA = const, i.e., solution (3.1). 
Henceforth we put 
B,q#O. (A2) 

Let us assume 
B,y=O. (A3) 

We substitute A y from (AI) into (2.2c) and calculate 
A from such a (2.2c) and A,yq from (AI). Equating the ,qy . . 2 h 
obtained expressIons (A,qy =A,yq slllceAEC byt eassump-
tionfEC 2) and applying the bar operation we get 

- - 2-
YD (Eo + YEI + y2E2 + y 3E3) = Fo + YFI + Y F2, (A4) 

where 
Eo: = D,y - Ey- 2B,q, (ASa) 

E I: = EYD,y + 2E(YD),y - y-IB,q' (ASb) 

E2: = (y2D),y + 2Y(YD),y, (AS c) 

E3: = Ey(y 2D).y> (ASd) 

Fo: = - EB,qD,y + y-2B,qB,q = - EB,qEo, (A6a) 

FI: = 2(BD),q - B.qD - 2YB ,qD,y 
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+ 2€y- I(B,qB),q + €y-IB,qB,q, 

F2: = 2€Y(BD),q - €YB,q(YDJ.y. 

(A6b) 

(A6c) 

Relations (A2)--(ASa), (ASd), and (A6a) give us 

D #0, Eo#O, E3#0. (A7) 

Since (YD ),y = 0 and E3 # 0 we obtain from (A4) that 

FO=gIEI+gfl2+g~3' (A8a) 

FI =g1E2 +g2E3' (A8b) 

F2 = g1E3. (A8c) 

Eliminating (BD ),q from (A8b) and (A8c) we get a differen
tial (with respect to Y) equation for D. Its general solution is 

D = y-I(B,q + 2glY + €g2y2)-1 

X [ - 2€(B,qB),q - €B,qB,q + hIY]. (A9) 

Substituting such a D into (A4) we obtain by (A6a), (A 7), and 
(A8c) that 

hi = €glg2' 

(B,qB ),q = 0, 

and by (A7), (A8), (AlO), and (All) that 

2€glgl + g~2 + B,qB,q = 0, 

2glg2 + glB,q + €g~3 = O. 

Relations (A2), (A12), and (AB) give us 

€ = - 1, gl #0, g2#0. 

(AlO) 

(All) 

(A 12) 

(AB) 

(A14) 

Next, substituting D from (A9) into (A8a) we get a new alge
braic equation involving our functions of q. This equation 
and (AlO)-(A14) enable us to eliminate g2' g3' and g3' As a 
result we obtain the second-degree algebraic equation for g2 
with coefficients expressed by gl' gl' B,q' andB,q' Its two 
solutions are 

g2(1) =gl-2B,q(B,qB,q - 2g lgl), 
(AlS) 

g2(2) = -~(B,q)-I. 
Relations (Al)-(A3),A,yy = A,yy, (All), and the trans

formation q = q' + a l give us20 

B = (aq)1/2eib, a#O, (A16) 

i.e., B from (3.2). Relations (AI2) and (A14)-(A16) give us 

gl = !a I/2q-1/2eih, 

g2= _!aI/2q-1I2ei(b+2h), h=h (A17) 

(the same result is forbothg2(1) andg2(2))' Using (A..,! 6), (A17), 
and € = - 1 in (A9) and substituting such D and D into (A4) 
we get h,q = 0, i.e., h = real const. Transforming 
Y = Y' e - i(b + h) we obtain20 the following explicit form of 

(AI): 

A,y = 2ay-I[(1 + y)-I + (yy - 1)-1]. (A18) 

Integrating (A18) and using (AI6) and (2.2c) we get solution 
(3.2), which is the one and only solution in the branch B,q #0 
andB,y =0. 

Thus all possibilities are exhausted for B, y = 0 and 
henceforth we put 

B,y#O. (AI9) 

Relations (AI), (A2), and (AI9) will be valid in all the 
following Appendices B--E. 
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APPENDIX B: THE BEGINNING OF BRANCH 8,q8,y~O 

Let us define 

G: = (B,y)-IB #0, 

H: = (B,y)-IB,q #0, 

J: = (B,y)-ID, 

that give us 

G,q = G,yH -H,yG. 

(BI) 

(B2) 

From (AI) and A,yy = A,yy we calculate, using (BI), J 
and from J,y = 0 we get 

H(Ko+ YK I) = G(Lo + YLI)+Mo + YMI 

where 

Ko: = - I - G,y, 

K I: = 2€G - €Y(l + G,y), 

Lo: = -H,y, 

L I: = 2€H - EYH,y, 

Mo: = E(y-IH),y +J,Y> 

M I: = - 3y- IH + 2H,y + 3EYJ,y, 

(B3) 

(B4a) 

(B4b) 

(BSa) 

(BSb) 

(B6a) 

(B6b) 

M 2: = - 2EH + EYH,y + 3y2J,y, (B6c) 

M3: = Ey 3J,y, (B6d) 

Assuming Lo = 0 we have H = jl #0. Then from 
(B3),y, (B6c), and (B6d) we obtain J,y = 0, and then from 
(B4), (B6a), and (B6b) we get G = - €JI-1Iy-1 + j2 + Y. 
Such a G contradictsjl = H #0 by (B2). Thus we have 

Lo#O. (B7) 

Assuming LI = 0 we have H =j3y2, i.e.,j3#0. Then 
from [L O-

I(B3)],y, (B6a), and (B6b) weobtainJ,y = - Ej3' 
and then from (B4), (B6c), and (B6d) we get 
G = - Y + j4y2 + EJ3-13y3. Such a Gcontradictsj3#Oby 
(B2). Thus we have 

LI#O. (B8) 

Assumption (B9): 

Ko=O. (B9) 
This means by (B4) that G = II - Yand KI #0, which 

enables us to determine H, explicitly in terms of Yonly, from 
(B3). Substituting such G and H into (B2) we obtain, among 
other things, that J,y = 0 and II(Mo + IILo) = O. Assuming 
II #0 we get by (BSa) and (B6a) that H = 12y(E - YII)-I, 
which substituted into (B3) gives us by II #0 that 12 = 0, con
tradicting H #0. Thus II = 0 and from G = - Y, J,y = 0, 
(BI), (B3)-(B6), and (AI) we get 

A,y = 4/3y-2y-1 [14 + EI3,q(1 + Eyy)-I], 

B = 13y-Ieib, 13 = 13#0. (BlO) 

Integrating this A,y and substituting the obtained A as well 
asA,y andB from (BlO) into (2.2c) we get, after short calcula
tions of 13 and 14 and after the transformations q = q' + a l 
(see Ref. 20) and Y = Y'-Ieib (see Ref. 20), solution (3.3). 

Assumption (Bll): 

KI = O. (BII) 

This means by (B4) that G = Y + Isy2 and Ko#O. Act-
ing analogously to the preceding assumption we obtain here 
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Is = 0 and J,y = 0 and then, after similar calculations, also 
solution (3.3). 

Thus henceforth we can assume 

(Bt2) 

Relations (Bl)-(B8) and (Bt2) will be valid in all the 
following Appendices C-E, where we shall find no solutions. 

APPENDIX C: THE BEGINNING OF ASSUMPTION 

KoKd' ° 
Now we begin the more complicated part of the proof. 

Using (At) in (2.2c),y we express the latter in terms of G,(}, 
H, Ii, J, and J instead of B, E, D, and D. Next we calculate J 
from A,yy =A,yY, using (At) and (Bt), and H from (B3)
(B6). Substituting such Hand J into the modified (2.2c),y we 
obtain, after a long calculation, that 

- - 2- - - 2-
G (No + YNI + Y N2) + Po + YPI + Y P2 

3- 4-+ Y P3 + Y P4 = 0, (CI) 
where Ny and P~ are complicated expressions consisting of 
G, H, J, their derivatives, and Y. The explicit forms of these 
expressions will not be necessary in the following. It appears 
that Po + ... + y 4P4 can be presented as y 2y- IGH 2 

+ (1 + EYY) X three-degree polynomial of Y, thus 
Po + ... + y 4P4#ObyGH #0. This means thatthere exist r 
and t such that Ny #0 and P~ #0, and that G can be deter
mined, explicitly in terms of Yonly, from (CI). Thus we can 
define the following integer indices. 

'1] is the maximal r such that Ny #0. 
{} is the maximal t such that P~ #0. 
rp is the minimal r such that Ny # O. 
'" is the minimal t such that P~ #0. 
These definitions and (CI) give us 

N1] = nP{j #0, (C2) 

N", =rP",#O. (C3) 

Substituting G from (CI) into (B3), from H,y = 0 we get, 
applying the bar operation, that 

I(Ko + YKJl-I(Y"'N", + ... + Y1]N1])-1 [(Y"'N", 
- - -2 -3 + ... + y1]N1])(Mo + YMI + Y M2 + Y M3) 

- (Y"'P", + ... + y{jP{j)(Lo + YL I)] l.r = 0, (C4) 

where the superscripts at the }T's are powers (do not confuse 
the summation convention). 

Assumption (C5): 

J.y = O. (C5) 
From (B5b), (B6c), (B6d), (B8), and (C5) we obtain 

M2 = -LI#O, M3 =0. (C6) 
From (B8), (BI2), (C2), (C4), and (C6) we get 

LI =nIKI#O, (C7) 
for all the possible values of'1] and {}, except for the case when 
{} = '1] + 1 and n = - 1. 

If {} = '1] + 1 and n = - 1, then from (CI), G,y = 0, 
and (C2) we obtain N1]-1 +P{j_1 =rIP{j for '1]>0 and 
Po = rlPI for 7] = 0 (i.e., {} = 1). Using this, (C2), the as
sumptions {} = 7] + 1 and n = - 1, and (C6) in (C4), we get, 
from such a (C4) and by (BI2), that 

(C8) 
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The separate cases (C7) and (C8) cover the whole do
main of (C5). 

Case (C7): Integrating Y -3(C7) we get 

(C9) 

Substituting such an H into (B3) and using (C6) and (C7) we 
obtain 

G [nlKo - Lo + Y(n l - iil)KI] 

= Mo + Y(nlKo + MI ) + y2[ - n2KO 

+ (nl - iil)Kd - y 3n2KI • (ClO) 

Let us assume ii IKo - Lo = O. Integrating this equation 
and eliminating H from the result and (C9) we get 
G(nl - iiJl = n3 + (n l + iiJlY - n2y2, which gives us 
n l - iii #0 by n l #0. Substituting such a G into (ClO) we 
obtain Mo = 0, i.e., H = n4 Y. This and (C9) give us 
n2 = n3 = 0 and then a contradiction by (ClO) and by, e.g., 
(BI2) and n l #0. 

Thus we have nlKo - Lo#O and can calculate G from 
(ClO). From G,y = 0 we get among other results that 
Mo = ns(iilKo - Lo). Integrating this equation and eliminat
ingH from the result and (C9) we obtain Gin terms of Y, nl , 

n2, ns, and n6. Substituting such a G into (ClO) we get a 
polynomial of Yequal to zero. Its coefficients (equal to zero) 
give us Mo = 0, i.e., ns = 0 since iilKo - Lo#O, and then 
n2 = 0 by (BI2) and n l #0. The final result is 

G = n l- I(nl + n6)Y, H = n6Y' 

n l = iii #0, n6 = ii6#0, n2 = 0, (CII) 
which is the one and only solution of (C9) and (ClO). 

From (B2), (Cll), and (BI2) we get G = aYanda# ± 1. 
The obtained results and (B 1) enable us to express Band 

D in terms of Yand n6• Using such B and D in (AI) and 
(2.2c),y we get D = 0 and then a contradiction with (A2) by 
a # ± 1. This terminates case (C7). 

Case (C8): Integrating Y -3 (C8) we get 

H = (E - r l Y)-I( - Gr2Y + r2y2 + r3y3). (C12) 

Substituting such an H into (B3) and using (C6) and (C8) we 
obtain G X two-degree polynomial of Y = y4r3KI + three
degree polynomial of Y. Substituting G from (CI) into this 
equation and using (C2), (B 12), and the condition {} = 7] + 1, 
which holds here, we get r3 = 0 and then r2 #0 by (C12) and 
H #0. Thus the explicit form ofthe considered equation is 

- - - - 2- -
G [ELo + Y(r2KO - rlLo + ELI) + Y (r2KI - rILJl] 

= - EMo + Y( - E7~1 + ELo + E71LI + rlMo) 
2 - - - -

+ Y [r~o + rl2KI - rlLo + (E - rll)Ld 

+ y3(r2KI - riLl)' (C13) 

From (B7), (C13), and G,y = 0 we get among others that 
Mo = Er4LO' Integrating this equation and eliminating H 
from the result and (CI2) we obtain G in terms of Y, r l , r4 , 

and rs #0. Substituting such a G into (C13) we get a polyno
mial of Yequal to zero. Its coefficients (equal to zero) give us, 
among others, r4 = 75, and the final result is 

G = Y + rs( - E + rly)(l + 7sY)-I, 

H = r2rsY(1 + 7sy)-I, 

rlrs = 7ls, r2rS = 727s#0, r3 = O. 
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This is the one and only solution of(CI2) and (C13). 
Using (AI) in (2.2c) and substituting G and Ii from 

(CI4) into (2.2c),y(O,Y)-' we get a polynomial ofYequal to 
zero. We split an analysis of its coefficients (equal to zero) 
into the cases J = 0 and J #0, and then we easily obtain 
contradictions with, e.g., (A2). This terminates case (CS) and 
assumption (CS). 

Assumption (CI5): 

J,y#O. (CIS) 

This and (B6d) give us 

M3#0. (CI6) 

We shall split the following considerations into the 
cases {} > 'TJ + 2, {} < 'TJ + 2, and {} = 'TJ + 2. 

Case (CIl): 

{}>'TJ+2. (CI7) 

From (BS), (BI2), (C2), (C4), and (CI7) we get 

L, = s,K, #0. 

Integrating y- 3(CIS) we obtain 

H = s,(G - Y) + S2y2. 

(CIS) 

(CI9) 

Substituting such an H into (B3) we get by (CIS) that 
G [s,Ko - 1.0 + Y(s, - sdK,] = three-degree polynomial of 
Y. From (CI), (C2), (CI7), and (CIS) we then obtain that 
s, = s, and next from (CI9) that s,Ko - 1.0 
= - 2s, + 2S2Y #0. Thus G is a three-degree polynomial 

of Y. Substituting such a G and H from (C 19) into (B2) we get 
S2 = O. The final result is 

- 2s,G = Mo + Y(s,Ko + M,) 

+ y2(s,K\ + M2) + y 3M3. (C20) 

Thus the coefficients of the polynomial of Y on the right
hand side of(C20) are functions of q only. This gives a system 
of four equations, which enables us, by (B4) and (B6), to 
eliminate G,y, H,y, and J,y. Then it appears that H is also 
eliminated. AsaresultwegetG = S3Y-' + S4 + ssY + S6y2, 
which contradicts (CI6) and (C20). This terminates case 
(CI7). 

Case (C2l): 

{}<'TJ+2. (C21) 

From (BI2), (C2), (C4), (CI6), and (C21) we get 

M3 = u,Kl#O. 

Integrating Y -3 (C22) we obtain 

J = ul(Y-' - y-2G) + u2. 

(C22) 

(C23) 

Using (AI) and (BI) inA yy = A IT and sUbstitutingJ from 
(C23) into such anA,yy ~A,yy ":'egetHin termsofG, Y, U,' 
u2 , their complex conjugates, and Ii. Substituting such an H 
into (B3) we obtain, by (C22), that G(u,Ko + YOl 

2- 3- - - 2- -
+ Y Q2+ Y Q3)= Y(UlKO+EMO) + Y R 2+ y3R3 
+ y4R4 + yS(u2 - U2)y2K,. (The explicit forms ofQy and 
R~ will not be necessary in the following.) This, (B12), (CI), 
(C2), and (C21) give us U 2 = u2 • From (BI2) and (C22) we 
have u,Ko#O, thus Gcan be calculated (explicitly in terms of 
Yonly). From G,y = 0 we get U lKo + EMo = U3KO' Integrat
ing this equation and eliminating J from the result and (C23) 
we obtain 
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H = G [Eu,Y-' + (u, - u3)Y] 

- EU, + u4Y + (u, - U3)y2. (C24) 

Substituting H from (C24) and J from (C23) into 
A,IT = A,yy, where (AI) and (BI) are applied, and using 
U2 = U2 we get 

- - 2- -, - 2- 3-
G = (So + YS, + Y S2) (YTl + Y T2 + Y T3), (C2S) 

where 

So: = - Eu,Y(G + Y)#O, 

S,: = G [EU, + (u, - U3)y2] 

- EU3Y + U4y2 - u3y 3, 

S2: = (u, - u3 )Y(Y - G), 

T,: = - Eu3Y(G + Y) + E(U4 - U4)Y, 

T2: = G [ - EU, + U4Y + (u, - U3)y2] 

+ EU3Y + (u4 - U4)y 2 - u3y 3, 

T3: = u3Y(Y - G). 

(C26a) 

(C26b) 

(C26c) 

(C27a) 

(C27b) 

(C27c) 

Inequality So#O results from (BI2) and (C22). From (C2S), 
G.y = 0, (C26a), and (C27a) we get U 4 = u4 by (BI2). From 
(CI), (C2), (C21), (C22), (C25), (C26c), and (C27c) we get 
S2#0, i.e., u, - U3#O. 

Substituting G from (C2S) andH from (C24) into (B2) we 
obtain a polynomial of Yequal to zero. Its coefficient at the 
maximal power of Y is (u, - U3)(S2 + 1'3)1'3 (= 0). This 
means, by (C22) and u, - u3#O, that T3 = O. This implies 
U3 = 0 and then T, = 0 by U4 = u4. Then the coefficient at Y 
is 2Eu;So1'2 (= 0), i.e., T2 = O. Thus we get 
T, = T2 = T3 = 0 that contradicts G #0 by (C2S). This ter
minates case (C21). 

Case (C28): 

{} = 'TJ + 2. (C2S) 

From (BS), (BI2), (C2), (C4), (CI6), and (C2S) we get 

nM3 =L l +sK,. (C29) 

Let us assume 

Mo=O. (C30) 

From (BSa), (B6a), (B6b), and (C30) we have 

M, = Lo. (C31) 

Eliminating J,y from (C29) and (C30) and integrating the 
result we obtain H = (En Y - 1) -'(sG - s Y + V, y2). Substi
tuting such an H into (B3) we get G( ... + Eny 2Ld 
= ... - Eny4M3. Substituting G from (CI) and using (C2) 

and (C2S) we obtain nM3 = L,. This means, by (BI2) and 
(C29), that 

s =0. (C32) 
The final result, taking into account (C29)-(C32), is 

G = [-1.0 + Y(EnLo -1.,) + Eny2L,]-l 

X Y[Lo + Y(vlKo - EnLo + M2) 

+ y2(v,K, + ii-'Ll - EnM2) 

- Enii-' y 3L,], (C33) 

H=v,y2(EnY-l)-', J=V2-EY-'H, (C34) 

i.e., v, #0 since H #0. From (C33) and G,y = 0 we get a 
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system of equations involving, after the bar operation, the 
expressions Ko, K I , L o, L I , and M 2• From this system and 
(C34) we obtain 

G = (EnY - 1)-IY(1 + ii-Iy - Enii- Iy 2), 

(C3S) 

Equations (C34) and (C3S) are the one and only solution of 
(C29)-(C33). 

Using (AI) in (2.2c) and substituting G, H, andJ from 
(C34) and (C3S) into (2.2c),y(B,y)-1 we get a polynomial ofY 
equal to zero. We split an analysis of its coefficients (equal to 
zero) into the cases v2#0 and V2 = O. For v2#0 we obtain a 
contradiction with (C3S), and for V2 = 0 with, e.g., (A2) or 
(CIS). This terminates subcase (C30). 

Thus henceforth we put 

Mo#O. (C36) 

APPENDIX D: CONTINUATION OF CASE (C28) FOR 
Mo#O 

Relations (AI), (A2), (AI9), (BI)-(BS), (BI2), (CI)-(C4), 
(CIS), (CI6), (C2S), (C29), and (C36) are valid in the follow
ing. 

We shall split our considerations into the assumptions 
f/! > q;, f/! < q;, and f/! = q; [see (C3) and (C4)]. 

Assumption (DI): 

f/!>q;. (DI) 

From (BI2), (C3), (C4), (C36), and (DI) we get 

(D2) 

Eliminating J,y from (C29) and (D2) and integrating the re
sult we obtain H=(EnY-I)-I[G(s-nw l y 2) 
- sY + w2y 2 - nwl y 3]. Substituting such an H into (B3) 

3- -I 4 - -wegetG=(· .. -nwIY K I) [ ... +nY (wiKI +EM3)].Sub-
stituting such a G into (CI) we obtain a contradiction with 
(BI2), (C2), and (D2) by (C2S). This terminates assumption 
(DI). 

Assumption (D3): 

f/!<q;. (D3) 

From (B7), (BI2), (C3), (C4), and (D3) we get 

Lo= W3KO#0. 

Integrating (D4) we obtain 

H= W3(G+ Y) + W4. 

(D4) 

(DS) 

Substituting such an H into (B3) we get, by (CI6) and (D4), 
that 

G [(W3 - w3)Ko + Y(W3KI - IIl] 

= Mo - W4KO + Y(MI - W3KO - w4K I) 

+ y2(M2 - W3KI) + y3M3#0. (D6) 

Substituting G from (D6) into (CI) and taking into account 
(B12), (C3), and (D3) we obtain W3 = W3, i.e., W3KI - II #0 
by (D6), and then Mo - W4KO#0 by (CI), (C3), (D3), and 
(D6). Using these in (D6) and substituting then G from (D6) 
and H from (DS) into (B2) we get W 4 = O. From (DS), 
W3 = W3, and W4 = 0 we obtain that W3KI - II = - 2Ew3Y 
and then from (CI6), (C36), and (D6) thatMo = wsY #0 and 
M3 = w6 Y #0. Eliminating J,y from the two last relations 
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and integrating the result we get H = W6 + w7Y + !EWs y 3• 

Substituting such an H into (DS) we obtain G that contra
dicts, e.g., (C36) by (D6) and W3 - W3 = W4 = O. This termin
ates assumption (D3). 

Assumption (D7): 

f/! = q;. (D7) 

From (B7), (BI2), (C3), (C4), (C36), and (D7) we get 

rMo = Lo + kKo· (DS) 

EliminatingJ,y from (C29) and (DS) [nr#Oby (C2) and (C3)] 
and integrating the result we get H in terms of G, Y, and 
functions of q. Substituting such an H into (B3) we obtain an 
equation that enables us, by (CI6) or (C36), to calculate G 
(explicitly in terms of Yonly). Substituting such a Ginto (CI) 
and using (C2), (C2S), and (C29) [or (C3), (D7), and (DS)] we 
get, by (BI2), that 

k=s. (D9) 

Using (D9), the function H that has been obtained above is 

H = (- 1 + EnY + nr-Iy2)-I[G(s - nr- lsy2) 

-sY+nuy2-nr- lsy3]. (DIO) 

Integrating (DS) and using (D9) and (DIO) we get 

J = (- 1 + EnY + nr- Iy 2)-I! G[ - ESy- 1 + r- l (5 - s)] 

+ ES + W + [r-I(s + S) - En(u + w)]Y 

(DII) 

Substituting G from (CI) and H from (DIO) into (B2) 
and using (C2), (C3), (C2S), and (D7) we get a polynomial of Y 

. equal to zero. Its coefficients (equal to zero) at the maximal 
and minimal powers of Y give us 

n,q = sIn + Er), r,q = s(Eii + r). (D12) 

Substituting Hand H from (D 10) and J and J from 
(DII) intoA,yy = A,yy, where (AI) and (BI) are used, we get 

9 1 + 9 2G+ 9 3G+ 9 4GG=0, (DB) 

where the 9 r 's are polynomials of Yand Y with coefficients 
consisting of n, r, s, u, w, and their complex conjugates. The 
explicit form of (D 13) is very long. 

SubstitutingG from(CI)into(DB) and using (C2), (C3), 
(C2S), and (D7) we obtain a polynomial of Yequal to zero. Its 
coefficients (equal to zero) at the maximal and minimal pow
ers of Y, after being divided by P 1J and P"" respectively, are 
polynomials of Y since the expressions including G cancel 
themselves there. Coefficients (equal to zero) of these two 
polynomials of Y give us 

u - U = (s - S)[(nii)-I + (rr}-I], (DI4) 

W - W = (5 -s)(rr}-I. (DIS) 

Let us assume s = O. This means that u # 0 by (D 10) and 
H #0. The conditions = 0 makes (DB) much simpler, e.g., 
9 4 = O. Using such a (DI3) we can, by u#O, express G as a 
quotient of polynomials of Y. Dividing these polynomials 
themselves we get G = - ii-I y2 + Y(l - 2Eii- Iy- l

) + a 
quotient of two-degree polynomials of Y. This contradicts 
G,y = O. Thus we have 

s#O. (DI6) 
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APPENDIX E: CONTINUATION OF ASSUMPTION (07) 
FORs#O 

Relations (AI), (A2), (A19), (B1)-(BS), (B12), (C1)-(C4), 
(CIS), (C16), (C2S), (C29), (C36), and (07)-(016) are valid in 
the following part of the proof where some new tricks have to 
be applied. 

Using (AI) in (2.2c) and substituting H from (010), J 
from (011), and then G from (C1) into (2.2c) y(By)-1 we get 
a polynomial of Y equal to zero. Its coefflcien'ts (equal to 
zero) at the maximal and minimal powers of Y give us, by 
(C2), (C3), (C2S), (07), (014), and (015), that 

D [s + 2n(u + w)Y] + D,y[ - sY + n(u + W)y2] 

-2D,q =0, 

3sU + C!,y(rw + sY) - 2U.q = 0, 

where 

(E1) 

(E2a) 

U: = Ey-IB,q + D #0. (E2b) 

Inequality U #0 results from (C36). 
Using (B1) we express (El) and (E2) in terms of G, H, 

and Jinstead ofB andD. SubstitutingH from (010),J from 
(011), and then G from (C 1) into the modified (E 1) and (E2) 
we get two polynomials of Yequal to zero. Some their coeffi
cients (equal to zero) enable us to find the equations involv
ing our functions of q. The coefficient at the minimal power 
of Yin the polynomial generated by (E1) gives us 

S,q =Y, (E3) 

by (C3), (07), and (016). The coefficient at the power of Y 
following the minimal power in the same polynomial gives 
us, after a long calculation, that 

2w,q = - 2ES2 - 3nr- ls2 + Enr-Isu + sw(l - Enr- I) 

+ (r?)-I(S - s)(s + 2S - 2Eiir- IS), (E4) 

by (C3), (07), (012), (E3), and by the fact that the terms 
including N'I' + I and P", + I cancel themselves. The coeffi
cient at the maximal power of Yin the polynomial generated 
by (E2) vanishes by (E3). The coefficient at the power of Y 
preceding the maximal power in the same polynomial gives 
us 

2(u + w),q = - 2E'P - 3ii- Ir'P + su(l - 2Eii- Ir) 

+ sw(l - Eii-Ir) + (nii)-I(s - S) 

X (S + 2s - 2En -Irs), (ES) 

by (~2), (C2S), (012), and (E3) (the terms including N'1- 1 
and P if _ I do not appear there). 

The general solution of (E2a) with condition (E3) is 

U=S3/4W(X), (E6a) 

X:=SI/4y+ ~frsI/4Wdq, (E6b) 

where W is an arbitrary, but different from zero by (E2b), 
analytic function of one complex variable X. 

Using (E6b) as a coordinate transformation we now in
troduce a new coordinate system X, X, p, q. This is possible 
by (016). 

Let us consider an expression Z: = X 2 W.x W -I. In the 
new coordinate system we have Z,q = O. Using (C1), (010), 
(011), and (E6b) we express G, H, and J explicitly in terms of 
X instead of Y. Next, using (B1), (E2b), theH and Jjust now 
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obtained in terms of X, (C2S), and (E6) we get, by (A 19), Z as 
a quotient of polynomials of X. A degree of the polynomial in 
the numerator is greater by 1 than that in the denominator. 
In each one of these polynomials we explicitly calculate, us
ing (C2), (014), and (015), only the coefficients at two maxi
mal powers of X. Oividing these polynomials themselves we 
get Z = X + t I + the rest of the division, where 
tl: =EsI/4[-r+3iis- l(u+w)] +!frsI/4wdq. We have 
Z,q = 0 here, thus tl has to be constant, i.e., tl,q = O. This 
gives us, after the bar operation, that 

6(u + w),q = 2ES2 + 3n- Irs2 + 3su(1 - 2En- l?) 

+ sw(3 - 7En- l?) + Es(nr)-I(S - s). (E7) 

Using (012), (014), (015), and (E3) we find that 
(u + w),q = (u + w),q + terms including n, r, s, and their 
complex conjugates (without derivatives). Substituting such 

a (u + w),q into (ES) and using there (014) and (015) with 
respect to u and W leaving (u + w),q intact we get another 
equation determining the latter. Eliminating (u + w),q from 
this equation and (E7) we obtain 

W = S(3E + 2nr- l) + (rr) -I(S - s). (ES) 

Substituting such a W into (E4) and using (012) and (E3) we 
get an equation determining u. Adding this equation and 
(ES) we obtain 

(E9) 

Eliminating u and W by means of(ES) and (E9) we easily 
get from the appropriate preceding equations and (016) that 

n + if = 0 (ElOa) 

and then that 

s = s, u = U = - ES, 

W = W = ES, U + W = O. 
(ElOb) 

From (012) and (ElOa) we have 

n,q = r,q = O. (Ell) 

Now restoring the old Y, Y,p, q coordinate system and 
using (ElO) in (013) we get after a calculation that 

(E12a) 

and then from (010), (011), and (E 10) that 
H = - sG, J = n-Isy- I. (E12b) 

Using (AI) in (2.2cJ.y(B,yB,y)-1 and expressing the latter in 
terms of G, H, J, their derivatives, G, H, and J we obtain, by 
(E12), a polynomial of Yand Yequal to zero. Its coefficients 
depend algebraically on nand ii only, by (016), (E3), and 
(E 11), and are different from zero, which is a contradiction, 

This terminates the proof since all possibilities have 
been exhausted, provided Providence has protected me from 
making a mistake in the calculations (which were carefully 
checked). 
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This paper is a continuation of the work of Bonnor and Raychaudhuri on a charged dust 
distribution in rigid rotation in general relativity. Here the authors are concerned with the similar 
problem of a charged perfect fluid with nonvanishing pressure. As in Raychaudhuri's work, 
symmetry-independent reduction of Einstein-Maxwell equations is undertaken. Certain 
assumptions in Raychaudhuri's paper regarding the inheritance by the electromagnetic field of 
the symmetry resulting from the rigidity of the motion are justified. 

I. INTRODUCTION 

In a recent paper Raychaudhuri 1 considered the prob
lem of a rigidly rotating charged dust distribution in general 
relativity. He introduced no symmetry assumption and re
duced the Einstein-Maxwell equations to a relatively simple 
set of equations on the assumption that the electromagnetic 
four-potential (A 1-') and the fluid velocity vector (v 1-') are 
everywhere coincident in direction, i.e., A I-' = kv I-' , where k 
is a scalar. In that paper Raychaudhuri did not mention any 
particular gauge, nor did he justify his assumptions regard
ing the inheritance of the symmetry consequent upon the 
rigidity of motion by the local electric and magnetic fields 
and the scalar k. These points have been clarified in the pres
ent paper (in the Appendix) and the corresponding situation 
in the perfect fluid case is considered. Particular attention is 
given to the two interesting and simple cases where either k is 
a constant or the fluid motion is geodesic. 

II. REDUCTION OF THE EINSTEIN-MAXWELL FIELD 
EQUATIONS 

with 

and 

From the condition of rigid motion one has 

vI-' =A51-', 

vI-' (==vl-' ;"v ") = (In A );1-" 

(2.1) 

where 51-' is a timelike Killing vector field, A is a scalar field, 
and a a P and (J are the shear tensor and expansion, respec
tively. Defining the local electric and magnetic fields by 

EI-'=Fal-'va, 

B I-' = 1 nal-'"uF V :2 ., Va' a' 

one has, from Maxwell's equations (assuming convective 
current only) 

Ea;a + Eava - 2Bawa = 41Ta, 

(E P E ;p) a /3a;"U( • B B ° ;a- a V -1] V;,.Va u+ V;" u;a)=' 

B a;a + B I-'VI-' + 2Eawa = 0, 

(B I-';a - Ba;l-')va _1];"al-'u(V;,.VuEa - v;,.Eu;a) = 0, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where a is the charge density and wa is the vorticity vector. 

From the condition of the vanishing of .!f E I-' and .!fBI-' (see 

the Appendix) it follows that 

va(Ea;1-' - EI-';a) = ° 
and 

va(Ba;1-' - BI-';a) = 0. 

Using (2.6) and (2.3), we have 

BI-' = AifJ,l-' , 

where ifJ is some scalar field. 

s a sa 

(2.6) 

(2.7) 

(2.8) 

Now from the relation A I-' = kvl-', which is assumed to 

hold in the Lorentz gauge, it follows that .!f k = ° (see the 
sa 

Appendix), and one has 

EI-' = -kvl-' +k,1-' 

and 

BI-' = - 2kwl-" 

Einstein's equations 

(2.9) 

(2.10) 

G 1-'" = 81T[(p + p)vl-'v" - p81-'" - (l/41T)(~81-'" - vl-'v,,) 

X(E2 + B 2) - (l/41T)(E I-'E" + B I-'Bv) 

- (l/41T)(VI-'Sv + vvS 1-')], 

where S 1-'==1]I-'VPUEvBpvu is the Poynting vector, B2 
= - B B I-' E2 = - EEl-' w2 = - w"wl-', and Max-

1" J.l' r-

well's equations, 

in conjunction with the identity 

VI-';I-';a - vl-';U;1-' = Raava, 

now give 

VI-';I-' + 2w2 = 41T( p + 3p) + (E 2 + B2), 

2S Y = - (1]I-'''PY/k) (kvp + k,p )wl-'vv' 

Taking the divergence of Einstein equations, one gets 

(2.11) 

(2.12) 
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P (gJ.W _ vl-'v") uE" v"= .1-' + __ . 
p+p p+p 

Equations (2.9) and (2.13) now give 

. uk.1-' + p.a(gal-' - Va VI-' ) 
V = -..;:;;....---"---':........:..:---'---'---"'....:.... 

I-' p+p+uk 
and 

E = (p + p)k,p - kp·a(gap - Va VI-' ) 

I-' p+p+uk 

Furthermore, (2.9), (2.12), and (2.13) give 

2S y = - ~Y2 ( 1 + P U; b ) 

27JI-'''PYp.a( gaP - vavp )li.Il-'v" 

p+p 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

We now restrict ourselves to the following interesting cases. 
Case A: k is constant, S y =1= O. 
From (2.9), (2.10), (2.15), and (2.16) we get 

k 2 = 1, if P + P=l=O. 

It is interesting to note that the same value of k is obtained in 
the corresponding pressure-free case. 1 The following set of 
equations now readily follows: 

o A = ± 2[ 41ru13 ± (81T13)( p + 3p)], (2.17) 

o t/J = - 3t/J'I-'A ,p, (2.18) 

A,pA ·1-'=p.I-'A ,pIp +p ±uI2, (2.19) 

[e2At/J'l-'tfrl-' - lA,pA,p] = (81T13)[u ±!(p + 3p)], (2.20) 

with 

(2.21) 

and 

(2.22) 

In the above set of equations, A is a scalar field, the upper 
sign refers to k = ~, and the lower sign refers to k = -~. 
Equations (2.17)-(2.20) give four equations in the five un
knownsp,u,p,A,t/J. Thus one can solve the set of equations by 
introducing a specific equation ofstatep = pIp). 

Case B: k is constant, SY = 0, EI-' =1=0, BI-' =1=0. 
In this case one readily derives the following set of equa

tions: 

o A + (X'IX + 2)A.I-'A .1-' = 0, (2.23) 

[k (X'IX) + X2 + k ]A'I-'A .1-' = 41ru, (2.24) 

[X'IX - (1 - (1I2k 2))X2 + k 2 + 2] = 41T(p + 3p), (2.25) 

and 

unknowns, where the constant nonzero value of k is arbitrar
ily selected. 

Case C: vI-' = 0 (geodesic motion), SY = 0, E 1-'=1=0, 
B 1-'=1=0. 

In this case one readily derives the following set of equa
tions: 

Dk+(/,lj-lIk)k,pk,p=O, (2.29) 

[/,lj+(lIk)(j2-1)]k,pk,p= -41TU, (2.30) 

[j2(1_ 1I2k2) + l]k,pk,p = 41T(p + 3p), (2.31) 

and 

P.I-' = -uk.I-" 

with 

(2.32) 

EI-'=k.I-" 

BI-' =j(k)k.I-" 

(2.33) 

(2.34) 

Equations (2.29)-(2.32) constitute four equations with five 
unknowns p, u, p,/, k. Thus one can introduce an equation 
of state p = p( p) and solve for the unknowns. 

Case D: vI-' = 0, S Y =1=0 (geodesic motion). 
In this case one readily derives the following set of equa

tions: 

with 

o t/J = (k'l-'lk )tfrl-', (2.35) 

k,pk'l-' + (1 - 1I2k 2)t/J'l-'tfrl-' = 41T(p + 3p), (2.36) 

P.I-' = - uk.1-' , (2.37) 

p+p+2uk=0, (2.38) 

EI-'=k.I-" 

BI-' = t/J.I-" 

(2.39) 

(2.40) 

Equations (2.35)-(2.38) constitute four equations with five 
unknowns p, u, p, k, t/J. Thus, introducing an equation of 
state p = p( p) one can solve for the unknowns. 

III. CONCLUSION 

The main feature that emerges from our investigation is 
that the considerations of Bonnor2 and Raychaudhuri in the 
case of charged dust can be easily generalized to the case of a 
charged perfect fluid as well. Explicit solutions to the var
ious sets of equations obtained in Sec. II may be obtained 
relatively easily with the introduction of specific symme
tries. 
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troducing an equation of state p = p( p), one can solve for the 
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APPENDIX 

From the condition of rigid motion (2.1) we have 2'vl-' 
sa 

= O. (Henceforth 2' will be abbreviated to 2'.) Let us write 
sa 

IJII-'=.YEI-' = (.YFI-''')v'' 
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and 

o "=~B" = (~! l1a,."opvq)va • 

Thus 

1/1,. v,. = 0,. v,. = O. 

Now 

G ,." = 81T[(p + p)V"V" - plY'" - (1I41r)1!c5"" - v"v,,) 

X(E2 +B2) - (lI41r)(E "E" + B "B,,) 

- (lI41r)(v"S" + v"S ")]. 

Thus, ~ G ,." = 0 gives 

~(p + p)v"v" - ~pl),." - (1I41r)(¥S"" - v"v,,) 

X~(EV + B")- (lI41r)(I/I"E" + E"I/I" + O"B" 

(AI) 

+ B "0,,) - (lI41r)(v";" + v,,; ,.) = 0, (A2) 

and 

;,.v" = O. 

Contracting (A2) with v" , we have 

~pv" + (1I81T)v"~(E2 +B2) - (1I41r)(;") = O. 

Contracting further with v,., we have 

~ p + (1I81T)~(E2 + B 2) = 0 (A3) 

and 

;,. = O. 

Again .2"G" ;Jt = 0 gives 

.2"(p - 3p) = 0 

(A4) 

(AS) 

when the Poynting vector is nonzero. Then, contracting Eq. 
(A2) with S", we have 

~p + (1I81T)~(E2 +B2) =0. (A6) 

From (A3), (AS), and (A6) we have 

~p = ~p = ~(E2 +B2) = O. (A7) 

We finally have 

I/I,.E" + E,.I/I" + O,.B" + B,. 0" = O. (A8) 

Now if none of E" , B" , and S" vanish, they will span the 
three-space orthogonal to v,.. 

Since 0,. and 1/1,. are vectors in this three-space, we can 
write 

0,. = aE,. + PB,. + yS,., 
(A9) 

1/1,. =a'E,. +P'B,. +y'S,.. 

The condition;" = 0 gives 
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l1"/I.PU(E,.Op + I/I,.Bp)vq = O. (AlO) 

[This is because S"=l1"/l.PUE,.Bpvq.J Using (A9) and (AlO), 
we have 

l1""qP[PE,.Bq + yE,.Sq + a'E,.Bq + y'S,.Bq ]vp = 0, 

or 

(a' + P)Sv + l1"11.P<7(yE,.Sp + y'S,.Bp)vq = O. 

While contraction with E" gives 

y' =0, 

contraction with B,. gives 

y=O 

and so 

a' +P= o. 
Equation (A9) now gives 

0,. = aE,. + PB,., 

1/1,. = - PE,. + P 'B,.. 
(All) 

Using (A8) and (All) and contracting with E,. we have 

[2tJE2 + (a +P')E,.B "]E" 

+ [2tJE,.B" - (a + P')E2]B2 = O. 

As S" #0, we have 

2tJE 2 + (a + P')E,.B" = 0, 

2tJB,.E" - (a + P ')E2 = 0, 

i.e., P = 0, or a' + P = O. Thus, from (All), 

~E,. = -aB,., 

~B,. =aE,. . 

Now from Eqs. (2.13) and (A7), we have 

~(O'E")=O or .2"E"=(~0'/0')E". 

As S" #0, so (A12) and (Al3) give a = 0, or 

(A12) 

(Al3) 

.2" E" =.2" B" = 0 and ~ 0' = O. (A14) 

Since we have assumed the relation A ,. = kv" to hold in the 
Lorentz gauge it follows that 

.2" k = .2" A,. = O. 

The proof of the above result, for S" = 0, in the case of 
charged dust is rather trivial. But, in the case of a perfect 
fluid with non vanishing pressure, the above conclusions can
not be proved unless some equation of state is assumed. 

IA. K. Raychaudhuri, J. Phys. A: Math. Nucl. Gen. IS, 831 (1982). 
2W. B. Bonnor, J. Phys. A: Math. Gen. 13, 3465 (1980). 
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Plane-fronted ~ave~ in spa~es with nonzero cosmological constant are studied. In particular their 
complete classification, which depends essentially on the sign of the cosmological constant and 
that of some second-order invariant determined by the congruence of null rays, is provided. 

I. INTRODUCTION 

Plane waves are such useful objects in many problems 
of everyday electromagnetism that it is natural to ask 
whether any similar solutions exist in electromagnetic the
ory against a cosmological background. Schrodingerl con
sidered the problem long ago, and concluded that no such 
solutions exist for Robertson-Walker universes in general; 
and more specifically, that there were none in de Sitter space. 
Without detailed investigation, one might reasonably expect 
similar results to hold for gravitational waves of the linear 
approximation, and a fortiori for exact solutions represent
ing gravitational plane waves. 

In anti-de Sitter space, however, we seem to encounter a 
very different situation. In the course of investigation ofho
mogeneous spaces, one of us2 obtained an Einstein space 
which is null and invariant under a five-parameter group of 
motions-properties which one would normally regard as 
characteristic of a plane wave. Apart from the cosomological 
constant, the solution contains a single parameter, which 
specifies the amplitude of the wave. When this parameter is 
zero, the solution reduces to anti-de Sitter space. 

The result depends crucially on the sign of the cosmolo
gical constant: there is no corresponding family of solutions 
for de Sitter space. All this is consistent with Schrodinger's 
observation, but it is in some ways rather puzzling. In order 
to explore the problem systematically, we turn to the general 
question of gravitational and electromagnetic waves with 
plane wave fronts. 

In formal terms, our assumption is that the gravita
tional and electromagnetic fields are subject to the radiation 
conditions3 

Sab [cd k m 1 = ° and k mSmbed = 0, 

where 

Sabed = Rabed + (R /6)ga[cglb Id l' 

with R = - 4A = const, and 

(1.1) 

F[abkCl =0 and kmFmc =0, (1.2) 

where the vector field ka (the propagation vector) is null, 
geodesic, shear-free, expansion-free, and rotation-free (char
acteristics of a plane-fronted wave). 

In Sec. II we discuss some properties of that vector. In 
particular an almost-Killing normalization of ka is defined 

a1pennanent address: Rewolucji Pazdziemikowej 157/159,25-547 Kielce, 
Poland. 

and an important, second-order invariant is pointed out. 
In the next two sections, a geometrical coordinate sys

tem is introduced, the radiation conditions are integrated, 
and, for the purely gravitational case, the general solution of 
the only vacuum field equation is found. In Sec. V canonical 
forms of the metric tensor are discussed. 

In Sec. VI some specializations are made to obtain ho
mogeneous solutions of Einstein and Einstein-Maxwell 
equations, first discovered in Refs. 2 and 4, respectively. 

Section VII deals with a nonhomogeneous field equa
tion. Its particular solution is represented in terms of double 
integrals. There are provided also explicit forms of particu
lar solutions corresponding to some simple forms of a profile 
of an electromagnetic wave. 

In the last section we compare our results with those 
obtained by Garcia Diaz and Plebanski.5 

II. THE PROPAGATION VECTOR 

A null vector field ~ is geodesic, shear-free, expansion
free, and twist-free if and only if there exist Ua and Va such 
that 

ka;b = Uakb + kaVb' 

This equation implies that 

k[akb,cl = 0, k[aUb,cl = k[aVb,cl' 

and it is invariant under the transformation 

(2.1) 

(2.2) 

(2.3) 
with X arbitrary: without loss of generality, therefore, we 
may impose the supplementary condition 

U[a,b 1 = v[a,b l' 

It then follows from the Ricci identities that 

kpR p abc = 2ka U [be 1 - 2Ua[b kc l' 

where Uab: = Ua;b - Ua Ub ; and hence 

kpR Pa[bekd 1 = 2kak[b uc,d l' 

(2.4) 

(2.5) 

(2.6) 

Considering, moreover, that ~ is null, one sees that 

kaka = kaua = 0, kaUa;b = - UaUakb (2.7) 

and 

(2.8) 

the convention is that Rab = R c abe • 

We now turn to the radiation conditions. From either of 
Eqs. (1.1), 
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~R~~~)=Q ~~ 

Contracting with g>buc and using (2.8), we obtain 

(uaua ),b k b = O. (2.10) 

From (2.2) and (2.5) it follows then that (2.9) is equivalent to 

k[aUb,c) + k["vb,c) = 0, (2.11) 

which is a necessary and sufficient condition for the exis
tence of scalars Land W such that 

u" + v" = Lka - w,a' (2.12) 

We can remove W from the first equation by rescaling 
the propagation vector 

k,,-e"'ka. (2.13) 

By this means, we obtain a sharpened version of (2.1), 

ka;b = u"kb - kaUb + Lkakb' (2.14) 

The normalization adopted here is a special case of af
fine normalization, since the vector 

k'a:=ka;pkP (2.15) 

vanishes on account of(2.14). 
It is conserved under transformations (2.13) where dw is 

proportional to the propagation vector: then 

Lka-Lka + w,a' (2.16) 

With respect to an arbitrary vector field k", the Lie 
derivative of a tensor Cab is 

!f kCab = cpbkP;a + CapkP;b + Cab;pkP, 

hence 

and 

!f kgab = 2k(a;b) 

! !f~gab - k (a;b) = kP;akp;b + kPk qRpabq' 

Now employing (2.1) we obtain 

(2.17) 

(2.18) 

(2.19) 

!!f~gab -k(a;b) = (uPup)kakb +kPkqRpabq' (2.20) 

Moreover (1.1) implies 

kPkqRpabq = (A /3)kakb' (2.21) 

Hence, finally, 

! !f~gab - k (a;b) = L 'kakb' 

where 

The scalar L I is invariant under renormalization of the 
propagation vector. 

If ka is normalized in such a way that (2.14) holds, then 

(2.23) 

That normalization is further referred to as an almost
Killing normalization. 

In the almost-Killing normalization we have 

L'=!fk L, 

and because of (2.10) and (2.22), 

!f~ L =0. 
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(2.24) 

(2.25) 

III. LINE ELEMENT ADMITTING PLANE-FRONTED 
WAVE 

Let k" be a propagation vector of a plane-fronted wave 
in its almost-Killing normalization (2.23). 

There exists a coordinate system {p,O',t,' J (bar denotes 
complex conjugation) subject to the following constraints: (i) 
the p-coordinate is an affine parameter along geodesic lines 
tangent to ka, (ii) ka dxa 1\ dO' = 0, and (iii) dt and d, are 
null one-forms. Then the metric tensor can be written conve
niently in the form 

dr = - 2q2p-2 dO'(Z dt + Z d, + S dO' + dp) 

(3.1) 

where S,p, and q are real and Z, Z are complex conjugates. It 
follows also by remarks in Sec. II that 

k a~ = IJI (0') ~. (3.2) 
ax" ap 

Now, employing (2.23) and (2.25) we infer that 

Zp =O=Pp =qp 

and 

S = -! Kp2 + Ip + E, 

where K, I, and E do not depend on p. 
Moreover, the invariant L I (2.24) is 

L I = Kp2/q2. 

(3.3) 

(3.4) 

(3.5) 

A convenient feature of our coordinates is that we can 
write down immediately the general expression for an elec
tromagnetic wave having the surfaces of constant 0' for its 
wave fronts [(1.2) and (ii)]: 

F = ! Fab dxa 1\ dxb 

= lit, O')dt 1\ dO' + 1ft, O')d' 1\ dO'. 

The energy tensor is given by 
- 2 

Tab = I fp O',a O',b . 

(3.6) 

(3.7) 

Finally we list coordinate transformations preserving 
the conditions (i)-(iii) and (3.2): 

t I = h (t, 0'), (3.8) 

p' = a(O'lo + b (t, " 0'), 

u' =g(O'), 

(3.9) 

(3.10) 

where h,;60 and agO' > O. The remaining consequences of 
radiation conditions are discussed in the next section. 

IV. RADIATION CONDITIONS AND THE FIELD 
EQUATION 

We use the null-tetrad formalism. 5
•
6 The metric tensor 

is represented in the form 

dr = 2e1e2 + 2e3e4
, 

where 

el =p-2dt, e2=p-2d" e3 = -dO', 

e4 = q2p-2(Z dt + Z d, + S dO' + dp). 

The radiation conditions are then equivalent to 
CIS) = C(4) = C(3) = C(2) = 0, 

Ozsvath, Robinson, and R6zga 
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R= -4..1, 

(4.4) 

(4.5) 

where the C('l, i = 1,2,3,4,5, are components of the self-dual 
part ofthe conformal curvature tensor, Cab is the trace-free 
Ricci tensor, and R is the Ricci scalar.6 

Those components can be calculated from the second 
structural equations. 6 It is convenient to incorporate into 
them what is already known to be a result of radiation condi
tions, (3.3). Then we have 

CIS) = C44 = 0 = C(4) = C42' (4.6) 

C(3) _!i. = _ 2P{p2(if.)_} 
6 qp;; 

+2P:~\{P; -P:~)J' (4.7) 

C22=2P{~2~),}, +2~~\{P' +~2~),}, (4.8) 

C(3) + R _ 1 2 -2 S 2 u-TPq pp-P 

X(lnp);, + p4q-2 ~);~)" (4.9) 

C(2)=p{ _p-lp; +~)Jq 

+ p{ ~ q2 (Z; - Z,) + Sp - 2~~)J; - pZSpp, 

(4.10) 

Cl2 = - ~ p2q-2 Spp - p2 (In pIt t _ p4q-2 ~); ~)" 
(4.11) 

C32 = p{p-lp, +E - (if.)} + p{..!. q2(Z; - Z,) + S 
q P,q 2 p 

_ 2 E(lJ.) } _ pZS + 2p2 (lJ.) 
qpq' PP q\.p, 

X {~ i(Z; - Z,) _ p-lpq}. 

(4.12) 

Now, assuming (4.3)-(4.5) to be satisfied, we substitute 
Spp from (4.11) into (4.9), and we infer that 

2(Ph, - p;p,) = ..1/3. (4.13) 

Next (4.7) and (4.8) imply 

(4.14) 

and 

(4.15) 

We observe also that by combining the complex conju
gate of (4.10) with (4.12) one can derive 

p2[(q3Ip)(Z; -Z,)] , +2qP,q -2pqq, =0. (4.16) 

Now the form of p can be specialized conveniently. In
deed, a differentiation of both sides of (4.13) with respect to t 
leads to the conclusion that P;; = G (t, ulP, where G is some 
function of t and 00 only. Moreover, G can be transformed to 
a zero function by means of a transformation (3.8)-(3.10) in 
the form oft = h (t', 00'), p = p', 00 = 00', with h being a solu-
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tion of 

h;.;,;' = ~h;-: lh h. + 2G (h (t', 00'), u' )h~ .. (4.17) 

Mter that, p is a linear function of t and t. Employing 
that transformation again [this time h is restricted by (4.17) 
with G =0] we reduce p to 

(4.18) 

In doing this (4.13) is essential. There has been em
ployed also the fact that a sign of p does not affect the form of 
dr (3.1). It can be shown that transformations preserving 
that shape of p are given by 

t=(t'A +B)/[ -(..1/6),B+A], (4.19) 

where A and B are functions of 00 only, such that 

AA + (A 16)BB = 1, (4.20) 

(3.9), and (3.10). Under these (4.19) transformations the 
structural functions p and q transform as 

with 

p' = [ - (A 16jt'B +A ]2p, 

q' = [ - (A 16jt'B + A]2 q, (4.21) 

a' = (AA - (A 16)BB)a =/3AB +PA B, 

/3' = (A /3)aAB +/3A2 - (A /6~B2. (4.22) 

There are two important consequences of that special-
ization ofp. Equations (4.14) and (4.15) can be easily solved 
forq: 

q = (1 - (A /6jttja + tP + t/3, (4.23) 

where a is a real and/3 a complex function of u. The equation 
(4.16) implies that 

[(~ /p)(Z; - Z,)], = O. (4.24) 

It is convenient to denote 

(4.25) 

Next we find the transformation law of lI) under a trans
formation (4.19) (00 = 00' and p = p'): 

lI)' = lI) + a(Aq _ ~) + PB!.q _ /3B~q 
A A AA AA 

+ /3B
q 

_ /3~q +~ ~(BB -BB ). (4.26) 
A A 6AA q q 

Therefore by a proper choice of A and B, lI) can be re
duced to zero, due to (4.24). In this new coordinate system 
we have 

(4.27) 

which means that Z itself can be reduced to zero, by means of 
a transformation (3.8)-(3.10) with t' = t and u' = u. 

Now with Z =0 one has three equations on S: 

Spp + 2p2(qlp) ,(q/p); + 2q2(lnP)a = 0, (4.28) 

S~ = (qq/q)" (4.29) 

and its complex conjugate. 
Then substituting S from (3.4) into (4.28) one obtains 

K=~~+~J ~~ 
Equation (4.29) leaves some ambiguity in /, which, how-

ever, can be removed by a transformation: t I = t, u' = g(u), 

Ozsvath, Robinson, and R6zga 1757 



                                                                                                                                    

p' = p (or p' = - p), so that finally 

1= :u (In Iqll· 
Further it is convenient to write 

H (u, ;, ~): = !(q/p)E. 

(4.31) 

(4.32) 

The remaining components of the curvature tensor C33 

and C(l) can be calculated now. One obtains 

(4.33) 

and 

C(l) = [q2((plq)H), ],. 

For a purely gravitational wave, therefore, the empty 
space equation is 

Ha + (A 13)p-2H = 0, (4.34) 

and for a combined gravitational and electromagnetic wave, 

H,~ + (A 13)p-2H =flplq. 

The final form of the metric structure is 

d$2 = dS l
2 - p-Iq H d~, 

where 

ds 12 = - 2q2p - 2 du [ dp + ( - ¥,"p + l) P du] 

+2p-2d;d~, 

(4.35) 

(4.36) 

with p,q,K, and I given by (4.18), (4.23), (4.30), and (4.31), 
respectively. 

We notice two simple facts concerning that metric 
structure. It is conformally flat (C(l) = 0) iff 

H=p-I(U+ii;+v~+w;~), (4.37) 

where u, w, and v are arbitrary, u and W real, functions of u. 
In particular, the metric is of a constant curvature iff 
W = - (A 16) u, i.e., 

H =p-l[u(1 - (A 16);~) + ii; + v ~]. (4.38) 

Now, let 4> = 4> (;, u) be an arbitrary function of; and u 
(holomorphic in ;). Then one verifies that the combination 
4>, - (A 13)(~ Ip)4> is a complex solution of (4.34). Hence, 

H=~-~~4>+~-~£~ ~~ 
3 p 3 P 

is its real solution. Moreover, one can prove that this is the 
general form of real solutions of (4.34), as one could expect, 
since it depends on one complex, arbitrary function 4>. 

Solutions of (4.35) are discussed in Sec. VII. 

V. CANONICAL FORMS OF THE METRIC STRUCTURE 

By a proper choice of the coordinate system [transfor
mations (3.8)-(3.10)] the whole ambiguity in the metric 
structure (4.36) can be incorporated into the H-term. (The 
argument does not depend on the field equation at all.) There 
are four cases to be discussed independently. A distinction 
between them is provided by the sign oftheinvariantL I (3.5) 
and that of the cosmological constant A. 

As a consequence of(3.5) and (4.30) we have to consider 
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III: A <0, K<O, 

IV: A < 0, K = O. 

We remark that metrics with A = 0 are divided into two 
classes: R -waves (K = 0) and Kundt's waves (K> 0) (See Refs. 
7-10). If A #0, one can introduce a similar distinction, 
which, however, turns out to be essential for A <0 only. To 
make that point clear, let R (A ,a,/3 ) denote the class of me
trics of the form (4.36) with A, a, and f3 being fixed. One can 
prove that for A #0 and K#O it suffices to consider two 
classes only: generalized R-waves, R (A ): = R (A, 1,0); and 
generalized Kundt'swaves,K (A ): = R (A, 0, 1). Indeed,one 
can show that for A > 0 (case I), 

R(A +,a,p)=R(A +)=K(A +), 

for A < 0, however, it turns out that 

R(A -,a,p)=K(A -), whenK>O (case II) 

and 

R(A -,a,p)=R(A -), whenK<O(caseIII). 

Obviously,thegeneralizedwavesR (A -)andK(A -)are 
distinct since the sign of K is an invariant. 

Within the case IV, there are two families ofmetrics to 
be considered independently. The first one (IV)o consists of 
metrics admitting a lap as their Killing vector. The remain
ing metrics form the second family (IVh. 

One can show the existence of a coordinate system, in 
which the metrics from the family (IV)o are of the form (4.36) 
with 

q=(I+A;)(I+A~), A=V-AI6. (5.1) 

For the metrics from the family (IV)I' the function q can 
be reduced to 

(5.2) 

VI. SPECIAL, COMBINED ELECTROMAGNETIC, AND 
GRAVIATIONAL PLANE WAVES WITH SYMMETRIES 

We consider metrics from the family (IV)o, which admit 
a three-parameter group of motions being at the same time a 
symmetry group of the electromagnetic field, which acts 
along wave fronts: hypersurfaces u = const. We assume 
also, that it is a subgroup of the ten-parameter anti-de Sitter 
group, i.e., the group of motions of the metric 

ds~ = _2q2p-2dpdu+2p-2d;d~, (6.1) 

where q is given by (5.1). 
To specify that subgroup in terms of its generators, we 

find at first, a maximal, four-parameter subgroup of motions 
of (6.1), acting along hypersurfaces u = const. Its generators 
are 

and 

a 
X 1 = ap' 

X2 = i( 1 + A; )2 ~ - i( 1 + A ~ )2 .!:., a; a; 
x = i(~-;) X +ux 

3 (1 +A;)(1 +A;) 1 2' 
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We find also the commutation relations 

[Xl' X2] = 0, [Xl' X3] = 0, [X2, X3] = 2XI , 

[Xl' Y] = - 4A.XI , [X2, Y] = - UX2, 

[X3, Y] = - UX3. (6.6) 

A subgroup to be considered further is that generated 
by Xl' X2, and X3. Thus we require that 

(6.7) 

and 
:L' F = 0, for a = 1,2,3. (6.8) 

Then we find that (6.7) is equivalent to 

(1 + A.t)2 Hb - (1 +A. t)2H, = 0, (6.9) 

while (6.8) implies that 

fIt, u) = ~ (0")1(1 + A. 'f (6.10) 

Equation (6.9) can be solved immediatley, and the result 
is that H depends on , and t through a function s, 

s: =plq. (6.11) 

Then the field equation (4.33) takes the form of 

~Hss - 2H = (~?J IA. 2)~. (6.12) 

Its general solution is 

H(u,s) = U(U)s2 + V(U)s-1 + (~?J/4A. 2)~, (6.13) 

and therefore 

H( ,. 7-) = U(U)p2 + V(u)q + ~?J p3. 
u, ~" ~ i p 4A. 2 q3 (6.14) 

A function V(u) can be eliminated by the coordinate 
transformation p = p' - b (u), u = u', t = , I, where 
b = V 12. Thus without lost generality we may put V =0 and 

Up2 ~?J p3 
H=-+--. 

q2 4A. 2 q3 
(6.15) 

The functions H andfgiven by (6.15) and (6.10) deter
mine gravitational and electromagnetic waves with a three
parameter group of symmetries built into them. It is interest
ing to observe the correspondence between this result and 
those obtained by one of us in Refs. 2 and 4. For this purpose 
we make the coordinate transformation '--j2! A. ) 
X(yUt + 1) - (1/A. ),andnextwedefinex: =! (t + t)and 

y: = (1/2i)(t - t ). 

Then 

lid 2 d 2) d~= ---dpdu+--2 -2( x + y 
A. 2X

2 U X 

- .rU Ux dul - ~?J x 2 dul. 
2 

(6.16) 

Now for U = const and 41 = 0 we perform the coordi

nate transformation x~ 1/ A.,J2)e - .< ,[2", which results in 

d~ = - 2 e2,[2.<x dp du + e2,[2.<" dy2 

+ dx2 - Ue-,[2.<x dul. (6.17) 
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This metric structure is easily recognizable as that of a 
homogeneous solution of Einstein equations, of Petrov's 
typeN, with A #0 (see Ref. 2). _ 

Now, let U =0 and ~ be such that ~~ = const. Then the 
transformation x~ e" leads to 

e- 2x 

d~= ---dpdu 
A. 2 

+ _1_(dx2 + e- 2x dy2) _ ~?J e2xdul. (6.18) 
U 2 2 

We identify this metric as a homogeneous solution of 
Einstein-Maxwell's equations with a null electromagnetic 
tensor and A #0 (see Ref. 4). _ 

We remark that if the parameter U in (6.17) and H in 
(6.18) is nonzero, it can be reduced to a value prescribed in 
advance by a coordinate transformation U~-IU, ~p, 
where c = const #0. And so, for instance, one can impose on 
~?J the condition~?J = 1/ A. 2 (see Ref. 4). 

In both cases, (6.17) and (6.18), five-parameter groups of 
motions are admitted. In addition to symmetries generated 
by Xl' X2, X3 [(6.2)-(6.4)], there are new ones, generated by 
X4 =alauand 

Xs = A.u ~ - 5A.p ~ + (1 - A. 2t 2) a~" 
au ap ~ 

+(I-A. 2t 2):r 
for (6.17), (6.19) 

and 

X; = Uu :u - 6A.p ~ + (I-A. 2t
2
) :, 

+ (1 - A. 2 t 2
) :r (6.20) 

for (6.18). 

(The expressions fOE Xs and X; are given in the original 
coordinates u, p, t, t.) It is not difficult to show also that Xs 
and X ; generate symmetries of the anti-de Sitter space (6.1) 
as well. 

In the conclusion of this section we remark the possibil
ity of a limit transition A.~. It cannot be performed on H in 
the form of (6.14) with U and V"=ing A.-independent. H~
ever, the substitution U~U - ~ ~ 13A. 2 and V~V + ~ ~ 1 
1 U 2 makes that process meaningful. 

VII. THE NONHOMOGENEOUS FIELD EQUATION 

In this section we construct a particular solution of the 
field equation (4.34), and therefore, because of the results of 
Sec. IV, its general solution as well. 

We look for H part in the form of 

At - Atfi H =P,b---P,+P,,---
part 3p 3p 

(7.1) 

[compare (4.37)], where p, depends on both t and t, such that 
the function 

(7.2) 
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satisfies the equation 

A HI I-p 
H I .{;, +--2 =-ff-· 

3 P 2 q 
Then it follows that Jl itself is subject to 

(Jl,)" - A (? Jl~){; = J.. fll!.. 
3 P 2 q 

(7.3) 

(7.4) 

A particular solution of (7.4) can be found easily. In
deed, an integration of both sides of (7.4) reduces that prob
lem to a second-order one 

A ? 1 -f{; fp 
(Jl~){; --~~ =-f -dt, 

3 p 2 q 
(7.5) 

which can be solved for Jl~ by a standard technique. Then 
another integration with respect to? has to be performed to 
obtain 

~ {; (;, -
Jl = ~f d?p2f d~'p-2 f f: d~". (7.6) 

Substituting Jl back into (7.1) one arrives at 

Hpart = r f{;fl~dtd? 
~ {; {;' -

+ ~f d?p?f dt'p-2f f: dt" 

{; ~ " -
+ ~f dtP~f d?' p-2f f~P d?" 

-, {; {;' --~ ! f d?p2f dt' p-2 f f~P d~" 
{; , " --~ ! f d tp2f d?'p-2 f f~P d?". (7.7) 

It is to be remarked that all integrals in this formula are 
contour integrals in the corresponding complex plane. The 
variables t and? are treated as independent complex varia
bles until all integrations have been performed. Then the 
relation between them is recalled and incorporated into the 
final formula for H part • 

Further, some special cases of combined electromag
netic and gravitational waves, within the class R (A ) are dis
cussed. 

Let ds2 be in its canonical form (4.36) (a=l,p ==0), and 
letf(t,O") be a polynomial function of t and t -I. Then in
stead of the formula (7.7) it is perhaps advantageous to use a 
slightly different approach in which a new variable t: = (A / 
6)t? is employed. 

Indeed, it is easily seen, that the problem is reduced to 
that of a particular solution of Eq. (4.35) with its right-hand 
side equal to (P/q)?" t" + k, where nand k are some integer 
numbers. Then the substitution of 

H= tkY(t)/(A /6 r+ I (7.8) 
into (4.33) leads to an equation on Y: 

tY"+(k+l)Y'+ 2Y 2= l+t t ". 
(l+t) I-t 

(7.9) 

A particular solution of (7.9) can be found by the meth
od of variation of parameters, given two independent solu-
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tions of the homogeneous problem. [Those, in fact are given, 
because the general solution of (4.34) is known (4.39) (see the 
Appendix).] 

If, for simplicity, 

fIt, 0") = t", n = 0, ± 1, ± 2, ... , (7.10) 

then one obtains the following expression for the H part : 

(i) n = - m < - 1, 

I-A /6;?{(t?)I-m 
Hpart = 1 +A /6;? (1- m)2 

(
A )m - I I A I (A )m - I 

+ 4 6" In 1 - 6;? - 4 6" 

xlnl~1 +4mil J..(~)m-I-r(t?)_r} 
6t~ r= I r 6 

+ (l-m)(1 ~A/6;t) (t?)I-m, 

(ii) n = - 1, 

H - 1 {4(1-~)lnll-~1 
part - 1 + A /6;t 6;? 6t? 

(7.11) 

+~At?lnt? +J..(I- A_)ln2(t?)}, 
3 2 6tt 

(7.12) 

(iii) n> - 1, 

H =4 - In 1---l-A/6~?(A)-"-I{ I A I 
part 1 + A /6~? 6 6;? 

" 1 (n)( A )r "1 (n) } + L - -- - 1 - L - ( - 1)' 
r= I r r 6~t r= I r r 

(~?r+l ( A ) 
+ (n+lf(I+A/6;?) 5+4n- 6;? ' 

for n = 0, l:~ = 1 : = O. 
The form of these solutions has been chosen in such a 

way that the limit transition A-.o could be performed. 

VIII. DISCUSSION 

Plane-fronted, purely gravitational waves with the cos
mological constant have been investigated by Garcia Diaz 
and Plebatiski in Ref. 5. In this paper we reestablish their 
main result-generalized Kundt waves K (A ). Moreover, it 
turns out that for A < 0 there is another family of plane
frontedwavesR (A ) essentially distinct fromK (A ). Thenega
tive sign of A is a decisive factor in that distinction. For A > 0 
these families coincide. 

The presence of an electromagnetic plane-fronted wave 
does not change the metric structure significantly. It is of the 
form (4.36), with H given by 

H=([>~ -~? ([>+~ -~..t~+H (8.1) 
~ 3 P ~ 3 p part' 

where ([> is a holomorphic function of t and the Hpart is 
determined by (7.7). 
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APPENDIX 

(AI) Two independent solutions of the homogeneous 
problem related to (7.9) are 

Y
1 

= (k - l)t + k + 1 
t+ 1 f 

e - f[(k + I)/t Jdt 

and Y2 = Y1 dt. 
Yi 

In particular for k = 0, we have 

1- t 
Y 1=--, 

1 + t 
4 1- t 

Y2 =--+--lnltl· 
l+t l+t 

(A2) Under the transformations (4.19), with the rules 
(4.22), by choosing A = - 1I.,fi, B = ~3/A (A >0) and 
p' = p, q' = (A /6)q, it follows that 

The explicit transformations to K (A ) as given in the 
Garcia Diaz-Plebanski notation from our form of R (A +), 
K(A +),andK(A -) are 

1761 J. Math. Phys., Vol. 26, No.7, July 1985 

(i) 

A ,1.=->0, 
6 

r t 
P = -sinh-JX-(5-+-t)' q = - $' 2H= -$ H, 

1 A 
~=-tanh$s, A. =->0, 

$ 6 

p= r _, q= -$t, 
sinh$(5+s) 

(ii) 
H 

2H= -T' 
and 

(iii) 
r 

p= -, 
sinJX(5 +s) 

A 
A. = -->0 

6 ' 

q= -$t, H 
2H= --. 
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An approximate solution of the monomer-dimer problem on a square 
lattice. II 
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Department of Physics. Villanova University. Villanova, Pennsylvania 19085 

(Received 1 October 1984; accepted for publication 1 March 1985) 

The mathematical method developed in paper I is applied to obtain the partition function and 
thermodynamical properties of the monomer-dimer problem for a square lattice in terms of the 
absolute activity x. We also obtain by extrapolation an approximate expression of the partition 
function which is accurate to better than 0.1 % in the range O";;x.,;; lO. The expectation of the 
statistics «(J (x) is calculated in two different ways and numerical results agree to better than 3%, 
thus showing the consistency of the underlying mathematical method. Consistent with earlier 
studies, there is no phase transition. Approximation methods used in earlier work are also found 
to be in good agreement with our analytic study. 

I. INTRODUCTION 

This article is a continuation of paper I entitled "The 
occupation statistics for indistinguishable dumbbells on a 
rectangular lattice space.") In paper I, the monomer-dimer 
problem was formulated by considering dimers (or dumb
bells)distributedonanL xM X Nrectangular lattice, where 
Land M are fixed and N is allowed to become very large. 
A (q,N) represented the number of ways of arranging q indis
tinguishable dimers on the L XM XN lattice. Following 
McQuistan and his collaborators,2 the bivariant generating 
function G (x, y) was introduced 

00 ILMNI2J 
G(x,y) = I I A (q,N)xqyN. (1.1) 

N=O q=O 
The notation [LMN /2] means the largest integer contained 
in (LMN 12). This is the largest possible number qmax of 
dimers that can be arranged on the lattice. The variable x is 
identified as the absolute activity of the dimer. Parameter y 
is chosen in such a way as to secure the convergence of this 
infinite series. The results obtained are, of course, indepen
dent of the particular choice ofy securing the convergence of 
the series. It then follows that the bivariant generating func
tion is obtained in closed form as a ratio of two polynomials 

G (x, y) = H (x, y)/ D (x, y). (1.2) 

The configurational grand-canonical partition function 
for a given absolute activity x is 

qmllx 

..:iLMN(X) = I A (q,N)xq. (1.3) 
q=O 

The expectation of the coverage by dimers as a function 
of the absolute activity is 

1 qmax 

«(J(X)LMN = I qA (q,N)xq. (1.4) 
qmax..:iLMN(X) q=O 

The dispersion in (J is 

1 qmax 
«(J2(X)LMN = I q2A (q,N)xq. (1.5) 

qmax..:iLMN(X) q=O 

Keeping L and M fixed, the partition function in the 
thermodynamic limit is 

~M(X) = lim [..:i LMN(X)] )ILMN. 
N~ 00 

(1.6) 

In paper I, it was shown that the knowledge of D (xJ') 
was sufficient to obtain «(J (x) LMoo' «(J 2(X) LMoo' and 
ELM(X). Let R)(x;L,M) be the largest z root of (z = 1/ y) 

D(x,1/z) = O. (1.7) 

It then followed that 

«(J (x) LMoo = «(J 2(X) LMoo ) 112 

2 (X aDlax) (1.8) 
= LM Y aD la y Y= IIR,(x) 

and 

ELM(X) = [R)(x;L,M)]IILM. (1.9) 

The function D (xJ') was explicitly calculated for planar 
lattices (L = 1) and up to and including four rows, i.e., for 
M = 1,2, 3, and 4. We list in Table I the expressions of D (xJ') 
derived in paper I. The analytic expressions for the largest 
rootsR) (x;I,M) were easily calculated for M = 1 andM = 2 
simply because D (x, liz) turned out to be a quadratic and 
cubic polynomial iny, respectively. The roots were calculat
ed to be 

R)(x;I,I)=![l +"1 +4x], (1.10) 

R)(x;1,2) = (1 + 2x)/3 + H4x2 + 7x + Ij1/2 

X cos (¢(x)/3), (1.11a) 

TABLE I. The polynomial D(x,y) for lattices with M = 1,2,3, and 4. 

M D(x,y) 

1 I-y-xr 
2 1-(1 + 2x)y-xr+xly' 
3 1 - (1 + 3x)y - (2 + 7x + 5x2)xr - (I + x - 2x2)x2y3 

+ (2 + 3x + 5X2)x4y4 - (I - X)x6Y' _ X9y6 
4 1- (1 + 6x + zr)y - (I + 9x + 2B.r + IOx3)xr 

+ (I + 12x + 39x2 + 31x3 + 14x4)x2y3 
+ (I + 16x + 84x2 - 176x3 + 143x4 + 4Ir)xly4 
+ (2 + 14x + 21x2 - 36x3 - 57x4 - 34r)xY 
- (7 + 60x + 227x2 + 429x3 + 297x· + 82r)x1y6 
- (16 + 70x + 124x2 - 14x3 - 38x4 )xlOy7 

+ (7 + 56x + 175x2 + 285x3 + 273x" + 86r)xlly8 
- (2 - 2x - 43x2 - 94x3 - 34x· + 20x')x13y9 

- (I + 12x + 32x2 + 64x3 + 103x4 + 47x s)xlyO 
- (I + 6x + 9r + 17x3 - 4X·)x18yl' 
+ (I + 5x + 12x2 + 12x3~'y'2 + x 24yl3 _ x 28y'4 
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where 

cos tP (x) = (11x3 - 42x2 - 21x - 2) 

2(4x2 + 7x + W12 
(1.11b) 

Also in paper I, it was shown that, in the large-M limit, 
the first-order correction to (8 (x) LMoo is of order (11M). 
Setting the absolute activity to be unity, x = 1, a plot of 
(8(1)IMoo vs (11M) showed a rapid convergence toward a 
linear curve beyond M = 1. A least-square fit of the three 
points corresponding to M = 2, 3,4 predicted an expectation 
of dimers on a planar lattice of infinite extent to be 

(8(x = 1)10000 = 63.4%. (1.12) 

Again, setting x = 1, paper I exhibited the exponential 
behavior of the largest root R 1 (1; I,M) as a function of M. 

In this article, we plan to extend these results to other 
values of the activity. Explicit numerical results are obtained 
in the range O..;x..; 10. A closed form analytic expression of 
the partition function Eloo 00 (x) for the infinte two-dimen
sionallattice is obtained by extrapolation and from it other 
thermodynamic quantities are derived in the usual way. 

II. THE PARTITION FUNCTION E(x) 

Table II gives the values of the largest root R 1(x;I,M) 
for M = 1, 2, 3, and 4 and various values of the absolute 
activity x in the range O";x"; 10. These values are computed· 
from the analytical expressions (1.10) and (1.11) for M = 1 
and 2, and by a direct numerical search for the largest z root 
ofthepolynomialD (x, liz), listed in Table I, for M = 3 and 4. 
A numerical study ofthez roots as a function ofx showed the 
leading root to remain the leading root for the values of x in 
the range O..;x..; 10. Although we could not come up with any 
rigorous mathematical proof, we find it is reasonable to con
jecture that this is the case for all values of x, not only for 
M = 1 and 2 but also for all other values of M. Figure 1 gives 
the plot of the z roots against the absolute activity x for 
M=3. 

The next step is to exhibit for any given value of x the 
exponential behavior of R 1 (x; 1 ,M) as a function of M. These 

TABLE II. The largest x root R,(x;L = I,M) of polynomial D(x,l!z) for 
various lattices (M = 1,2, 3, and 4) and x in the range O.;;x.;; 10. 

X M=1 M=2 M=3 M=4 

0.1 1.09161 1.277 66 1.48943 1.73671 
0.2 1.17082 1.52750 1.97539 2.55647 
0.3 1.241 62 1.76160 2.46787 3.46170 
0.4 1.30623 1.98525 2.96994 4.45101 
0.5 1.36603 2.20134 3.48271 5.52257 
0.6 1.42195 2.411 65 4.00657 6.67461 
0.7 1.47468 2.61737 4.54156 7.90558 
0.8 1.52469 2.81934 5.08759 9.21410 
0.9 1.572 38 3.01817 5.64449 10.5990 
1.0 1.61803 3.21432 6.21207 12.059 1 
2.0 2.00000 5.08387 12.4293 30.6306 
3.0 2.30278 6.86399 19.511 2 56.0759 
4.0 2.56155 8.59975 27.3354 88.0975 
5.0 2.79129 10.3088 35.8203 126.519 
6.0 3.00000 12.0000 44.9051 171.220 
7.0 3.19259 13.6785 54.544 5 222.115 
8.0 3.372 28 15.3476 64.7012 279.138 
9.0 3.54138 17.0094 75.344 3 342.235 

10.0 3.701 56 18.6655 86.4491 411.366 
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FIG. 1. The z roots of D (x,l!z) as a function of the absolute activity x for 
M=3. 

roots cannot be calculated analytically for M = 3 and 
M = 4, as already mentioned earlier; they were obtained nu
merically for various values of x. For M = 1 and M = 2, the 
analytic expressions (1.10) and (1.11) were used to obtain the 
numerical values of the roots. We plotted on a semilog graph 
paper these roots versus M. As exhibited in Fig. 2, we found 
(for any given value of x) the four points plotted (M = 1, 2, 3, 
and 4) to fall along a straight line. A least-square fit of these 
points gives a correlation coefficient of 0.99. Based on this 
approximation, we express R 1(x;I,M) as 

R 1(x;I,M) =A (x)exp [B(x)M], (2.1) 

or 

In [R 1(x;1,M)] = In [A (x)] +B(x)M. (2.2) 

Following paper I, we obtain the values of B (x) by a 
least-square fit ofln R 1 vs M. Obviously, B (x) is the slope for 
any given value of x, with only four points corresponding to 

400 I---R-,---t(X_;_L=_l~, ~M_) __ ~ __ ~ __ ~ x-IO 

300 x-a 
200 

X=6 

100 1-----~--_4---~4Y~~1 
~ ~4 
70 
EO 
50 

40 1------1 ----+---/I,I/-I1-,.L-/-~----j 
30 

20 

10 I-----~--M~~~~+--~~ 
B 
7 
6 
5 

4 I---__ ~~~~~~~~~~~I 

3 4 
M 

FIG. 2. Semilogarithmic plot of R,(x;I,M) vs M for various values of the 
absolute activity x. 
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M = 1,2,3, and 4. Since the partition function of the infinite 
planar lattice is J 

E(x) = lim [RJ(x;I,MJP/M, (2.3a) 
M-", 

it then follows that 

E (x) = lim {[A (x)] J/Mexp [B (x)]} = exp [B (x)]. 
M_", 

(2.3b) 

Table III summarizes all the numerical results obtained for 
values of x in the range O..;x..; 10. 

We expect the approximate exponential behavior to be
come more accurate with increasing values of M. Thus, the 
slope B (x), based on the first four points, is not expected to be 
the same when computed from a linear fit of the next four 
points. Nevertheless, assuming that (2.1) is perfectly accu
rate for all values of M including M = I and M = 2, then it is 
obvious that by taking the ratio 
RJ(x;l,M = 2)/R J(x;l,M = I) one obtains exp [B(x)] which 
is the partition function for the infinite planar lattice system. 
The benefit of this is having an approximate expression for 
the partition function of a system of dimers distributed on a 
planar lattice of infinite extent, namely, 

EA(X) =![ 1+ ~I + 4x H(I + 2x)/3 

+~(4X2+7x+ I)J/2XCOS [<,6 (w)l3]}-I, (2.4) 

where <,6 (x) is given by Eq. (1. lib). The values of EA (x) are 
listed, for comparison, in Table III. In support of our claim, 
we have also computed the ratio R J(x;I,4)1R J(x; 1,3). As an
ticipated, the numbers obtained are closer to the exact values 
of E(x) to better than I % in the range O";x"; 10. Indeed, in 
general we would have 

(2.5) 

Such a relation becomes more accurate as M becomes in
creasingly large. Since no analytic expression of R J(x;I,M) 

TABLE III. Numerical values of the partition function calculated in several 
different ways are listed in this table for comparison. 
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x 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

1.17 
1.30 
1.42 
LS2 
1.61 
1.70 
1.77 
1.85 
1.92 
1.99 
2.54 
2.98 
3.36 
3.69 
4.00 
4.28 
4.55 
4.80 
5.04 

R.(M=4) 
R.(M=3) 

1.17 
1.29 
1.40 
LSO 
LS9 
1.67 
1.74 
1.81 
1.88 
1.94 
2.46 
2.87 
3.22 
3.53 
3.81 
4.07 
4.31 
4.54 
4.76 

B(x) 

0.155 
0.260 
0.341 
0.408 
0.465 
0.515 
0.559 
0.599 
0.635 
0.668 
0.908 
1.06 
1.18 
1.27 
1.35 
1.41 
1.47 
1.52 
1.57 
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1.17 
1.30 
1.41 
LSO 
LS9 
1.67 
1.75 
1.82 
1.89 
1.95 
2.48 
2.89 
3.24 
3.56 
3.84 
4.lO 
4.34 
4.57 
4.79 

1.17 
1.30 
1.41 
1.50 
1.59 
1.67 
1.75 
1.82 
1.89 
1.96 
2.48 
2.90 
3.25 
3.56 
3.84 
4.10 
4.35 
4.58 
4.79 

can be obtained for M greater than 2, we computed a correc
tion term to the approximate partition function EA (x) by 
obtaining an exponential fit to the difference 
[EA(X) - E(x)] for values of x in the range O";x..;lO; one 
finds 

E C (x) = E A (x) _ 0.034 63xo.858656. (2.6) 

To have an idea of the limitations of such a closed-form ana
lytic formula, let us consider the large x behavior of EA (x). 
Equation (1.l1b) giving the explicit expression of cos <,6 (x) 
shows that 

lim cos <,6 (x) = - -ii, <,6 ( 00 )13 = 44.48°. (2.7) 
x_", 

Thus the leading term of EA (x) as x becomes very large is 

EA(x)-1.618/X. (2.8) 

This shows that the correction term 0.034 63xo.859 becomes a 
leading term in the expression (2.6) of the partition function. 
Since the partition function cannot be negative, it is evident 
that its closed form (2.6) will fail to give the proper value. 
Formally, Eq. (2.6) becomes negative at values of x larger 
than 

(1.618/0.03463)110.358656 = 45180. (2.9) 

Therefore, we can safely argue that the validity of the closed
form analytic expression (2.6) of the partition function may 
be extended over a range which is several times larger than 
O";x,,;lO. Figure 3 is a plot of EA andEc versus the absolute 
activity x in the range O..;x..; 10, as well as E for M = 1 and 
M = 2 calculated from Eqs. (1.9), (1.10), and (1.11). 

III. THE EXPECTATION OF THE STATISTICS <8(x» AND 
THE NUMBER DENSITY p(x) 

We follow the same procedure as the one presented in 
paper I for x = 1. We use the analytic expression (1.8) of the 
expectation on a planar lattice (L = I) using for D (x,y) the 
polynomials given in Table I. For all values of x, Fig. 4 shows 

5 

3 

2 

FIG. 3. Plot of the partition function versus the absolute activity. Curve (A) 
is the approximate partition function S.4(x) as computed analytically. 
Curve (C) is S.4 (x) with the correction added to it; this curve coincides with 
the exact partition function calculated numerically. Curves (D) and (E) rep
resent the partition function for lattices with M = 2 and M = 3, respective
ly, and as computed analytically from Eqs. (1.10) and (1.11a) and (1.11b). 
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FIG.4. The expectation of the statistics (8 (xl) 1M vs 11M for various values 

of the activity x in the range O<x< 10. 
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that linearity is almost achieved beyond M = 1 when plot
ting «() (x) 1M .. vs (11M). A least-square fit of the points for 
M = 2, 3, and 4 gives an intercept «() (x), which is precisely 
the expectation of the statistics on the planar lattice of infi
nite extent, i.e., 

FIG. 5. Plot of the expectation of the statistics, (8 (xl), on a planar lattice of 
infinite extent versus the absolute activity x. Curve (1) is (8(x) computed 
from the linear extrapolation shown in Fig. 4 and whose values are listed in 
the last column ofTable IV. Curve (2) isp(xl/Po:=(8(xl) computed from the 
knowledge of the partition function, and whose values are listed in Table V. 

«(}(x) = lim «(}(X)IMoo' 
M-oo 

(3.1) 

Table IV gives the values of the expectation «() (x) 1Mao com
puted analytically for different values of x in the range 
O<;x<; 10 and for M = 1,2,3, and 4. The last column of Table 
IV gives the values of the expectation «() (x) obtained from 
the linear extrapolation as exhibited in Fig. 4. Finally, curve 
(1) in Fig. 5 is the plot of «() (x) vsx, obtained from the values 
listed in the last column of Table IV. 

The expectation of the statistics could be calculated us
ing a different approach based on the knowledge of the parti
tion function. This is accomplished by combining first Eqs. 
(1.3) and (1.4) 

«(}(X)LMN = (x/[LMN /2])(.1 ~MN(X)/.1LMN(X)). (3.2) 

Setting E'LMN(X) = [.1 LMN(X)] IILMN, then the partition func
tion, -=r.M(X) is the limit as N approaches infinity of E'LMN(X), 
It then follows that 

TABLE IV. Values of (8 (xl) 1M" are listed for x in the range O<x< 10 and for M = I, 2, 3, and 4. The last column is the computed extrapolated values for 

M= 00. 

X M=1 M=2 M=3 M=4 M=oo 

0.1 0.154845 0.204053 0.217019 0.223719 0.243291 
0.2 0.254640 0.315242 0.329672 0.337426 0.359377 
0.3 0.325800 0.388717 0.402770 0.410 595 0.432128 
0.4 0.379824 0.442273 0.455514 0.463 148 0.483587 
0.5 0.422645 0.483721 0.495995 0.503424 0.522571 
0.6 0.457674 0.517 127 0.528561 0.535650 0.562055 
0.7 0.487053 0.544 852 0.555424 0.562.244 0.578977 
0.8 0.512048 0.568380 0.578139 0.584704 0.600 304 
0.9 0.533748 0.588698 0.597691 0.604020 0.618603 
1.0 0.552787 0.606484 0.614764 0.620875 0.634420 
2.0 0.666666 0.713 190 0.715996 0.720648 0.726712 
3.0 0.722641 0.766518 0.765657 0.769569 0.770758 
4.0 0.757464 0.800 216 0.796625 0.800 120 0.797756 
5.0 0.781782 0.824081 0.818295 0.821535 0.816360 
6.0 0.799998 0.842105 0.834545 0.837625 0.830204 
7.0 0.814304 0.856356 0.847306 0.850281 0.840991 
8.0 0.825922 0.867970 0.857663 0.860 565 0.849707 
9.0 0.835601 0.877658 0.866286 0.869129 0.856945 

10.0 0.834826 0.885904 0.873600 0.876398 0.863056 
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TABLE V. Computed thermodynamic quantites for different values of the activity x. 

<8(X»I~w 
p(x) 

r(x) 
Sv(x) 

k BTp2Kr(x) 
Cv(x) 

x 
Po kB kB 

0.1 0.243 0.247 0.0766 0.219 0.0412 0.0633 
0.2 0.359 0.367 0.130 
0.3 0.432 0.441 0.171 
0.4 0.484 0.492 0.204 
0.5 0.523 0.531 0.234 
0.6 0.562 0.561 0.258 
0.7 0.579 0.586 0.280 
0.8 0.600 0.608 0.300 
0.9 0.619 0.626 0.318 
1.0 0.634 0.641 0.334 
2.0 0.727 0.732 0.454 
3.0 0.771 0.780 0.531 
4.0 0.798 0.812 0.588 
5.0 0.816 0.833 0.634 
6.0 0.830 0.849 0.673 
7.0 0.841 0.862 0.706 
8.0 0.850 0.871 0.734 
9.0 0.857 0.880 0.760 

10.0 0.863 0.887 0.784 

_.J_i_M_N_(X_) = _d_ (In [E LMN(X)] LMN) 
.JLMN(X) dx 

= (LMN)[ E iMN (X)/ELMN (x)] . (3.3) 

Combining Eqs. (3.2) and (3.3) and then taking the limit as N 
approaches infinity, one obtains 

(8(X)LMoo = 2x[EiM(X)/ELM(X)]. (3.4) 

For the case of the infinite planar lattice, L = 1 and M = 00, 

one finds 

(8 (x) = lim (8(X)'M", = 2x[E'(x)!E(x)], (3.5) 
M_", 

where we have used the notation introduced earlier in (2.3a), 
namely, 

E (x) = lim E'M(X). 
M_", 

(3.6) 

Following Gaunt,3 the number density for the square 
lattice is given by 

pIx) = x dr(x), 
dx 

(3.7) 

where r (x) is the grand potential function for this square 
lattice, namely, 

r(x) =! In[E(x)]. (3.8) 

Recalling that the density number for close packing of 
dimers, Po, is! on the infinite square lattice, then the normal
ized number density is 

pIx) = (4x)~~(ln[E(x)]). 
Po 2 dx 

(3.9) 

The above expression is identically the same as the expecta
tion of the statistics (8(x), Eq. (3.5) 

(8 (x) =p(x)!Po = 2x[E'(x)!E(x)]. (3.10) 

Curve (2) in Fig. 5 is the plot of (8 (x) or p(x)/Po as 
calculated from Eq. (3.10) using for the partition function the 
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0.277 0.0460 0.0919 
0.303 0.0457 0.109 
0.317 0.0443 0.122 
0.325 0.0428 0.132 
0.329 0.0414 0.139 
0.332 0.0402 0.146 
0.333 0.0390 0.152 
0.334 0.0380 0.157 
0.334 0.0370 0.161 
0.327 0.0308 0.188 
0.316 0.0272 0.200 
0.307 0.0246 0.207 
0.299 0.0226 0.209 
0.292 0.0210 0.211 
0.286 0.0191 0.205 
0.281 0.0181 0.205 
0.227 0.0172 0.205 
0.273 0.0163 0.204 

analytic expression, Eqs. (2.4) and (2.6), derived earlier. The 
second and third columns of Table V list the values of 
(8(x),,,,,,,, andp(x)!po' respectively, up to three significant 
figures. According to Eq. (3.10), there should be an identical 
matching between these results. Since the methods of obtain
ing these numerical results are different, the largest devi
ation being better than 3% shows the consistency of the un
derlying mathematical theory. The method of calculating 
pIx)! Po, using Eq. (3.10) and the analytic expression of the 
partition function, is certainly more accurate than the other 
extrapolation method, Eq. (3.1). 

IV. OTHER THERMODYNAMICAL PROPERTIES 

From the knowledge of the analytic partition function 
EC(x) we calculate the grand potential F(x) using Eq. (3.8) 
(see Fig. 6). Other thermodynamical functions are calculated 
in the usual way, namely, as follows. 

r 

1.0 

.9 

.8 

.7 

.6 

.5 

4 

.3 

.2 P 

.1 Po 
0 

.I .2.34.5.6.1.8.91.0 

FIG. 6. The grand potential function r, plotted against the normalized 
number density Ip/Po). 
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TABLE VI. The results by Gaunt for the maximum values of the thermo
dynamical quantities as compared to the results obtained in this paper 
(PSW). 

Thermodynamical 
quantity (P/Po) Maximum 

Gaunt PSW Gaunt PSW 

S./kB 0.636 0.641 0.331 0.334 
kBTp2KT 0.42 0.391 0.0454 0.0461 
C,'/kB 0.85 0.843 0.20 0.211 

(a) The entropy per unit volume Sv (kB = Boltzmann's 
constantl is 

Sv(x)/kB = - p(x)ln x + r(x). (4.1) 

(b) The isothermal compressibility KT (T = absolute 
temperature)3 is 

kBTp2(x)KT(x) =X dp. 
dx 

(4.2) 

(c) The constant-pressure specific heat per unit Cv (Ref. 
3) is 

Cv(x) =X (!!P...) (r(x))2. (4.3) 
kB dx pIx) 

In Table V we list the values of these thermodynamical 
functions for absolute activities in the range O<x< 10. 

As predicted by the approximate calculations made by 
Gaunt,3 the three thermodynamical quantities (4.1), (4.2), 
and (4.3) have a maximum. The maximum values and the 
corresponding values of the normalized number density (PI 
Po) obtained by Gaune are listed in Table VI for comparison 

.34 

.33 

.32 

.31 

.30 

.29 

.28 

.ZT 

.26 

.25 

.24 

.23 

.22 

.21 

.20 

.19 .L 

.ISL.-.l.-.:.....--'-....I--'-......L.--'---'---'_.......::Po~_ 
o .I .2 .3 .4 .5 .6 .7 .S .9 1.0 

FIG. 7. S./kB plotted against the normalized number density (P/Po)· The 
circled data point is the maximum obtained by Gaunt.3 
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FIG. 8. kB Tp2KT plotted against the normalized number density (P/Po)· 
The circled data point is the maximum obtained by Gaunt.3 

with our results. Agreement between our analytical ap
proach and Gaunt's approximate method is quite good. The 
dependence of these thermodynamical quantities as a func
tion of (Plpo) is shown in Figs. 7, 8, and 9. 

v. CONCLUSION 

We obtained a closed-form analytic expression E C (x) of 
the partition function of a system of dimers on a planar 
square lattice. This expression was arrived at by conjectur
ing that the largest rootR 1(x;L = 1,M) increases exponen
tially with M. Such a conjecture is justified by the exponen
tial behavior of ,dN(X) with increasing values of N already 
made explicit in paper I. 

.24 Cy 

It; 
.22 

.20 

.IS 

.16 

.14 

.12 
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.08 

P 
.06 7f 
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FIG. 9. C./kB plotted against the normalized number density (P/Po)· The 
circled data point is the maximum obtained by Gaunt.3 
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The internal consistency of the underlying mathemat
ical method was verified by calculating the expectation of the 
statistics (0 (xl) in two different ways with an agreement of 
better than 3%. 

Not available in the literature, we give the values of 
several thermodynamical quantities as a function of the ab
solute activity x and also as a function of the normalized 
number density pi po' 

As expected, no phase transition is observed. The maxi
ma reported by Gaune for the square lattice using the series 

1768 J. Math. Phys., Vol. 26, No.7, July 1985 

expansion method are found to be in good agreement with 
our closed-form analytic approach. 
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A multitype random sequential process. II. Distribution of particle size and 
vacant space length in the saturation limit 

B. Mellein 
Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Division Quimica Teorica, 
Sucursal4, Casilla de Correo 16, 1900 La Plata, Argentina 

(Received 26 September 1984; accepted for publication 28 December 1984) 

A one-dimensional lattice space of n equivalent compartments is filled sequentially at random 
with nonoverlapping particles of integral length /3 (/3-bell particles), the latter assumed to be a 
random variable with probability distribution I pq, ... ,Pr} on I q,q + 1, ... ,r - 1,r}, q;;;d. Due to 
configurational degeneracies the relative probability pt,n of ultimately finding a k-bell particle on 
the saturated lattice space will generally not coincide withpk, the "input" probability. In the 
present paper we shall determine pt,n' k = q, ... ,r, and its limit as n tends to infinity. Some more 
insight into the occupation configuration of the lattice space in the jammed state is gotten by 
means of the length distribution of stretches of unoccupied compartments (gaps). 

I. INTRODUCTION 

One-type random sequential space filling procedures in 
one dimension have been formulated to describe statistical 
aspects of physieal-chemical phenomena such as adsorp
tion,I-3 crystallization,4,5 and intramolecular reactions of 
polymers.5- 11 As pointed out recently,12 the more general 
concept of a multitype random sequential process consti
tutes an improvement upon former approaches in the sense 
that it covers situations (additionally to those previously 
cited we mention the case of a discrete finite cascade pro
cess13 and a concrete example referred to in Boucher and 
Nisbet14) which allow for sequential addition of various 
kinds of objects. The classical notion of a one-type random 
sequential process, however, does not extend uniquely to a 
multitype formulation, and two distinct multi type random 
sequential processes, designated model I and model II, have 
been introduced. 12 This research represents a generalization 
of previously published results l2 concerning model II. 

In model II particles of random lengths are placed on a 
1 X n lattice space, one at a time and randomly and subject to 
the condition that no two particles overlap. The formal de
scription of the filling procedure is as follows. From the 
probability distribution P= I pq, ... ,Pr} on Iq,q + 1, ... ,r 
- 1,r}, with q> 1 and Pq > 0, we observe an integer /31 and 

proceed to place a/3l-bell particle on the 1 Xn array at ran
dom, i.e., the particle's left-hand end point occupies any of 
the sites 1,2, ... , n - /31 + 1 with equal probabilities 1/ 
(n - /31 + 1). The thus-arising random 1 Xn l and 1 xn; 
subarrays [nl + n; + /31 = n] will be filled independently 
and (statistically) identically in the following manner: If the 
1 Xnllattice space is still accessible, i.e., if nl>q, we sample 
from the probability distribution P until observing a first 
value /32 not exceeding n I and subsequently insert a /32-bell 
particle at random in the I Xn l array. Next we turn to a first 
further, similarly effected occupation of the 1 Xn; lattice 
space and thus continue filling the arising random subar
rays. Ultimately, in the so-called terminal, jammed, or satu
rated state, no further particle fits and the placement process 
has come to an end. 

Several random variables evolve in the analysis of the 
occupation configuration of a 1 X n array in the jammed 

state. One, particularly important, is An' the total number of 
unoccupied compartments, and this has been studied in 
some detail. 12 In the present paper we shall examine two sets 
of random variables, each one determining An and thus pro
viding a more complete picture of how the array's saturation 
occupation is made up: B ~, k = q, ... ,r, the number of k-bell 
particles accommodated on the 1 Xn lattice space and C;:', 
m = O,l, ... ,q - 1, the number of m-gaps (i.e., stretches of 
exactly m contiguous unoccupied compartments) are ulti
mately present. Then, as asserted, there are the following 
relations: 

r q-I 

An =n - 2: kB~ = 2: mC;:'. 
k=q m= I 

(1) 

It is the asymptotic behavior (n-oo) of b ~ and c;:', the 
expectations of B ~ and C;:', respectively, we are interested 
in. On the basis of recursion relationships satisfied by b ~ and 
c;:' the appropriate generating functions will be deduced and 
utilized to obtain, for all ° < E <P = 1/(r - 1), as n- 00 , 

b~ =Akn+Aic +O(n-nIP -£)), k=q, ... ,r (2) 

and 

C;:'=Pmn+p;" +O(n-nIP -£)), m=O,l, ... ,q-l, 

(3) 

where Ak , A ;e> Pm' and P;" are constants (clearly depending 
onpq, ... ,Pr, but independent ofn) stated explicitly in the text 
[see Eqs. (28) and (29) below]. 

From the results given in Eq. (2) the relative probabilities 
Ak 

pt = , k = q, ... ,r, (4) 
~;=qAi 

of finding a k-bell particle among the particles filling an infi
nite lattice space can be computed. In Sec. VII we will pre
sent some numerical calculations which show that the differ
ence between pt and the "input" probability Pk may be 
considerable. This is particularly true for values of k either 
close to q or close to r, pt being larger than P k in the former 
case and smaller in the latter one. However, these differences 
are even more pronounced 15 in model I in which the larger 
particles are put at a disadvantagel2 from the very beginning 
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of the filling process. 
Similarly, Eq. (3) yields 

Pm , m =0, ... ,q-1, 
1:1:-J Pi 

(5) 

the relative probability of a stretch of m adjacent vacant sites 
(m-gap) on a saturated infinite array, which, in the one-type 
case q = r, has been first determined by Mackenzie.2 

II. RECURSION RELATIONSHIPS 

To establish a recursion relation for b ~, i = q, ... ,r, fix 
ke{ q, ... ,rJ, suppose that n">r, and recall from our model 
assumptions that (1) the first particle placed on the 1 X n 
array will be an i-bell particle with probability Pi> (2) being 
the first particle to be inserted an i-bell particle, there are 
n - i + 1 equally probable choices for placing the particle, 
and (3) if the first particle getting stuck is an i-bell particle 
occupying compartmentsjj + 1, ... j + i-I, further occu
pation will be directed, in a statistically identical manner, to 
two subsequently independent subarrays consisting ofj - 1 
and n - i - j + 1 sites. Since we only count k-bell particles it 
thus follows that 

r n i+ 1 P 
b k,. = ~ ~ i (S: b k b k ) £,,; £,,; _.c:..--. - Uik + j_1 + n i-j+ I 

i=q )=1 n-l+l 

r 2Pi "~ibk 
=·Pk + I . 1 £,,; ] ' 

i=qn 1+ j=! 
(6) 

where Dik is the Kronecker delta. On the other hand, if n < r, 
particles oflengths n + 1, ... ,r do not participate in the occu
pation process of a 1 Xn array and Pi in Eq. (6) must be 
replaced by 

Pi 
Pi.,. = 1:" ' i = q, ... ,n, n = q, ... ,r - 1, (7) 

m qPm 

the (conditional) probability of choosing an i-bell particle 
from among particles oflengths q, ... ,n and relative frequen
ciespq, ... ,Pn' Giving an empty sum (here and in the sequel) 
the value zero, we may therefore write, for any k = q, ... ,r, 

0, ifn = 1, ... ,k - 1, 
nk 2p ,.i 

b! = Pk.n + i~q n _ ;.~ 1 j~kbJ, ifn = k ..... r - 1, (8) 

r 2p n-i 
Pk + I .i Ib;, ifn =r,r+ 1, .... 

i=qn-l+1 j=k 

Rather similar considerations lead to the following re
cursion scheme giving c::', the mean number of m-gaps in a 
saturated 1 Xn array. for any m = O,l, ... ,q 1, 

ifn = O,l, ... ,m + q - 1, 

,.~m 2Pi,,. n~i m 
£,,; £,,; c)' if n = m + q, .... r - 1. 

c::' = I=q n - i + 1 j-m (9) 
r 2p. n i I .' I cj. ifn = r.r+ 1, .... 

i=qn-l+l j =m 

where Pi,n is the conditional probability defined in Eq. (7). 
Due to Eq. (l),1:t: ~ kc! (aswellasn -1:k=q kb!)coin

cides with an. the mean total number of compartments ulti
mately remaining vacant in a 1 X n lattice space, and it is this 
quantity which has been investigated formerly. 12 
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III. GENERATING FUNCTIONS 

We introduce the generating functions 

Fds) = i: b!s", k = q, ... ,r (10) 
n I 

and .. 
Gm(s) = I c::,~, m = O,l, ... ,q - 1 

11=0 

(11) 

and set 

;k(S) = 'il 

b!~ - 2 'il /i9 ~i-j ± b! 
n=k i=q+k j=k J + 1 ,.=k 

+Pks'/(I-s), (12) 

tlm(s) = 'il 

c::'s" - 2 'il /iq 

~i-j ± c::', (13) 
n_m i=9+m j=m J + 1 n=m 

r 

g(s) = Ip;l- 1, (14) 
;=q 

and 
q-I I r-I 1 r 

s-(s)= I '7 + I -~ I Pj' (15) 
i=1 I m=qm j=m+l 

First starting from Eq. (9) and following the lines ofthought 
applied previously, 12 we obtain 

or 

G;"(S)-Gm(S)[g'(S) + 2g(S)]=g(S)(tlm)'(S), (16) 
g(s) I -s g 

which has to be solved with initial condition Gm(O) =DQm. 
Rather than doing this directly we substitute 

Gm(s) = tlm(s) + g(s)e -l4'(S)Hm(s)(l - S)-2 (17) 

into Eq. (16) which yields the most simple equation 

H ;"(s) = 2(1 - s)tlm(s)el4'(S). (18) 

Since, due to Eqs. (13), (14), and (17), lim.......o H m (s) = 0, Eq. 
(18) is subject to the initial condition Hm(O) = O. It thus fol
lows readily from Eq. (18) that 

H m (s) = 21'(1 - x)tlm (x)e2g" (xl dx 

or 

Gm(s)=tlm(s)+Mm(s)/(1-s)2, m=O,I, .... q-l, (19) 
where we put 

Mm(s) = 2g(s)e-l4' tsl1'(1-X)tlm(X)e2g"(X)dx. (20) 

Proceeding from Eq. (8) and utilizing Eqs. (to). (12), (14). 
and (15) we obtain quite similarly 

Fk(s) = ;k(S) + Lk(s)/(1 - S)2, k = q ..... r. (21) 

with 
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IV. THE ASYMPTOTIC FORM OF b~ AND c: 
WeputO = l:~ = q ipi (which represents the average size of 

p-bell particles taking part in the occupation process) and 
note that [see Eqs. (14) and (15)] 

g'(I) = S'(I) = 0 - 1, g(l) = 1. (23) 

Upon differentiating the functions defined by Eqs. (20) and 
(22) and recalling Eqs. (12) and (13) we thus obtain 

M;"(I) = Mm(1)[ 1 - 0], m = O,I, ... ,q - 1 (24) 

and 

Li(I)=Lk(I)[I-01+2Pk, k=q, ... ,r. (25) 

But inspection ofEqs. (12), (13), and (19)-(22) reveals that the 
generating functions Fk and Gm have a pole of order 2 at 1 
and we henceforth conclude that (note that ifJk too has a 
singularity at 1), as n--+ 00 , 

b ~ -Lk(l)n + Ldl) - L i(l) + Pk 

and 

e;;'-Mm(l)n +Mm(l) -M;"(I), 

or, making use of Eqs. (24) and (25), as n--+ 00, 

b~-(n+O)Ldl)-Pk, k=q, ... ,r 

and 

e;;'-(n + O)Mm(I), m = O, ... ,q - 1. 

(26) 

(27) 

Finally, upon observing that Lk and Mm are integer func
tions l6 of order r - 1 [reconsider Eq. (15) to see that this 
affirmation is only true if Pr > 0; but also note that lower 
orders provide even smaller error terms in Eqs. (2) and (3)], 
the relations (2) and (3) are a consequencel6 of Eqs. (26) and 
(27), respectively, with 

Ak = Ldl), Ai = OLdl) - Pk, k = q, ... ,r 
and 

Pm=Mm(I), p;"=OMm(I), m=O,I, ... ,q-1. 

(28) 

(29) 

Clearly, the just-adopted argument may be used equally 
well to strengthen Eq. (6) in Ref. 12 to 

an =(n+O)L(I)+O(n-n(p-E)), as n--+oo, (30) 

foranyO<E<p= 1/(r-l). 

V. DISPERSION OF B';, AND c: 
ThevarianceofA n has been found 12toobeyanasymptotic 

law similar in form to that of an' the mean of An [see Eq. 
(30)]. However, calculations proved to be rather cumber
some and the constants involved in that asymptotic formula 
gave somewhat unwieldy results. Concerning the disper
sions of B ~ and C;;' the situation is not really different. We 
therefore desist from deriving the exact limit laws and con
fine ourselves to state the following: There are constants 
CI>O, C2>0, D I , andD2 independent ofn, such that for any 
O<E<P= 1/(r-l),asn--+oo, 

«(B ~)2) _ (B~)2 = Cln + DI + O(n -nIp-E)), 

k=q, ... ,r (31) 

and 
«(C;;,)2) _ (C;;,)2 = C2n +D2 + O(n-n(p-E)), 

m = O, ... ,q - 1. (32) 
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Clearly, as a consequence of Eqs. (31) and (32), there is 
stochastic convergence (n--+oo) ofB ~/n andC;;'/n tOA k and 
Pm' respectively [see Eqs. (28) and (29)]. 

VI. PARTICLE SIZE AND GAP DISTRIBUTION 

To what extent is a k-bell particle, participating in the 
occupation process with relative probability Pk' represented 
in the saturation configuration of a 1 X n array? This most 
interesting question, on the basis of the foregoing results, is 
quite easily answered. Among the particles composing the 
saturation coverage of a 1 X n lattice space a k-bell particle is 
found with relative frequency 

b k 

pt n = n., k = q, ... ,r, 
, l:;=qb~ 

(33) 

which may be computed utilizing Eq. (8). By means of Eqs. 
(2), (28), and (33), 

Ak pt= lim ptn = , k = q, ... ,r, (34) 
n---oo l:~ = qA; 

reconfirming Eq. (4). In the following section we shall give 
some numerical results concerned with Eq. (34) to get an idea 
of the magnitude of the deviation of pt from Pk. 

Another question of interest is the distribution of va
cant spaces on a saturated 1 X n array: The relative probabil
ity of meeting with an m-gap is 

em 
qm,n = nl . , m = O,I, ... ,q - 1, 

l:r':-oe~ 
(35) 

and is computable from Eq. (9) for any n. As n tends to 
infinity, 

qm=lim qm,n = Pm , m = O, ... ,q - 1, 
n~"" l:r,:-d Pi 

(36) 

wherepi is given by Eqs. (20) and (29). 

VII. EXAMPLES 

In this section we consider a few special cases. The nu
merical calculations of some of the previously studied quan
tities may serve to get some deeper insight into the peculiari
ties of model II. 

A. Some two-type models 

(i) The ease q=2, r=3:Sinceherep2 + P3 = 1, the model 
is completely determined by a single parameter P3' say. We 
obtain from Eqs. (2), (8), (22), and (28) 

lim b ~/n==A2(p3) 

=2expl-2-P3Jl\t2-P3t3) 

xexpl2t + P3t2Jdt (37) 

and 

(38) 
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FIG. I. Plots of ..1.2 and ..1.3 [EqS. (37) and (38)] and po and PI [Eqs. (39) and 
(40)] in the two-type model q = 2, r = 3 as functions of P3' 

Similarly, from Eqs. (3), (9), (20), and (29) it is seen that 

lim c~/n==PO(p3) = 2 exp{ - 2 - P3J (\1 - t) 
-. 1 

X [1 + 2P3t 2]exp{ 2t + P3t 2Jdt (39) 

and 

(40) 

Figure 1 showsA2, A3'PO' andpl as functions ofp3' We ob
serve thatA2 decreases almost linearly (with increasingp3) to 
the limit value 0.050. This, clearly, is the fraction of two-gaps 
generated by the initially preponderating trimers and finally 
filled up by dimers. The fact that PI diminishes as P3~ 1 - is 
to be expected since the overall saturation coverage grows 
bigger when trimers become more frequent (see Fig. 3 in Ref. 
12). 

In the first two rows of Table I are given, for some values 
of P P3' the relative frequencies qo(p) = Po(p)/ 

[Po(p) + Pl(P)] andql(p) =Pl(P)I[PO(p) + Pt(p)] ofazero
gap and a one-gap, respectively. 

(ii) The case q=4, r= 5: In this case we see from Eqs. (20) 
and (27) that, for m = 0,1,2,3, 

n~. 

X f (1 - t )tP m (t )exp { 2t + t 2 + ~ t 3 

+ !P5t4 Jdt, 

with tPo(t) = 1 + 2P5t4, tPt(t) = t, tP2(t) = t 2, and tP3(t) = t 3. 
For some values of P P5' the relative frequencies 

qm(P5) = Pm(P5) , m = 0,1,2,3 
~:=o p;(Ps) 

(41) 

of an m-gap are shown in the last four rows of Table I. As 
Ps~1 -, the frequency of m-gaps, m = 1,2,3, decreases; 
this means that the saturation coverage augments. 

It is worthwhile to note that the values in the first col
umn of Table I correspond to one-type models and, hence
forth, coincide with those given by Mackenzie.2 

B. The three-type model q = 2, r = 4 

Due to the condition P2 + P3 + P4 = 1 (with P2 > 0) the 
model depends on two parametersp3 andp4, say. From 

lim b ~/n==Ak(p3,P4) = 2 exp{ - 2 - P3 - jp4J 
n~oo 

X f [Pkt 4 + (1 - t}fk(t)]exp{2t 

+ (P3 + P4)t 2 + ~p4t3Jdt, k = 2,3,4, 

with 12(t) = t 2 + [(1 - P3 - P4)1(1 - P4)]t 3, h(t) = [P3/ 
(1 - P4)]t 3, and 14(t) = 0, we calculated [see Eq. (34)] 

*( ) Ak(P3,P4), k = 2,3,4. Pk P3,P4 = 
~i=2A;(P3,P4) 

(42) 

Figure 2(a) shows, for some selected values ofp2'p! as a 
function of P4' As might be expected, whatever may be the 
values of P2 and P4' p! exceeds P2' What is remarkable is, in 
the case P2 = 0.02, the strong increase of p! as P4 approaches 

TABLE I. Relative probabilities qm (p) [Eqs. (36) and (41)] of an m-gap in three different two-type models ( q = j, r = j + l;j = 2,3,4) for various values of 

P = Pro r = 3, 4, 5. 

p=O.O p=0.2 p=0.4 p=0.6 p=0.8 P = 1.0-

q=2,r=3 
qo(p) 0.6870 0.7042 0.7204 0.7357 0.7500 0.7633 
ql(p) 0.3130 0.2958 0.2796 0.2643 0.2500 0.2367 

q= 3,r=4 
qo (P) 0.5390 0.5578 0.5758 0.5930 0.6093 0.6249 
ql(p) 0.2796 0.2672 0.2553 0.2440 0.2333 0.2231 
q2(P) 0.1813 0.1750 0.1689 0.1631 0.1574 0.1520 

q=4, r= 5 
qo(p) 0.4500 0.4678 0.4850 0.5016 0.5176 0.5330 
ql(p) 0.2515 0.2421 0.2331 0.2245 0.2162 0.2083 
q2(P) 0.1714 0.1661 0.1610 0.1561 0.1514 0.1469 
q3(P) 0.1272 0.1239 0.1208 0.1177 0.1147 0.1119 
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FIG. 2. Relative probabilities p! ,pT, andp:' [Eq. (42)] in the three-type model q = 2, r = 4. (a)p! as a function ofp. for several values of P2' (b)pT as a function 
of P. for various values of P3' (c) P:' as a function of P3 for some values of P •. 

0.98. Clearly, whenp4-<l.98 -, trimers become even more 
rare than dimers and these will then land in three-gaps, too. 
In the absence of trimers p!(0,0.98) = 0.247, i.e., the "out
put" probability p! is more than 12 times larger thanp2' the 
"input" probability. This, clearly, is even more marked in 
the case P2 = 0 + [see the corresponding plot of p! in Fig. 
2(a)). 

In Fig. 2(b), for some values of P3' p~ is plotted as a 
function of P4' It is seen that pf may be smaller and larger 
than P3 and also equal to it. The latter situation takes place 
whenp4!:::::::0.59, independently (!), as it seems, of the value of 

P3' 
Not surprisingly, the situation in Fig. 2(c) is contrary to 

that of Fig. 2(a):p4>p: for any P3 andp4' 

C. A multltype model 

In the (r - I)-type model q = 2, P2 = P3 = ... = p, 
= lI(r - 1), all r - 1 kinds of particles are equally frequent. 

For r = 2, ... ,11, Table II contains the corresponding "out
put" probabilities pr, k = 2, ... ,r, which manifest the smaller 
particles' "advantage" over larger ones. It is particularly 
noteworthy that, in the case r = 11,45% of the (ten types of) 
particles contributing to the saturation coverage of an infi
nite lattice space are dimers or trimers (on the average). On 
the other hand, as is easily checked from the last row in Table 
II, on the average only 21.86% of the total number of non va
cant compartments is occupied by dimers or trimers. The 
corresponding occupation percentage for 10- and II-bell 
particles is almost identical: 21.49%. 

VIII. CONCLUSIONS 

We have analyzed the saturation configuration arising 
when a one-dimensional lattice space is filled sequentially at 
random with particles of random length. Recursion relation
ships for the mean number of k-bell particles placed and for 

TABLE II. Relative probabilitiespt [Eq. (34)] in (r - I)-type models with q = 2,P2 = P3 = ... = p, = I/(r - 1), r = 2, ... ,11. 

r p! pT p:' pt P: p~ pt P: pro prl 

2 1.000 
3 0.585 0.415 
4 0.456 0.300 0.244 
5 0.394 0.246 0.193 0.167 
6 0.359 0.214 0.164 0.139 0.123 
7 0.336 0.194 0.146 0.121 0.106 0.096 
8 0.321 0.180 0.133 0.109 0.094 0.085 0.078 
9 0.310 0.170 0.123 0.100 0.086 0.077 0.070 0.065 

10 0.301 0.162 0.116 0.093 0.079 0.070 0.064 0.059 0.055 
11 0.294 0.156 0.110 0.088 0.074 0.065 0.059 0.054 0.051 0.048 
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the mean number of m-gaps have been derived and used to 
determine particle size and gap distribution. 
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Previously we obtained second- and third-order Lie-Backlund transformations of the massive 
Thirring model. Now by introduction of non local variables we obtain two (x,t I-dependent Lie
Backlund transformations. These nonlocal Lie-Backlund transformations act as generating 
operators on first- and second-order Lie-Backlund transformations, and we conjecture that they 
lead to two infinite hierarchies of commuting Lie-Backlund transformations. 

I. INTRODUCTION AND GENERAL 

In a recent paper I we studied Lie-Backlund transfor
mations of the massive Thirring model.2 This model is de
scribed by the following system of partial differential equa
tions: 

- U lx + U lt = mV2 - (ui + vi)vI' 

U2x + U2t = mVI - (uf + vf )V2' 

Vb - Vlt = mU2 - (ui + vi)uI' 

- V2x - v2t = mUI - (ui + vf )U2' 

(Ll) 

We introduced the ideal I in RIO = {(x,t,u l, ... , 
V2' uIX '''.'V2x )} generated by four differential one-forms 

al = dUI - Ulx dx - G(l,l)dt, 

a2 = dU2 - U2x dx - G(2,1)dt, 

a 3 = dVI - Vb dx - G(3,1)dt, 

a4 = dV2 - V2x dx - G(4,1)dt, 

(1.2) 

where G (*,1) is obtained by solving for U 1". .. ,V2t from (Ll). 
The vector field V, defined by 

V = V 3 au, + v4 au, + V S au, + v6 au, + pr, (1.3) 

where "pr" represents the prolongation of V 3
, is a Lie-Back

lund transformation for (1.1) if 
2' v leD j I, (1.4) 

where D j I is thej-times prolonged ideal I (see Ref. 3). 
We introduced a grading for (1.1) by setting 

deg(x) = - 2, deg(t) = - 2, 

deg(u j ) = deg(vj) = l(i,j = 1,2), deg(m) = 2, (1.5) 

and obtained eight vector fields X IO ... , Xs 
X~ =! (- mV2 + VI R2 ), 

X1 = ! (2u2x - mVI + V2 R I), 

X~ =! (mu2 - U I R2), 

X~ = !(mv i - V2 Rd, 

X~ =! (2V2x + mUI - U2 R I), 

X~ =! (2Ulx + mV2 - VI R2), 

X~ =! (2Vlx - mU2 + UI R2), X~ =! (-mu l + u2Rd, 

x; = v2x ( - x + t) + mvlx - ! U2 - XV2 R I , 

X~ = vlx(x + t) - mu~ +! VI +xul R2, 

X~ = v2x ( - X + t) - mu IX - ! V2 + XU2 R I' 

X~ = VI' X! = V2, X~ = - U I, X: = - U2, 

(1.6) 

X~ =! {2u2x ( - m + 2VIV2) - 4V2xU2VI - mv2(R I + R2) 

- 2mvi R + vl(R ~ + 2RI R2)}' 

X~ =! { - 4V2xx + 2u b ( - m + 2UIU2) + 4u2x (R I + R2) 

(1.7) 

X~ =! {2v2x ( - m + 2UIU2) - 4U2x UIV2 + mu2(R I + R2) 

+ 2mu iR - ul(R ~ + 2RI R2)}' 

X~ =! {4u2xx + 2vlx ( - m + 2VIV2) + 4V2x(RI + R2) 

- u2(R ~ + 2RI R2)}. 

In (1.6) and (1.7) we introduced R, R I, R2 by 

R = UIU2 + VIV2' RI = uf + vfo R2 = ui + vi. (1.8) 
The vector field X6 is obtained from Xs by the following 
transformation: 

T:U I-U2' U2-UIO VI-V2' V2-VI' ax--ax, 
(1.9a) 

X~ = - T(X~), X: = - T(X~), 
(1.9b) 

X~ = - T(X~), X~ = - T(X~). 
The explicit form of the vector fields X 7 , Xs is given for the 
sake of completeness in the Appendix. 

In Sec. II we shall introduce nonlocal variables Po' P I' P2 
by prolonging the ideal D j I with the potential forms Po, PI' 
P2 associated with the vertical vector fields XI' X2, X4· The 
condition (1.4) then generalizes to 

2' v Ie (D j I, Po, PI' P2), (1.10) 
where (Dj I, Po, PI' P2) represents the ideal generated by 
D j I, Po, PI' P2. 

The condition (1.10) is equivalent to the one obtained by 
Krasilshchik and Vinogradov.4 By assuming V to be depen
dent on Po, PI' P2 as well, we derive two nonlocal Lie-Back
lund transformations. 

In order to compute the generalized Lie bracket4 we 
first have to derive the nonlocal components of the vector 
fields XI"'" X 6 , which have to satisfy the condition 

2' v Pj e (Dj I, Po, PIO P2) (i = 0, ... ,2). (1.11) 

Finally, we give the commutators of the Lie-Backlund 
transformations, the results of which are given in Sec. III. 
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II. NONLOCAL LIE-BACKLUND TRANSFORMATIONS 
FOR THE MASSIVE THIRRING MODEL 

In this section we construct nonlocal Lie-Backlund 
transformations for the massive Thirring model. 

First of all we introduce a Lagrangian L for the massive 
Thirring model, i.e., 

L (u l , ... , V2,U lx "'" v2t ) 

=! { - UIV lx + UlxV I + U2V2x - U2x V2 

+ UIV II - UIIV I + U2V2t - u2t v2} 

+ m(u lu2 + VIV2) - !(ui + vi)(u~ + v~). (2.1) 

A straightforward computation shows that the Euler-La· 
grange equations associated with (2.1) are just the system of 
partial differential equations (1.1). 

Application of Noether's theorem5 to the infinitesimal 
symmetries 

0 1 = ax' O2 = a" 

0 3 = VI au, + V2 aU2 - U I av , - U2 aV2 ' 

0 4 = tax +xa, - !UI au, + !U2 au
2 

- !V I av, + !V2 aU2 ' 

(2.2) 

which are equivalene toXI ,,,,,X4 (1.6), leads to the following 
conserved vectors5

: 

A ~ = ~ {UIVlx - UlxV I - U2V2x + U2x V2 + R IR 2}, 

A ~ =! { - UIV lx + UlxV I - U2V2x + U2X V2}, 

A ~ =! {UIVlx - UlxV I + U2V2x - U2x V2}' 

A ~ = ~ { - UIV lx + UlxV I + U2V2x 

- U2x V2 - RI R2 + 2mR}, 

A 3=HR I -R2}, A~= -HRI +R2}, 

(2.3) 

+!t {UIV lx - UlxV I - U2V2x + U2x V2 + RI R 2}, 

A ~ =! x { - UIV lx + UlxV I + U2V2x - U2xV2 - RI R2 

+ 2mR} +! t { - UIV lx + UlxVI 

- U2V2x + U2x V2}, 

whereR, R I, R2 are defined by (1.8). 
Our first attempt, without success, in searching for a 

generating Lie-Backlund transformation was an (x,t )-depen
dent local Lie-Backlund transformation of degree 2, because 
XI' X 2 (1.6) are of degree 2, X 5, X6 (1.7) being of degree 4. We 
were motivated by the form of the nonlocal Lie-Backlund 
transformations for the Korteweg-deVries (KdV) equa
tion4

,6 (u t = UUx + uxxx ) 

t/J = {t(uxxxxx + ~uxxxu + lfuxxux + ~uxU2) + x(!uxxx 

+ !ux u) + ~uxx + ;u2 + ~uxP _ I }au + pr, (2.4) 

where 

P - I = f: 00 U dx. (2.5) 

First, note that f~ 00 U dx is just a conserved quantity3 for 
the KdV equation, or 
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(2.6) 

is a conserved current of the KdV equation. Second, the gen
erating (local) Lie-Backlund transformations of Burgers' 
equation 7,8 

tP = {x(2uxU + 2uxx ) + t(4uxxx + 6uxx u + 6u; 

(2.7) 

and of the classical Boussinesq equation9 (u l = UVx + uxv 

+ ovxxx ; VI = Ux + vxv) 

ZI = {t (ouxxx + ~ovxxxv + 30vxx vx + ~ux(V2 + 2u) 

+ ~vxvu) + !X(ovxxx + UxV + uvx ) + ~ovxx + uv}au 

+ {t(ovxxx + ~uxv + ~vx(V2 + 2u) + !X(ux + vxv)) 

+ v2/4 + u}au + pr (2.8) 

(which is obtained by the action of the generating operator 
pj) on the scaling) are linear in x and t; while the coefficients 
of x,t are Lie-Backlund transformations themselves. 

Motivated by these observations we introduce nonlocal 
variables Po' PI' P2 by the potential forms 

Po = dpo - P6 dx - P6 dt, PI = dpi - pI dx - pi dt, 

P2 = dP2 - pi dx - p~ dt, 

where 

(2.9a) 

P6 = - A ~, pI = - (A ~ + A ~), pi = - (A ~ - A ~), 

P6 = +Aj, pi =A~ +A~, p~ =A~ -A~. 

We now construct the ideal of differential forms I ' 

(2.9b) 

l' = ( D 3 I, Po, PI' P2) (2.10) 

and impose the condition 

2'vIC (D 3 I,Po,PI,P2), (2. 11 a) 

which does lead to conditions on the local components ofthe 
vector field V, components which are supposed to be depen
dent on 

Po, PI' P2' x, t, uI ,. .. , V2"'" u1xx"'" v2xx ' (2. 11 b) 

The resulting conditions on the local components of V are 
similar to the conditions obtained by prolongation of the 
total derivative operatorsDx ' D" i.e., Dx ' D:. 

Motivated by the results for the KdV, Burgers', and 
classical Boussinesq equations we search for a Lie-Backlund 
transformation 

V = X LBI + t LB2 + C, (2.12) 

where LB J and LB2 are (x,t I-independent Lie-Backlund 
transformations of degree < 4, while C has to be of degree 2. 
(Note that the components have to be of degrees 5 and 3, 
respectively.) Since in this specific problem the mass m is of 
degree 2, we take LBI, LB2 to be linear combinations of 
XI"'" X6 [(1.6) and (1.7)] whereas the C components (2.12) 
are supposed to be linear in Ulx' U2x ' Vlx ' V2x ' 

Substitution of(2.12) into the overdetermined system of 
partial differential equations obtained from (2.11) and solv
ing the resulting system leads to two (x,t I-dependent nonlocal 
Lie-Backlund transformations, i.e., 
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zi = VI P2 +x[ - 2X~ - m2vd + t [2Xn + ~ mu2, 

Z~ = V2P2 +x[ - 2X~ - m2v2] + t [2X~] + ~ mUI 

+ 3v2x - ~ R lu2 -! R2u2, 

Z~ = -UIP2+X[ -2X~ +m2ud +t[2Xn +!mv2, 

Z! = -U2P2+X[ -2X~ +m2u2] +t[2Xn +~mVI 

- 3u2x - ~ R lv2 - ! R2v2, 

(2.13) 
Z ~ = VI PI + X [ - 2X ~ + m2vd + t [ - 2X ~] + ~ mU2 

- 3vlx - ~ R2uI -! Rlu l, 

Z; = V2PI + X [ - 2X: + m2v2] + t [ - 2X:] + ! mu l , 

Z~ = -UIPI +x[ -2X~ -m2ud +t [-2X~] 

+ ~ mV2 + 3u lx - ~ R2vI -! Rlvl , 

Z~ = -U2PI +x[ -2X~ -m2u2] 

+t[ -2Xn +!mvl· 

Note that the local components of the vector fields Z I and Z2 
do not depend on the nonlocal variable Po. From now on we 
discard Po from our considerations. 

III. THE ACTION OF THE VECTOR FIELDS Z1 AND Z2 ON 
X1' ••• 'X. 

In order to derive the action of the vector fields Zl and 
Z2 on the vector fields Xl"'" X6 [(2.13), (1.6), and (1.7)] we 
have to extend the Lie bracket in a way analogous to Kra
silshchik and Vinogradov.4 The nonlocal components of the 
vector fields Xl"'" X6 are obtained by prolongation, ex
pressed by the condition 

2' X
J 
Pi C (D 3 I, PI' P2 ), (i = 1,2) (j = 1, ... ,6). 

(3.1) 

This condition is equivalent to the condition that the Lie 
derivative 2' x of the potential equations 

J 

PIx + (A ~ + A ~) = 0, PIt - (A ~ + A n = 0, 

(3.2) 
P2x + (A ~ - A ~) = 0, P2t - (A ~ - A n = ° 

is zero subject to (Ll) and (3.2) and their differential conse
quences.s We shall not take into account integration con
stants arising from condition (3.11). They refer to symme
tries apI' ap2 of (Ll) and (3.2). The computation of (3.1) leads 
to the following nonlocal components of the vector fields 
X\,. .. ,X6 : 

Xj=x]ap1 +xJap2 +X]aU1 +xJau2 +X]a." 

+ XJ aV2 + pr (j = 1, ... , 6), (3.3a) 

X: = -!mR, 

Xi = - V2U2x + U2V2x +! mR -! R\ R2, 

Xi = - VlU\x + UlV\x -! mR +! RI R2, 

X~ =!mR, 

X~ =! (X + t)( + 2u\v\x - 2VlUlx + RI R2) - mtR + PI' 

X~ =! (X + t)( - 2U2V2x + 2V2U2x + RI R2) + mtR - P2, 
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X! =0, X~ =0, 

X~ = -! mvlu2x +! mulv2x -! mR (RI +R2) 

+! m2(RI + R2), 

- u2x (R2 v2 + 2RI V2) + v2x (R2 U2 + 2RI U2) 

- ! m2(RI + R2) + imR (RI + R2) 

+! RIR2(RI + R2), 

X! = - UlxxU\ - V\xxVI + vix + uix 

-! mv2x ul + mUlx v2 +! mu2x v\ - mV\x u2 

- utxv\(R I + 2R2) + v\xU\(RI + 2R2) 

+!m2(RI +R2) -i mR (RI +R2) 

-! R\ R2(R\ + R2), 

X~ = -! mv2u\x +! mu2v\x +! mR (RI + R2) 

-! m 2(R\ + R2 ), 

(3.3b) 

while the p\ component of Z I and the P2 component of Z2 are 
given by 

Z: =! (x - t){ - 2mu lv2x + 2mvlu2x 

+ (- m2 + mR)( R\ + R2)} -! mu lv2 +! mU2vI' 

(3.4) 

Z ~ = ! (x + t){ - 2mu2v\x + 2mv2utx 

+ (m2 - mR)( R\ + R2)} + !mu\v2 -! mU2v\. 

Computation of the generalized Lie bracket then leads to the 
following results: 

[Z\' Xtl = -! m2X4 - 2Xs, [Z2, Xtl = ! m2X4, 

[Z\' X2] = -! m2X4, [Z2' X 2] = ! m2X4 - 2X6, 

[Z\, X 3 ] = Z\, [Z2' X 3 ] = - Z2' 

(3.5) 

[Z\,XS ] = 4X7 - 2m2 X\ - m2 X2, [Z2'XS ] = m2 XI' 
[Z\, X6] = m2 X2, [Z2' X6] = 4Xs - m2X\ - 2m2 X2, 

while 

[Z\' Z2] = - 2m2 X 3• 

Transformation of the basis vector fields by\ 

Y7 = Y7 - (m2/2)X\ - (m2/4)X2, 

Ys =Xs - (m2/4)X\ - (m2/2)X2 

P. H. M. Kersten and R. Martini 
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yields the following commutators: 

[ZI' YI ] = - 2Ys, 

[ZI' Y2 ] = -! m2 Y4 , 

[ZI' Y3 ] = ZI' 

[ZI' Y4 ] = 0, 
[ZI' Ys] = 4Y7 , 

[ZI' Y6 ] = m2 Y2, 

while 

[ZI' Z2] = - 2m2 Y3• 

[Z2' Yd = ! m2 
Y4 • 

[Z2' Y2] = - 2Y6 , 

[Z2' Y3 ] = - Z2' 

[Z2' Y4 ] = 0, 

[Z2' Ys ] = m2 YI, 

[Z2' Y6 ] = 4Yg, 

(3.7) 

From (3.7) we conclude that Z I acts as a generating operator 
on YI, Ys, while Z2 acts as a generating operator on Y2, Y6• 

The action of Zion Y2, Y6 is of decreasing nature, just as Z2 
acts on YI , Ys' 

We suspect that the vector fields ZI and Z2 generate a 
hierarchy of commuting Lie-Backlund transformations. At 
this moment we do not have a general proof of this fact. 

Remark: in (3.7) only Z: , Z ~ are given, necessary to 
compute the generalized Lie bracket 

[ZI' Z2] = - 2m2 Y3• 

We should mention that Z I does not admit a prolongation 
Z i , while Z2 does not admit a Z ~ prolongation in this for
mulation (3.1). They probably do admit a prolongation in a 
more general formulation, taking into account higher-order 
nonlocal variables related to the Lie-Backlund transforma
tions Ys, Y6 (1.7). We hope to study this problem in future 
work. 
APPENDIX: LIE-BACKLUND TRANSFORMATIONS 
X7 ,X. 

The vector field X7 is given I by 

X~ = l {8u2xx U2VI + 4v2xx (2v IV2 - m) - 4u~xvl + 4u2x (m( RI + R2 + vi + v~) - 3VIV2( RI + R2)) - 4v~vI 

+ 4v2x ( - (UIVI + u2v2)m + 3u2vl( RI + R2)) + 4u lx mR - 2m2vl( RI + R2) - 4v2m2R + 4vlmR (RI + 2R2) 

+ v2m( R i + 4RI R2 + R~) - vl( R ~ + 6R ~ RI + 3R2 R i)}, 
X~ = l {8u2xXX + 12v2xx ( RI + R2) + 8UlxxUIV2 + 4Vlxx(2vlV2 - m) - 12uix v2 + 24u2xV2xU2 

+ 2u2x (IOmR - 3R i - 12RI R2 - 3R~) + 12v~xv2 + 24v2xUlxUI + 24v2x vlx vl + 8uix V2 

+ 4u lx (m( RI + R2 + ui + u~) - 3U IU2( RI + R2)) + 8vixV2 + 4vlx (m(u lvl + U2V2) - 3u2vl( RI + R2)) - 4m2vI R 

- 2m2v2( RI + R2) + mVI( R ~ + 4RI R2 - R i) + 4mV2R (R2 + 2Rd - V2( R t + 6R i R2 + 3R I R ~)}, 

X~ = l { - 8v2xx V2UI - 4V2xx(UIU2 - m) + 4v~xul + 4v2x (m( RI + R2 + ui + U~) - 3UIU2( RI + R2)) + 4u~ul (AI) 

+ 4u2x ( - (UIV I + u2v2)m + 3v2u l( RI + R2)) + 4vlxmR + 2m2ul( RI + R2) + 4u2m
2R - 4u tmR (R t + 2R2) 

- u2m(R i +4RI R2 +R~) + ul(R ~ + 6R ~ RI + 3R2R i)}, 
X~ = l {8v2xxx - 12u2xx ( RI + R2) + 8v lxx U2VI - 4Ulxx(2ulU2 - m) + 12v~u2 - 24u2xV2xV2 

+ 2v2x(lOmR - 3R i - 12RI R2 - 3R i) - 12u~xu2 - 24u2x vlx vl + 24u2x u lx ul 

- 8vixU2 + 4v lx (m( R t + R2 + vi + v~) - 3v tv2( R t + R2)) - 8uixU2 + 4u lx (m(u lvt + U2V2) - 3u tv2( R t + R2)) 

+ 4m2u t R + 2m2u2( RI + R2) - mUI( R ~ + 4R t R2 + R i) - 4mu2R (R2 + 2Rd 

+ U2( R t + 6R i R2 + 3R I R ~)}, 

whileXg is obtained fromX7 by transformation (1.9a) and 

X~ = - T(X~), X: = - T(X~), X~ = - T(X;), X~ = - T(X~). 
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We consider a hydrogenlike system in which the Coulomb potential is replaced by the more 
general central potential VIr) = vj(rlb) = vg( - b Ir), wheregis monotone increasing and convex. 
The method of potential envelopes is applied to this problem and approximations are obtained for 

the energy trajectories based on the expression Enj = min [Dnj(u) - uD ~j(u) 
"E(O,I) 

+ vj{ - l/bD ~j(u) 1], where Dnj(u) is the known exact trajectory function for the hydrogenic 
atom. General formulas are given for linear combinations of power-law potentials and the log 
potential. Some graphical results are presented in the case ofthe Coulomb-plus-linear potential 
j(r) = - air + {3r. 

I. INTRODUCTION 
We study the bound-state energies of a single fermion 

which moves in an attractive central potential and obeys the 
Dirac equation. The potential V (r) is the time component of a 
Lorentz four-vector, just like the Coulomb potential of the 
hydrogenic problem. The only Lorentz-scalar term in the 
Hamiltonian is the term proportional to the constant rest 
mass m. We suppose that the potential V (r) is a smooth trans
formation of the Coulomb potential - air and therefore has 
the representation 

VIr) = Voj(rla) = Vog( - air), r = Irl, (1.1) 

where the transformation function g is monotone increasing 
and convex on ( - 00 ,0). This class of potentials includes, for 
example, combinations of Coulomb, linear, and logarithmic 
components such as 

V(r) = -Alx+Bx+C log(x), x = ria, (1.2) 

which are of interest in connection with the construction of 
quark models for baryons. In the relativistic domain such 
central vector potentials do not lead to confinement. Suit
able increasing scalar potentials with m = m(r) are sufficient 
for confinement but we do not treat these in the present 
study: in this paper m is a constant equal to the rest mass of 
the particle. 

The close relationship of the general class (1.1) of poten
tials to the Coulomb potential allows us to take advantage of 
the well-known exact solution to Dirac's equation for the 
hydrogenic atom. Every smooth potential of the form (1.1) is 
the envelope of a family of Coulomb potentials, each having 
the form 
j(t) (x) = -P(t)lx+Q(t), P(t»O, Q(t»O, (1.3) 

where t is a parameter which we shall take to be the point of 
contact between the tangential potentialj(t)(x) and the origi
nal potentialj(x). The convexity ofgimplies thatj(t)(x)q"(x), 
for each t E (0,00). Since the Dirac eigenvalue problems gen
erated by the envelope "components" j(t)(x) have exact solu
tions, we can try to exploit these to obtain approximations to 
the Dirac eigenvalues generated by j(x). This application of 
"envelope representations" in the analysis of potentials is 
called the method of potential envelopes. It was first intro-

duced I as a tool for the nonrelativistic N-body problem and 
has subsequently been further refined2 by the use of "kinetic 
potentials." The main purpose of the present article is to 
explore the use of this geometrical approach in the study of 
relativistic problems. In this endeavor, two new difficulties 
immediately arise. 

The first of these is a mathematical problem. We should 
like to conjecture that ifft ) (x)q"(x), then the eigenvalues as
sociated withft) are, one by one, lower than those associated 
with f However, if we open standard modem reference 
works such as Reed-Simon3 or Thirring,4 we do not find the 
equivalent of the Rayleigh-Ritz theorem for the Dirac Ha
miltonian. The reason for this is that the Dirac operator is 
not bounded below and so we do not have the equivalent of 
the variational principle for eigenValues that is so useful for 
the corresponding nonrelativistic problem. Elementary vari
ational arguments leading to the Dirac equation may be 
found, for example, in articles by Swirles and by Hartree.5 

Throughout the present article we keep the Lorentz scalar 
term (which is proportional to the mass m) constant. It is 
clear that the eigenvalues of our problem are monotonic in 
any added constant term in the potential V (r). In particular, 
the spectrum of the soluble hydrogenic problem associated 
with the potential VIr) = - Air + Bis monotone in the con
stant B, and we know that the discrete energies are also 
monotone in the positive constant A: within this very re
stricted family of potentials, therefore, if VIr) is increased by 
adjusting either A or B, then the discrete eigenvalues in
crease. Kato has shown6 that the Dirac Hamiltonian is es
sentially self-adjoint for hydrogenlike potentials that are not 
too strong (i.e., Z < 137 X 2I1T). Wightman has shown 7 that 
the Dirac Hamiltonian has some nice stability properties un
der smooth local perturbations. We can add to this the very 
weak argument that we have not been able to find a counter
example to the conjecture as a result of some numerical in
vestigations. However, all these observations do not bring us 
close to a theorem and indeed it may tum out that no such 
general theorem is possible which would include all the 
problems we treat. Our policy will therefore be to use the 
envelope method simply as a guide which will lead us 
towards an approximation for the eigenValUes based on the 
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known hydrogenic spectrum. We do not claim that the ap
proximate energies are lower bounds to the discrete eigen
values. 

We now come to our second difficulty. In our proposed 
application of the potential envelope method the envelope 
componentsft) (x) have the term - P (t )/x. Now in order to 
use the known exact solution for the hydrogen atom we must 
haveP(t) <Po, where the constant Po depends on the units we 
employ but corresponds to "Z = 137" (or more strictly, 
"Z = 137 X 2111''') in the atomic case. This means, for exam
ple, that even if we apply our results to a pure linear poten
tial, the coupling constant should not be too large. The repre
sentation we use for the potential therefore automatically 
eliminates both singularities stronger than l/r, and large 
coupling to increasing potentials. It is perhaps mildly cur
ious that a restriction which starts out merely as a pathology 
of the representation turns out also to be consistent with 
what is likely to be physically meaningful in a non-field
theoretic framework. 

II. DIMENSIONS AND SCALING 

Rather than set various physical quantities initially to 
the value 1, we adopt explicit dimensionless variables ac
cording to the following policy. All energies are measured in 
units of mc2

, where m is the rest mass of the particle, and all 
lengths are measured in terms of the Compton wavelength 
ft/mc. Thus if E is the total energy of the particle which 
moves in the potential 

VIr) = Vof(r/a), (2.1) 

then we define the following dimensionless variables: 

E = E /mc2
, v = V oImc2

, b = amc/ft, 
(2.2) 

z = rmc/ft, x = ria = z/b. 

In terms of these variables we now write the coupled radial 
equations (we follow, essentially, the notation of the book by 
Messiah,S p. 928): 

{ ~zd + 7": }¢2(Z) = {E - 1 - vf( ; ) }¢I(Z), 

(2.3) 

{! + 7": }¢I(Z) = {E + 1 - Vf(; )}¢2(Z), 

where the parity of the spinor IJI ~ constructed from the 
large and small radial factors Z-I¢I(Z) and Z-I¢2(Z) is given 
by P = ( - 1) j + (112)7", and 7" = ± 1. We shall refer to the 
allowed values of E = Enj in (2.3) as "Dirac eigenvalues." Our 
radial quantum number n = 1,2,3 ... indicates, for a givenj, 
the nth solution of (2.3) for the radial functions (¢1'¢2)' The 
eigenvalues are ordered according to En,/;;'Enj , n' > n, and 
both possible values ofthe parity parameter 7" are allowed in 
the collection of ordered eigenvalues. Although, of course, 
the parity P = ( - 1 Y + (112)7" is a constant of the motion its 
usefulness to us is limited by our present methodology in 
which the more general problem is analysed in terms of the 
hydrogenic atom. With this labeling convention, the degen
eracy of the eigenvalue Enj is always exactly (2j + 1). The 
familiar hydrogen-atom eigenvalues will be given below in 
the same notation. 
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It is clear from (2.3) that, unlike the corresponding non
relativistic problem, we cannot in general rescale the equa
tions in order to express the energies E as functions of valone: 
this is because the solution to the relativistic problem de
pends on c whose value in tum depends on the length units 
used. Hence, for the general problem we must write 

E=F(v,b). 

For pure power laws with potential shapes 

fIx) = sgn(q)xq, q;;. - 1, q=lO, 

we have the functional form 

E = F(y), where y = vb- q
, 

whereas, for the log potential 

fIx) = log(x), 

we obtain 

E = F(v) - v log(b ). 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

The functions F = Fnj above are, of course, all different. We 
have not been able to learn any more about these functions 
by scaling arguments although we feel that such reasoning 
should yield more information, as indeed it does in the non
relativistic case.2 For a combination of the Coulomb and 
linear potentials we shall write the potential in the form 

fIx) = - A/x + Bx, with v = 1. (2.9) 

The radial equations (2.3) then imply the relation 

E = F(a,/3), (a,/3) = (Ab,B /b ). (2.10) 

Again, it does not appear to be possible to simplify (2.10) 
further by the use of general scaling arguments. However, in 
the nonrelativistic limit the usual scaling law must emerge: 
we shall return to this point later when we discuss nonrelati
vistic limits in Sec. III. 

A function which will be frequently used in this article 
is theF function for the Coulomb potentialf(x) = - l/x. In 
this case we let vb = usothatE = F(vb) = F(u) = D(u)isgiv
ens (with our convention for the radial quantum number n) 
by the expression 

Enj = Dnj(u) = D(u) 

= [1 +u2{v_k+(k2_U2)1/2}-2]-1/2, 

k = j +!, v = I (n/2) + k, 

(2.11) 

where I (X) is the greatest integer..;;X and v is the symbol 
which we shall use for the principal quantum number of the 
hydrogenic atom, and u < 1 (the "Z < 137" limit for relativis
tic hydrogenic atoms). We recall that all the eigenvalues so 
labeled have degeneracy exactly (2j + 1). We are not employ
ing a parity label: the parity P of the spinor corresponding to 
the (hydrogenic) eigenvalue Enj is given by 7" = ( - It and 
P = ( - 1 Y + (1/2)7". The imposition of this relationship 
between 7" and n (which, by our definition, "counts" all the 
radial states with label JM) is possible because of the degen
eracies of the hydrogen spectrum. In the nonrelativistic limit 
the "large component" of the Dirac spinor becomes domi
nant and we shall denote the orbital angular momentum la
bel of the sperical harmonic in this component by I. In terms 
ofl the parity of the spinormay bewrittenP = ( - 1( In the 
nonrelativistic limit one also uses a radial quantum number 
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nr = 1,2,3, .... We now give the explicit relationships 
between all these various quantum numbers for the hydro
genic spectrum: 

v=/(nI2)+j+! 

= {n - /(nI2)] + {j +! + 2/(nI2) - n] (2.12) 

= nr + 1, k =j +!. 
It follows from (2.12) that 1 = j +! when n is even and 
1 = j - ! when n is odd. 

We shall also need the derivative D '(u) ofthe function 
D (u). This function is given by 

D'(u) = - u{v - k + k 2(k 2 - U2)-l/2] 

X [u2 + {v - k + (k 2 - U2)1I2] 2] -3/2 <0. (2.13) 

We note in passing that it follows from (2.13) that D "luI < ° 
for u E (O,k). In summary, then, D (u) is a positive, monotone 
decreasing, and concave function of u E (O,k); D (u) is physi
cally meaningful only for u < 1. A useful approximation for 
D (u) for u2<1 is given by the following (well-known) partial 
Taylor expansion in terms of u2

: 

D(u)-I-(u2/2v)[l + {vlk-~]U2/v], 
(2.14) 

v = /(nI2) + k. 

III. NONRELATIVISTIC LIMITS 

Nonrelativistic scaling laws must emerge from the rela
tivistic formulas in the appropriate limit as C-+oo. We now 
look at this question. Schrodinger's equation for the central 
field problem may be written as 

- (~/2m~t/t + Vof(rla)t/t = E *t/t, (3.1) 

where E * is the energy and the asterisk is a label which we 
shall use for nonrelativistic quantities. In terms of the dimen
sionless variables defined by 

(3.2) 

Schrodinger's equation then takes the standard form 

{ -.d + v*f(x) j t/t = E*t/t. (3.3) 

The functions which give the energy trajectories l
,2 are then 

defined by 

E* = F*(v*). (3.4) 

From (3.2) and the corresponding equation (2.2) for the 
relativistic case it is clear that the required limit is as follows: 

C-+oo =} 2{E -l}b 2-+E*. (3.5) 

The details will, of course, depend on the potential shapef 
We first look at the power-law potentials fIx) = sgn(q)xq, 
q> - l,q#O, for which we have shown in Sec. II that 
E = F(y), where y = vb - q. Because q> - 1 we have that 
C-+oo =} b-+oo =} Y = y*b - (2 + q) -+0 for a given value of 
y*. The expression which should approach E* in this case is 
therefore given by 
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2{E -l}b 2 = {v*j2l(2+q)[2{F(y) - l}/(2y)2I(2+q)]. 
(3.6) 

Meanwhile, the nonrelativistic scaling law l is given by 
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F*(v*) = F*(Il{ v* j2/(2 + q). It follows therefore thatthe func
tions F and F * are related by 

F*(I) = lim [2(F(y) - 1)1(2y)2I(2+ Q
)]. (3.7) 

y-+O 

As an illustration of the limit (3.7) we consider the Coulomb 
case q = - 1. The expression on the right-hand side of (3.7) 
becomes U(D (y) - l)y-2] whose limiting value - 1I4v is 
immediately obtained from Eq. (2.14). Thus we have 
E* = - {v*] 21 4v, the familiar hydrogenic energy formula. 

For the logarithmic potential fIx) = log(x) we know 
from (2.8) that the relativistic energies are given by 
E = f(v) - v log(b ). The nonrelativistic energy trajectories, on 
the other hand, are known9 to have the form 
E* = F*(v*) = - !v* log{v*] + v*F*(I). Since C-+oo 
=} v-+O, we obtain for the logarithmic potential the limit 

F*(I) = lim [ {F(v) - 1jv- l +! log(2v)]. (3.8) 
v--.O 

Values for F:j (l) may be found in the third article of Ref. 2. 
Lastly we look at the Coulomb-plus-linear potential 

withshapef(x) = -A Ix + BX,andv = 1. Fortherelativis
tic problem we defined a = Ab and /3 = Bib, and we found 
that E = F(a,/3). Setting v = 1 means that Vo = mc2. Conse
quently, if the nonrelativistic Hamiltonian H *, whose eigen
values E* we seek, is written in the form 

H * = -.d - a* Ix + /3 *x, (3.9) 

then we must have the following correspondences between 
the potential coefficients: 

a* = 2Ab 2 = 2ab, /3 * = 2Bb 2 = 2f3b 3. (3.10) 

The eigenvalues of H * satisfy2,l0 the following scaling law: 

E* =F*(a*,/3*) = {a*]2F*(1,A), A =/3*{a*] -3. (3.11) 

Now the relativistic quantity which, according to (3.5), goes 
over to E* as C-+ 00 is given, in the present example, by 

2{E-l}b 2= {a*]2[!{F(a*/2b,/3*/2b 3)-lJ 

(3.12) 

It follows from (3.11) and (3.12) that the limit scaling law for 
the relativistic energy function F is given by (3.12) together 
with the following limit relation: 

F*(I,A) = lim [!(F(a,4Aa3
) -l}/a2]. (3.13) 

a-+O 

The limit scaling laws which we have found are the 
closest we could come to the usual scaling laws which are 
obtained in the nonrelativistic domain. The approximate 
eigenvalues which we shall find for the relativistic and non
relativistic problems are also related by these same limit scal
ing laws. 

IV. THE POTENTIAL ENVELOPE METHOD 

The following is a self-contained presentation of a parti
cular application of the potential envelope method. We do 
not, however, make the claim that our approximate energies 
are lower bounds to the exact energies which would certainly 
be the case for the corresponding Schrodinger problem. A 
more complete description of this method, which is not li
mited only to families of Coulomb potentials, may be found 
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in Refs. 1 and 2. We assume now that the potential shape[(x) 
is given as a smooth, monotone-increasing, and convex 
transformation g of the hydrogenic shape - 1/x. Thus we 
have 

[(x) = g( - 1/x). (4.1) 

We get an entirely analogous theory if we assume that g is 
concave: for the corresponding Schrodinger problem in this 
case, instead of lower bounds, the resulting eigenvalue for
mulas yield upper bounds. For a full discussion of this and 
some nonrelativistic examples, we refer the reader to our 
earlier articles. 1,2,10 

From now on we shall assume that g is convex on 
( - 00 ,0). With the aid of calculus we can easily derive the 
following potential inequality from (4,1): 

[(x»)itl(x) = P(tl{ - 1/xl + Q(t), 

for all x E (0,00) and each fixed t E (0,00 ), (4.2) 

where 

P(t) = t 2f'(t) > 0, Q(t) = [(t) + if/(t), (4.3) 

We say that[= Envelope {[(til and we call this an "enve-
t 

lope representation" of the potential! In the present appli-
cation we may speak of a "Coulomb envelope representa
tion" since, up to an additive constant,)it I is a Coulomb 
potential. 

If, for suitable values of v, b, andj, solutions exist to the 
coupled Dirac radial equations (2.3), then those values of 
Enj = Fnj(v,b) for which SO' {t/li (z) + t/li (z) ldz < 00 are called 
Dirac eigenvalues. We recall that we have chosen to enumer
ate all such eigenvalues, for a givenj and mj , and both values 
± 1 of 1', by means of our radial quantum number n; there is 

no parity label. We now suppose that the potential shape[is 
such that the Coulomb coefficient P (t ) in its envelope repre
sentation satisfies vbP (t ) < 1 (this is the "Z < 137" restriction; 
it is not required for all t, but only for those values of t that we 
eventually use). Under these conditions we see from (2.3) and 
(2.8) that the envelope component)it) leads to the energy 
formulas 

[(tl~~) =F~}(v,b) = Dnj(vP(t)b ) + vQ(t). (4.4) 

Our energy approximation ~j is then obtained by find
ing the envelope with respect to t of the family of functions 
~~} in (4.4). Thus we have 

~j = F~j(v,b) = min ~~}. 
t 

(4.5) 

If we now set 

u = vbP(t) = vbt 2f'(t) = vbg/( - 1/t), (4.6) 

then we see that u is a monotone increasing function of t 
because g is convex (g" > 0). We now find the critical point of 
~~} by differentiating (4.3) and canceling g" to give 
btD ~j(u) = - 1. The recipe for F~j may therefore be rewrit
ten in terms of the variable u and we have 

F~j(v,b) = min [Dnj(u) - uD ~j(u) + v[{ - 1/bD ~j(u)} ]. 
u e(O,11 

(4.7) 

Thus the approximate energy functions F ~j are expressed as 
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a Legendre transformation involving the potential shape [ 
and the energy functions Dnj of the hydrogenic atom. Since 
we know from Eq. (2.13) that Dnj(u) is concave (Le., 
D ~(u) <0), we can differentiate the energy expression in 
(4.7), cancelD ~(u), and again obtain, now in terms ofu, the 
necessary condition for an extreme value 

u/vb= {bD~j(u)}-::f'{ -1/bD~j(u)l =g/{bD~j(u)l. (4.8) 

Equation (4.8) is, of course, just (4.6) with t set to the critical 
value t = { - bD ~j(u) l-I. Since g is convex by hypothesis, 
and we know that D nj is concave for U E (O,k ), we deduce that 
the right-hand side of(4.8) is a decreasing function of u. Also 
D ~j(O) = O. Therefore sufficient conditions for the existence 
of a solution to (4.8) for U E (0,1) are 

g'(O-»O and v<[bg/{bD~j(l)l]-I. (4.9) 

In this sense, the coupling constant v should not be too large 
for, if it is, the Coulomb envelope representation is pushed 
into the "Z> 137" region. Forj = ~,D ~j(l) = 00 and there is 
usually a solution in this case for all v. More details will be 
presented when we consider some examples in the next sec
tion. Values of D ~j(l) forj> ~ are shown in Table I. 

Further simplification of the general situation is possi
ble if we define the "Coulomb kinetic potentials,,2 hnj(s) by 
another Legendre transformation: 

s = Dnj(u) - uD ~j(u» 1, 

hnj(s) = D ~(u), h~j(s) = - 1/u. (4.10) 

This transformation is possible because we know from (2.13) 
that Dnj(u) is concave for u E (O,k). In terms of these new 
variables we have 

Dnj(u) = min[s + uhnj(s)]. 
s> 1 

(4.11) 

Thus, in this formulation, the energy trajectories Dnj(u) are 
obtained from the potential h (x) = - 1/x in two stages: 

h (x)--+hnj(s)--+Dnj(u). (4.12) 

In these terms our general problem is represented by the 
chain 

[(x) = g{ h (x) l--+fl~l(s)"""'g{ b hnj(s) l--+F~j(v,b). (4.13) 

Energy trajectories are therefore generated by Legendre 
transformations (4.11) of the corresponding kinetic poten
tials: if the potential is now transformed by g, then the new 
approximate kinetic potentials are obtained by applying the 
same transformation g to the old kinetic potentials. Equation 
(4.7) now becomes 

TABLE I. Values of D ~j(ll. Table of values of ID ~j(111 which are used for 
indicating the allowed ranges of the potential parameters. The values for 
even n > 1 are the same as thosecorrespondington + I. Forj =! thisquan
tity is unbounded. 

n j=~ j=1 j=~ j=,- j=J.} 

1 0.28868 0.11785 0.06455 0.040 82 0.028 17 
3 0.13439 0.06750 0.04168 0.02849 0.02076 
5 0.07471 0.04322 0.02900 0.02097 0.DI592 
7 0.04693 0.02989 0.02129 0.01605 0.01258 
9 0.03203 0.021 85 0.01627 0.01268 0.010 19 
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F~(v,b ) = min [s + vg{ b hllj(s)} ] 
.> 1 

= min [S + vf{ - l/bhllj(s)}], (4.14) 
.> 1 

From the nonrelativistic version of this theoryl.2 we know 
that, in the nonrelativistic limit, the positive parameter S 

here represents the rest energy ( = 1) plus the mean kinetic 
energy of the particle. Some aspect of this physical interpre
tation must remain in the relativistic case, too: we notice that 
all parameters introduced by the potential appear only in the 
term after s. The kinetic potentials hllj (s) for the relativistic 
hydrogenic atom appear to be algebraically rather compli
cated except at the bottom of each angular-momentum sub
space (n = 1, that is to say, v = k = j + ~), where we find 
from (4.10) that they have the delightfully simple explicit 
form 

(4.15) 

While the implicit equation (4.7) is adequate for practical 
purposes, the formulation (4.14) in terms of kinetic poten
tials is both more elegant and more suitable for the general 
study of these geometrical approximation methods. 

V. COMBINATIONS OF POWERS AND THE LOG 
POTENTIAL 

We suppose that the potential shape has the form 

fIx) = L [A 9 sgn(q}x9] + A log(x), 
9 

A (9);;.0, .1.;;'0, q;;. - 1, qi=O, (5.1) 

where, as before, x = ria = z/b, and we set v = 1. The po
tential vf(z/b) which is used in the coupled radial equations 
(2.3) is then explicitly given by 

Vf( ; ) = ~ [r9)sgn(q)z9] + A 10g( ; ). 

(5.2) 

We see thatthe transformation functiong(X) =f( - l/X)is 
monotone increasing and convex on ( - 00 ,0). The argu
ments of Sec. II immediately show that the trajectory func
tions for these potentials have the general form 

E,,) = Flll ({ r9)},A) - A log(b). (5.3) 

Ifnow, for conciseness, we omit the subscripts {nj} and the 
argument u of D (u) then the general energy approximation 
equations (4.7) and (4.8) take the form 

~ =D- uD' + Lsgn(q)r9)ID'I-9 -A log{b ID'I}, 
9 

(5.4) 

1 = L Iqlr9){uID'I(I+9)} -I +.1. {uID'I} -I. (5.5) 
9 

We must be able to solve (5.4) and (5.5) for u E (71'-1),1). The 
general condition (4.9) for the existence of such a critical 
point becomes 

1> L Iqlr9)ID~)(I)i-(1+9)+.1. ID~)(I)I-I. (5.6) 
9 

It is clearly necessary that 71' - I) < 1 and we therefore assume 
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that this is so from now on. For j =! we have 
ID ~(1/2)(1)1 = 00 so that (5.6) can always be satisfied in these 
cases. In all other cases (5.6) implies upper limits on the al
lowed magnitudes of the component coefficients (r9 ) } and 
.1.. One way to check the condition is to use Table I which 
gives values of ID ~j(I)1 forj>!. 

VI. THE COULOMB-PLUS-liNEAR POTENTIAL: A 
BETTER APPROXIMATION 

The energy approximation for the Coulomb-plus-linear 
potential is included in Eqs. (5.4) and (5.5) for general linear 
combinations of power laws and the log potential. In this 
section we apply an approximation method which we have 
deveioped2,Io for the corresponding nonrelativistic problem. 
In order to explain how this works, we first have to get the 
parametric equations for e4 in a form which is homogeneous 
in the coupling constants a and p. We shall then look at the 
nonrelativistic limit and proceed by analogy. 

Since the potential is a combination of two powers we 
can set v = b = 1 and without loss of generality write the 
potential function appearing in the radial equations (2.3) in 
the form 

f(z) = - a/z + /3z, a;;'O, /3;;.0. (6.1) 

Comparison with other work is most likely to focus on this 
potential and we therefore remind the reader, with the aid of 
(2.2), that (6.1) corresponds precisely to the explicit central 
potential 

Vir) = - a{lic}r-1 +/3 {m2c3/Ii}r. (6.2) 

Equations (5.4) and (5.5) now become 

EA =D - uD' -aID'1 +PID'I-I, 

1 =a/u +P{uID'1 2 }-I. 

(6.3) 

(6.4) 

By multiplying the term Din (6.3) by the representation of 1 
in (6.4) we obtain 

~ = aD /u + /3 {D + 2uID'I}{ ulD '12} -I. (6.5) 

In this form the parametric equations clearly indicate how 
e4 varies with a and /3. If P = 0, then u = a and we have 
E = D (a) which result is, of course, exact. If a = 0, we obtain 
an approximation for the pure linear potential. 

Now we look at the nonrelativistic limit in which 
D(u) = 1 - u2/2vand therefore 

e4 - 1 = - at /2v + 3pv12t; (6.6) 

1 = a/t+pvt 3
, t=u/v. (6.7) 

If we now follow Sec. II and use the correspondences 
a* = 2a, /3 * = 2{3, and E* = 2(E - 1), we obtain from Eqs. 
(6.6) and (6.7) exactly the nonrelativistic lower bound given 
by Eqs. (3.4) and (3.5) of Ref. 10. However, we also found in 
that work that a much better approximation (but no longer a 
bound) is obtained if the factors v in the linear terms (asso
ciated with /3 ) are transformed by 

v = (n, + 1)---+jL = (An, + I - C), (6.8) 

where (A,C) = (1.794, 0.418). This approximation was con
structed essentially by regarding the linear potential as a 
"mean" between the Coulomb and the harmonic-oscillator 
potential; for the latter potential (A,C) = (2,!). The idea of a 
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E-l 

--------------
-0.15 

(J 
0·0!5 

FIG. 1. Approximate energy trajectories Enj(a,/3) with a = ~ andj = ~ for 
the Coulomb-plus-linear potentialf(r) = - air + (Jr. The values of n are 
indicated at the ends of the graphs which are shown as - - - for the nonre
lativistic problem and in full line for the corresponding relativistic problem. 

"mean" is more transparent in terms of kinetic potentials 
which we have not yet fully developed for relativistic prob
lems. However, at present we simply translate (6.8) in terms 
of the relativistic quantum numbers {nj}, and then apply 
the result in (6.4) and (6.5). From Eq. (2.12) we infer that the 
expression for J1- should be 

J1- =A {n - /(n/2)} + (j +! + 2/(n/2) - n} - C, 
(A,C) = (1.794, 0.418). (6.9) 

Finally, we see that the recipe for the improved approxi-
mate energy ~ is provided by the rule {3--+{3/ljv. The sim
plest way to express this is to return to the use of U as a 
parameter and from (6.4) and (6.5) we obtain 

e,!j = Dnj(u) + 2(u - a)ID ~j(u)l, (6.10) 

(6.11) 

As we have often mentioned, {3 cannot be too large. In fact 
we require 

E-l -------- --.. --------- ----------.::::::. .. ---..---::----
~----

-0.035 

(J '.001 

FIG. 2. This is a magnified picture of the energy trajectories EnIII2Jl!,(3) for 
n = 2-5 shown more fully in Fig. 1. In this diagram one can clearly see the 
splitting of the Coulomb degeneracy as the linear potential measured by (J is 
turned on. Nonrelativistic: - - -; relativistic --. 
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E-I 

..-=--=-
~-

5 4 

-=--=-
.--..

~-~-

-0·015 L-_________________ ~ 

a.DOU5 

(J 

FIG. 3. Approximate energy trajectories Enj (a, (J) with a = ~ andj = ~ for 
the Coulomb-plus-linear potentialf(r) = - air + (Jr. The values of n are 
indicated at the ends of the graphs which are shown as - - - for the nonre
lativistic problem and in full line for the corresponding relativistic problem. 

(6.12) 

In Figs. 1-3 we exhibit some graphs of e,!j({3) for a = !,j = ! 
and~, and n = 1-5. We have chosen a = ! for these illustra
tions because the system is then already very relativistic even 
with {3 = 0 for it corresponds to "Z = 137/2" for a hydro
genlike atom. Figure 2 is a magnified picture of the start of 
the n = 2-5 curves shown more fully in Fig. 1. As the linear 
field measured by {3 is switched on, one can easily see the 
splitting of the Coulomb degeneracy. In Fig. 3 the casej = ~ 
is illustrated. In all three diagrams the nonrelativistic results 
for which Dnj(u) = 1 - u2/2v are shown as broken lines 
whereas the corresponding relativistic results are shown as 
continuous curves. Parametric equations, of course, are very 
convenient for plotting graphs. 

VII. CONCLUSION 

We have looked at the problem of a single fermion mov
ing in a central field and obeying Dirac's equation. The prob
lem is a generalization of the hydrogenic problem in which 
the potential is a convex transformation of the Coulomb po
tential: the Lorentz-scalar term, the rest mass is constant. 
This problem was already formulated in 1928 and today nu
merical solutions can always be found with the aid of a com
puter. In this article we have explored the use of geometrical 
technique to try to solve the problem approximately in ana
lytical terms. The most specific results are the parametric 
equations (6.10) and (6.11) for the Coulomb-plus-linear po
tential. With the aid of these equations one can easily obtain 
a first approximation to the energy spectrum. The Klein
Gordon equation can, of course, be treated in exactly the 
same fashion. 

The geometrical approach has become very important 
recently particularly because of the growing interest in non
linear phenomena such as solitary waves. The general aim 
here is to exploit a known exact solution by looking at trans
formations which leave the essential form of the solution 
invariant. Envelope representations allow one to study 
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smooth transformations of a given soluble problem and this 
leads to a kind of global approximation theory. 
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A fairly wide class of classical solutions of the Euclidean two-dimensional Grassmannian and 
CP N - I sigma models has been constructed explicitly and elementarily by the present author. 
Starting from these classical solutions we derive the explicit forms of the Backlund 
transformations following Hamad et al. Properties of the Backlund transformations for the 
Grassmannian models are discussed. In particular, a simple interpretation of the Backlund 
transformations for the CP N - I model is obtained. Generalization of these results to the 
noncom pact Grassmannian sigma models is straightforward. 

I. INTRODUCTION 

Exactly integrable field theoretical models in two di
mensions such as the sine-Gordon theory, the massive Thir
ring models, and the O(n) sigma model l have provided an 
interesting theater for discussing the complicated nonlinear 
interactions in particle physics. Among them a simple and 
important class of models is given by the SL(N,C) principal 
chiral model2 and its reductions to the various subgroups or 
to the Riemannian symmetric spaces.3 These are two-dimen
sional free scalar field theories with their field variables con
strained in a Lie group or in a symmetric space. A salient 
feature of these models is the existence of the Backlund 
transformations4 (sometimes abbreviated as BT's). Namely, 
if a solution is known a new solution of the same nonlinear 
equation can be generated by a transformation which in
volves only the linear algebraic procedure.5 The Backlund 
transformation method, however, has had so far only limited 
success because of the lack of general enough starting solu
tions and/or the solutions of the corresponding linear scat
tering problems. 

The situation has changed recently for the Grassman
nian sigma models. The Grassmannian sigma models are 
obtained from the SL(N,C) principal chiral model by reduc
tion to the complex Grassmann manifolds. Because of the 
many common features with the four-dimensional gauge 
theories, e.g., the built-in non-Abelian gauge structure, the 
model has attracted physicists' attention. Recently a fairly 
wide class of classical solutions of the two-dimensional Eu
clidean Grassmannian sigma models was constructed expli
citly and elementarily by the present author.6 Moreover, the 
linear scattering problems for these solutions can also be 
solved explicitly. So we are now in a position to be able to 
construct the explicit forms of the Backlund transforma
tions. In this paper we construct and discuss the explicit 
forms of the simplest type of the Backlund transformations 
for the Grassmannian and the CP N - I sigma models. 7 A 
particularly simple interpretation of the BT for the CP N - I 

model is obtained. This we believe will set an interesting first 
step towards understanding the relationship between the BT 
method and our method of solution, which so far appear to 
be uncorrelated. 

This paper is organized as follows. In Sec. II we reca-

pitulate the derivation of the Grassmannian and the CP N - I 

sigma models through the reduction of the principal chiral 
model. This is mainly for the purpose of introducing appro
priate notation and for self-containedness. In Sec. III we 
summarize some of the recent results about explicit solutions 
of the Grassmannian sigma models6 together with the asso
ciated linear scattering problem. In Sec. IV the simplest type 
of Backlund transformations is constructed explicitly start
ing from the solutions shown in Sec. III. In Sec. V, the BT for 
the cp N - I model is discussed in some detail and a simple 
interpretation of the Backlund transformation is obtained. 
In Sec. VI we discuss the generalization of the above results 
to the noncom pact Grassmannian models. The Appendix is 
devoted to a short summary of the formal Backlund trans
formation theory formulated by Hamad et al.5 

II. PRINCIPAL CHIRAL MODELS AND SIGMA MODELS 

In this section we recapitulate the derivation of the 
Grassmannian and CP N - I models through the reduction of 
the principal chiral model. The principal chiral models are 
the simplest examples of completely integrable relativistic 
field theories. They are two-dimensional free scalar fields on 
Lie groups. A typical example is the SL(N,C) principal chiral 
model defined by the Lagrangian 

L = Tr[(apg)(apg- I )] , /-l = 1,2, (2.1) 

in which g = g(x) is an element of SL(N,C) and 
x = (x l ,x2 )ER 2 are the coordinates of the two-dimensional 
Euclidean space. The equation of motion obtained by the 
Euler derivative of the above Lagrangian reads 

ap.apg - (ap.g)g-I(ap.g) = O. (2.2) 

Due to the geometric construction of the model, it ex
hibits a high degree of symmetry. For example, it has an 
infinite number of conservation laws8 and above all the equa
tion of motion (2.2) can be interpreted as the integrability 
condition for the following set of linear equations: 

~ tf(x;A ) = _A_ tf(x;A ), 
ax+ 1 +,1 

(2.3) 
a B 

- tf(x;A ) = -- tf(x;A ). ax_ I-A 
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Here tP is an N XN matrix function of x and A, 

A = (a:+ g,-I, B=(a:_ g)g-I, x± =xl ±ix2, 

(2.4) 

and A is an arbitrary complex (spectral) parameter. 
The SL(N,C) principal chiral model is interesting not 

only for its own sake but also for the large number of integra
ble subsystems contained in it. The process of finding suit
able submanifolds ofSL(N,C) on which the restriction of the 
equation of motion (2.2) is again integrable is called the re
duction. It is known that when the submanifold is another 
Lie group,2 e.g., SU(n), SO(n), or a Riemannian symmetric 
space3 G I H, the reduced system is integrable. In the present 
paper we focus our attention to the reduction of Eq. (2.2) to 
the complex Grassmannian manifold and to the complex 
projective space as a special case of the former. The resulting 
field theoretical model is called the complex Grassmannian 
sigma model and the CP N - I model, respectively. The non
compact version of these models will also be discussed brief
ly. As will be discussed in the next section a quite general 
class of explicit solutions for these models can be constructed 
elementarily. 

The complex Grassmannian manifold, to be denoted as 
G (N,m) hereafter, is a typical example of a Riemannian sym
metric space. It is defined as a quotient space G I H 

G(N,m) = SU(m + n)/S(U(m)xU(n)), N = m + n. 
(2.5) 

Namely the isometry group Gis SU(m + n) and the isotropy 
subgroup is S(U(m)XU(n)), 

G = SU(m + n), H = S(U(m)XU(n)). 

The Cartan immersion of G I H in G is defined by an involu
tive automorphism 0' (see Ref. 9), 

i; G IH-G, i(gH)_oig)g-I. (2.6) 

In the present case the automorphism, to be denoted as 0'1' is 
given by 

(
In 

O'I(g) = In,mgIn,m' In,m = ° (2.7) 

in which In (1m) is the nXn (mXm) unit matrix. We need 
another constraint determining the unitary group SU(N) 
(N = m + n) as a subgroup ofSL(N,C), 

SU(N) = (gESL(N,C)IO'2(g) =g}, O'2(g) = (gt)-I. (2.8) 

The images of the immersion is a totally geodesic submani
fold ~ C SL(N,C), 

~=Imi= (gESL(N,C)IO'I(g)=g-1, O'2(g)=gj. (2.9) 

The complex projective space is a special case of the Grass
mann manifold G (N,m) for m = 1, 

Cp N
-

I = G(N,I) = SU(N)/[SU(N - l)XU(l)). (2.10) 

From now on we fix the integer Nand m and consider 
the principal chiral model restricted on~. Let us introduce a 
simplified notation for In,m in Eq. (2.7), 

(2.11) 

For an arbitrary element g~, tg is Hermite and its square is 
the unit matrix 
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(tg)t = tg, (tg)2 = 1. 

If we define an N X N matrix P by 

P = ! (1 - tg) or g = t (1 - 2P ), 

we find that P is a projector 

p=pt=p 2 

and 

TrP=m. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The last equation follows from the continuity ofthe trace. It 
is easy to see that if g~ is a solution of Eq. (2.2), then P 
satisfies the following equation 10: 

[aj.t aj.tp,p] = 0, (2.16) 

and vice versa. This is the equation of motion of the G (N,m) 
model. If Eq. (2.13) is substituted to the linear scattering 
equation (2.3) of the principal chiral model, we obtain 

8 ./, = 2t [8+P,P )t ./, 8_'/' = 2t [8_P,P )t ./. 
+ 'I' 1 + A '1" 'I' 1 _ A '1-', 

(2.17) 

a 8 
8+ =--, 8_ =--. 

8x+ ax_ 
The compatibility (integrability) condition of the above 
equations is the G(N,m) equation (2.16), which shows that 
the reduction of the principal SL(N,C) chiral model to the 
complex Grassmannian sigma model retains the complete 
integrability. For another formulation of the G (N,m) model, 
please refer to Refs. 3 and 6. 

III. SOLUTIONS FOR THE COMPLEX GRASSMANNIAN 
SIGMA MODELS 

In this section we summarize some of the recent results 
about explicit solutions for the complex Grassmannian sig
ma models and the CpN - I model. 6 As is explained in the 
previous section the G (N,m) model is essentially a massless 
(complex scalar) free field theory with a geometrical con
straint, namely a harmonic map to the Grassmann manifold. 
Therefore it is quite natural to expect that the solutions 
should somehow be related to holomorphic or antiholomor
phic functions ofx+( = XI + ix2 ), since they solve the mass
less free field equation in two Euclidean dimensions. In fact 
the simplest solutions of the CP I model I I and the CP N - I 
model,12 the instanton solutions, are constructed explicitly 
in terms of hoi om orphic functions. Our solution method can 
be regarded as a natural generalization of them. 

The G (N,m) model is described by an N X N projection 
matrix P, Tr P = m, Eq. (2.14), with the equation of motion 

(3.1) 

The CP N - I model is included as a special case of m = 1. A 
fairly general class of solutions (generic solutions) are con
structed as follows. Let us introduce m linearly and func
tionally independent holomorphic N-component vectors 

(3.2) 

and define another set of N-component vectorslm + I, ... ,IN 
by differentiating (3.2) with respect to x+: 
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fm+1 =aJI,fm+2 =a~,···,f2m =aJm, 

f2m+1 =~+ fl,···,hm =~+ fm""'/N' (3.3) 

For the time being we assume that the vectorsfl'''''/N are 
linearly independent spanning the N-dimensional complex 
space eN. Then we orthonormalize the vectors FI, ... ,fN by 
the Gram-Schmidt procedure in this order and obtain an 
orthonormal basis of e N, 

(3.4) 

By picking up m consecutive orthonormal vectors, we define 
the following N X m matrices: 

X(II = (e l,e2,· .. ,em), 

X(21 = (e2,e3 ,· .. ,em + I)' 
(3.5) 

X(N-m+ 1) = (eN- m+ !> ..• ,eN)· 

Each of them gives a solution of the G (N,m) model through 

P= PV1 =XV1 X&I' j = 1,2, ... , N - m + 1, 

[a+ a_pv .. Pv'] = 0, 
(3.6) 

which is characterized by the arbitrary input holomorphic 
vectorsfl, ... ,fm' In particular, the first one P(II is an instan
ton 13 and the last is an anti-instanton. The proof is quite 
elementary so we show only its outline. For more details and 
for other types of solutions we refer to Refs. 6 and 14. Let us 
show that PV1 is a solution. First we introduce an auxiliary 
matrix variable QV1 by 

j-I 

QV1 = L eke!. (3.7) 
k=1 

which is a projector orthogonal to Pw 
Q&1 = QV1 = Qt.. QW PVl = PV1 QVl = O. (3.8) 

Hereafter the suffixj of PV1 and QV1 is fixed and omitted for 
simplicity. Because of the way of constructing orthonormal 
vectors (3.4) from the holomorphic vectors (3.2) and (3.3), the 
projectors P and Q satisfy the following equations: 

(a_Q)Q= Qa+Q= 0, 

pa_Q= (a+Q)p= Qa+p= (a_p)Q= 0, 

and 

(a _ Q)P = - Q (a _P) = a _ Q. 

By combining these we obtain 

(a_p)p+a_Q=o, 

p(a+p) + a+Q = o. 

(3.9) 

(3.10) 

(3.11a) 

(3.11b) 

From the combination a lax + [(3. 11a)] - a lax_ [(3. 11b)], 
we get the desired relationship 

[a+ a_p,p] =0. 

For the above solution P of the G (N,m) model, the cor
responding linear scattering equation (2.17) can be solved 
easily. First let us note that the commutators [a ± P, P] in Eq. 
(2.17) are linearized by using Eqs. (3.11a) and (3.11 b), 
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(3.12) 
[a_p, P] = - a_(p + 2Q). 

Therefore we look for a particular solution of Eq. (2.17) in 
the form 

¢=tU, U(x;A.) = 1 +aP+PQ, (3.13) 

with unknown complex constants a and p. An elementary 
calculation using the projection properties of P, Q and Eqs. 
(3.9)-(3.11) shows thaes 

U(x;A.) = 1 + [2/(A - 1)]P+ [4A I(A - W]Q, 

(3.14) 
U(x;A. )-1 = 1 - [2/(A + 1)]P - [4A I(A + 1)2]Q 

solves the equation. A general solution of Eq. (2.17) is ob
tained from (3.14) by multiplying an arbitrary x-independent 
(but A-dependent) matrix from the right. We impose 

¢(x;O) =g(x), ¢(x;ao) = 1, (3.15) 

as boundary conditions for ¢(x,A ), to fix the constant matrix 
and obtain 

.M A) (1 2 P 4A Q)(I-At) 
to/IX; = + A-I + (A - 1)2 1 - A ' 

(3.16) 

¢(X;A.)-lt=(I+At)(I __ 2_P_ 4A Q). 
1 + A A + 1 (A + If 

It is easy to check that this solution fulfills the invariance 
condition due to the reductionS 

¢(A ) = gt¢( 1/ A )t, 

¢(A)= [¢(-A)t]-I. 

(3.17a) 

(3.17b) 

For later calculation we introduce an arbitrary "initial" 
point Xo and the normalized solution ¢o as 

¢o(x,xo;A. )==¢(x;A. )¢(xo;A. )- 1, 

= tU(x;A. )U(xo;A. )-It, 

with ¢o(xo,xo;A. ) = 1. 

IV. BACKLUND TRANSFORMATIONS 

(3.18) 

In this section we construct the explicit forms of the 
Backlund transformations for the complex Grassmannian 
sigma models starting from the known solutions of the mod
els given in the previous section. In their beautiful paper, 
Hamad et al.s have shown the linearization of the multi
Backlund transformations. Namely, a new solution defined 
by application of an arbitrary number ofBT's to the original 
one can be constructed in a purely linear algebraic way if the 
solutions of the linear scattering equation for the original one 
are known. In the Appendix we summarize some of their 
main results appropriate for us. However, in applying their 
method to calculate the explicit forms of new solutions there 
arises a technical difficulty, i.e., inverting a big matrix r ij' 
Eq. (A8), at least K XK for a K-tuple BT, which is highly 
nontrivial. 

Therefore in this paper we restrict ourselves to the sim
plest case, namely the minimal (K = 2) Backlund transfor
mation that maps a solution of the G (N,m) model to another 
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of the same model. We introduce another simplifying as
sumption that the residues of the dressing matrix are of rank 
1 [see Eq. (4.3)]. First we construct the dressing matrix of 
Zakharov and Makhailov2 after Hamad et al. In the case 
K = 2 the dressing matrix X (A ) and its inverse X - I(A ) have 
two poles which we denote as 

AI =s, A2=Aj = lis, for X(A), 

(4.1) 
PI=AT= -t, P2=AT' = -lit, for X-I(A). 

Here S (,=0) is an arbitrary complex number. We assume for 
simplicity that none of the poles in Eq. (4.1) coincide. In 
order to calculate the residues Qj,R j of the dressing matrix 

(4.2) 

their rank must be specified. Here we consider also the sim
plest situation, namely, 

rank(Qj) = rank(RJ = 1, i = 1,2. (4.3) 

Then thematricesrij,rt, Eq. (AS), are2X2and they can be 
easily inverted. The residues Qj and R j are expressed as 

Qj =XjFj, R j = HjKT, ;= 1,2, (4.4) 

in which F j and H j are N X 1 matrices 

Fj = (tPo(X;Aj)tj-1j;, H j = tPo(x;J.Lj)h j . (4.5) 

TheN X 1 matricesXj andKj are determined from the linear 
equation (A7). Since the "initial" values! and h j obey the 
restriction (AI2) due to the reduction, they are linearly de
pendent and can be expressed by anyone of them, say II' 

hl=/lal' h2=/go-l)ttfla2, /Z=/go-l)ttfla3 , (4.6) 

in which go = g(xo) and a j is an arbitrary complex number. 
By using the involution properties of tP, Eq. (A9), and the 
expression (3.1S) for the normalized solution tPo' we obtain 

FI = tU(x; - t)U(xo; - t)-lifl' 

F2 = tU(x; - lIt)U(xo; - t)-1tjla3, 

HI = tU(x; - t)U(xo; - t)-liflaI' 

H2 = tU(x; -lIt)U(xo; - t)-liflaZ' (4.7) 

Therefore if we introduce a new constant vector (N X 1 ma
trix) u by 

u=U(xo; - t)-1tjI' (4.S) 

the explicit Xo dependence is wiped out. 16 Since the overall 
scale of u is irrelevant for later calculation we may assume 
without loss of generality that u is a unit vector 

ut u = 1. (4.9) 

By using the involution properties of tP again together with 
another simplifying notation 

h=h(x;s)=U(x;-t)u, (4.10) 

we obtain 

FI = th, HI = alth, F2 = a~h, H2 = azgh, (4.11) 

in which g =g(x) = t(l - 2P). Then the matrix rij' (AS) 
reads 
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(4.12) 
r 21 = alii3y/( lIs + t), r 22 = a2ii/3/( lIs + lit), 

in which /3 and yare real numbers 

/3 = /3(x;s)==h th > 0, y = y(x;s )=h ttgh. (4.13) 

By solving the linear equation (A 7), we obtain the residues 

Q =_I_(lsI2~ thhtt- sY ghhtt) 
I Is 12~ S + s 1 + Is 12 ' 

Q =_1_(~ hhtgt _ ty thht t) 
2 Is12~ s+t

g 
1 + Isl2 g, 

and 

R I = - Q 1. R2 = - Q L 
in which 

~ {32/(s + t)2 - r/(1 + Is 12)2. 

(4.14) 

(4.15) 

It should be noted that the dependence on the arbitrary 
numbers ai' a2' and a3 cancels out. 

A new solution g is obtained from 

g = X (O)g, X (0) = 1 - QI/s - SQ2' (4.16) 

It is straightforward to check that g is in~, i.e., 

(g)t = (g)-I and tgt = (g)-I. (4.17) 

So we express the new solution g in terms of a projector P, 
g=t(l- 2P), 

P =p+_l_2_{~[thht(l-2P)+s(I-2P)hht] 
21s1 ~ s+s 

_ y 2[(1-2P)hh t(I-2P)+lsI 2hh t ]}. 
1 + lsi 

(4.1S) 

This is the explicit form of the new solution P. A projector is 
characterized by its image. For the solution P = P!Jl it is 
spanned by t~e matrix X = X!Jl given in Eq. (3.5). For t~e 
new solution P its image is spanned by an N X m matrix X, 

- t -- -X=aX+hh X, PX=X, (4.19) 

in which a is a complex number 

a = a(x;s)== - s/3 1(5 + t) + y/( 1 + Is 12). (4.20) 

The new solution depends on the arbitrary complex 
number S and on the arbitrary constant vector u, Eq. (4.S). In 
order to clarify the meaning of these parameters we consider 
an extreme limit of the BT given by Is 1-00. In this limit we 
have 

h-ho + O(lIls I), /3-/30 + O(lIls I), 

y-yo + O(lIls I), ~-/3~/(s + tf + O(lIls 1
3

), 

(4.21) 

in which ho and /30 are x independent whereas Yo is x depen
dent. The new solution P in this limit reads 

P = P + [(s + t )2/2 Is 12/30]{(Po - yo)hoh 6 
- 2/3o(thoh 6 P + s Phoh 6)} + 0 (lIls I). (4.22) 

If we introduce a constant SU(N) matrix S 

S = 1 - [(s + t )/s ]1T, 1T = hoh 61/30' sst = 1, 
(4.23) 
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the new solution P is expressed as 

P=Spst +O(lIlsl). (4.24) 

Namely, the Backlund transformation in this limit reduces 
to a trivial SU(N) transformation which is parametrized by S 
and u. Similar observation can be made for the other extreme 
case of Is 1-+0. ThoseO(lIls \) terms inEq. (4.24) constitute 
the nontrivial and essential part ofthe Backlund transforma
tion, which will be discussed in some detail for the case of the 
CP N - 1 model. 

V. CPN-1 CASE 

Let us examine the new solution P, Eq. (4.18), in more 
detail for the CP N - 1 model. The complex projective space is 
a special case of the complex Grassmannian manifold 
G (N,m) for m = 1. The dynamical variable of the CP N - 1 

model is again a projector P with Tr P = 1, which can also be 
expressed by a complex N-component unit vector z as 

P=zzt, zt·z= 1. (5.1) 

The equation of motion is (2.16) and its solutions given in 
Sec. III are quite simple. In this case we start from an arbi
trary N-component holomorphic vectorfand its derivatives 

J,a-tf,if-+ J, ... ,~-IJ, a-f=o, (5.2) 

and obtain an orthonormal basis of C N 

(5.3) 

by using the Gram-Schmidt procedure in this order. By 
picking up any member of the orthonormal vectors (5.3), say 
ej , we get a solution of the CP N - 1 model, 

P = PVI = ejeJ, j = 1,2, ... ,N. (5.4) 

Therefore we also call ej a solution of the CP N - 1 model. 
If we start from a solution ej and apply the Backlund 

transformation of the previous section, we find from Eq. 
(4.19) that 

z' = aej + hh tej (5.5) 

is again a solution up to the overall normalization. By using 
the explicit form of h 

h = (1- [2I!t + 1)] P- [4~ I(~ + 1)2]Q)u, (5.6) 

and 

(eJu){utej ) = utpvlu = utpu, (5.7) 
which is valid only for the CP N - 1 model, we find 

The new solutionz' (up to normalization) can be expressed in 
a simple form as 

z' = Sej - b (s )(utQu - Quut)ej , (5.9) 

in which S is a constant N X N matrix depending on $ and u, 

S = S ($;u) = 1 - a(s )uu t, (5.10) 

and 
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b($)=4($+~){1 + 1$12)/($ + W(~ + If. 

The matrix S is not unitary for finite S, 
stS=sst= I-b(s)uut, 

but in the limit of 1$1---+00 or 0, it is unitary. 

(5.11) 

(5.12) 

The meaning of the transformation (5.9) is clear when 
we consider thej = 1 case, namely the instanton solution 

el=fllfl, Q=O. (5.13) 

Then the new solution is 

z' =Sfllfl, 

in which Sfis again a holomorphic vector and the new solu
tion after normalization is again an instanton 

(5.14) 

Since the transformationf---+Sfis not unitary, the new solu
tion P, Eq. (5.14), cannot be obtained from the old P by a 
unitary transformation, therefore it is nontrivial. 

The generalization of the above argument to the nonin
stanton solutions is straightforward. It is summarized as the 
following theorem. 

Theorem: The Backlund transformation of the solution 
ej , Eq. (5.4), of the CP N - 1 model is given by ej , which is the 
jth member of the new orthonormal basis 

They are obtained from the holomorphic vectors 

f-==SJ, aJ,a 2+ J. ... ,~-IJ. aJ= 0, 

by the Gram-Schmidt procedure. 

(5.15) 

(5.16) 

A few comments are in order. Of course the "Backlund 
transformation" in the theorem means those restricted ones 
considered in the previous section. It is expected that a simi
lar theorem holds for the multi-Backlund transformations 
[but still keeping the restriction (4.3)], since a multi-BT is 
essentially the same as a repeated minimal BT as is shown by 
Hamad et al. 5 On the other hand, it is known 17 that any finite 
action solution of the CP N - 1 model can be written as one of 
the e;'s in (5.3) for some particular choice of the meromor
phic vector f And our result is consistent with it. So it is 
quite plausible that the above theorem holds for the most 
general Backlund transformations with certain modifica
tions for the form of the matrix S. When we tum to the 
G (N,m) model (m ~ 2) the situation is less transparent. It is as 
yet open whether the class of solutions of the G (N,m) model 
considered in Sec. III and its generalizations6 are closed or 
not under the Backlund transformations. 

VI. NONCOM PACT MODELS 

The generalization of the above argument to the non
compact Grassmannian sigma models l8 is straightforward. 
So we sketch the outline. The noncompact Grassmannian 
sigma model is a massless free field theory constrained on a 
manifold 

SU(m,n)lS(U(m)xU(n)), (6.1) 

which can be realized as a submanifold ofSL(N,C), 
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1 = IgESL(N,C)lg = t(gt)-It, g-I = tgt]. (6.2) 

From the second condition we can introduce a projector P 

g=t(1-2P), p 2 =p, TrP=m, (6.3) 

whose Hermitian conjugation is determined by the first con
dition 

P = t ptt. (6.4) 

By substituting Eq. (6.3) to the principal chiral model equa
tion (2.2), we get the same equation of motion as the compact 
model 

(6.5) 

The construction of solutions is almost the same as be
fore. We start from the set of hoi om orphic vectors given in 
Eqs. (3.2) and (3.3) 

(6.6) 

and orthonormalize them by the Gram-Schmidt procedure 
with respect to the inner product 

(a,b) = attb, (6.7) 

to obtain an orthonormal basis of CN 

el,e2,···,eN, (ei,ek ) = e;tek = 8ik · (6.S) 
By picking up m consecutive orthonormal vectors, we define 
as in Eq. (3.5) the N Xm matrices 

XII) ,x12p···,x(N - m + 1)" (6.9) 

Each of them gives a solution of the noncompact Grassman
nian sigma model through 

P=PIJ) = tXIJ)X&). (6.10) 

It is obvious that Eq. (6.10) satisfies the condtions (6.3) and 
(6.4). The proof that P = PlJl solves the equation of motion 
goes almost parallel with the compact case, except that the 
definition of Q is modified as 

j-I 

Q = QlJl = L teket· (6.11) 
k=1 

Moreover, the linear scattering equation for the noncom pact 
Grassmannian sigma model has exactly the same form as the 
compact one, Eq. (2.17), due to the same relation between g 
and P. So the linear scattering equation is solved by the same 
expression, Eq. (3.14), as the compact case. Therefore, one 
can also calculate the explicit forms of the Backlund trans
formations for the noncompact model, which we do not re
peat here. 

One of the important differences between the compact 
and noncompact models is the frequent occurrence of singu
larities in the solutions of the noncompact models. Since the 
inner product (6.7) defines a norm which is not positive defi
nite, the normalization procedure introduces singularities 
wherever the norm of a vector vanishes. Therefore, even if 
we start from meromorphic vectors fl, ... ,fN' the obtained 
solutions are not of finite action. This is also related to the 
nonexistence of topological invariants for the noncompact 
model. 

APPENDIX: SUMMARY OF FORMAL CONSTRUCTION 
OFTHEBT 

The theory of multi-Backlund transformations for the 
principal chiral model together with various reductions has 
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been formulated by Hamad et al.5 Here we summarize some 
of their results appropriate for us. We start from a solution 
g = g(x) of the principal SL(N,C) ~hiral model (2.1) together 
with the corresponding linear scattering equation 

(AI) 

We try to construct a new solution g through the dressing 
matrix X (A ) introduced by Zakharov and Mikhailov,2 

g(x) = X(A = D)g(x). (A2) 

If we assume that the dressing matrix has only simple poles, 

K Q K R 
X(A)= 1 + L _i_, X-I(A)= 1 + L _i_, 

i=IA-Ai i=IA-J-li 
(A3) 

the dressing matrix method of Zakharov and Mikhailov be
comes equivalent to the multi-Backlund transformation 
method of Hamad et al. and the residues Qi and Ri can be 
calculated from the solutions of the linear scattering prob
lem (AI) through purely linear algebraic relations. 

Theorem (Hamad et aI.5
): The residues Qi and R i are of 

the form 

X F C Nxqj 
i' i E , H K C

NXr. 
"jE " 

ri = rankR,., 

(A4) 

where the rectangular matrices Fi and Hi are determined 
from their "initial" values/; and hi by 

Fi = (tPo{A,.jf)-Y;, Hi = tPofpi)h i • (AS) 

In Eq. (AS), tPo{A )-tPo(x;A. ) is a solution ofEq. (AI) with the 
"initial" condition 

(A6) 

for an arbitrarily chosen "initial" point Xo. Another set of 
rectangular matrices Xi and Ki are solutions to the linear 
system 

K K 

LXirij=~' L Kirij = -Fj, (A7) 
1=1 ;=1 

with 

(AS) 
r ii = -FTtPo(Ai)tPO-lfpi)Hi +f!cihi' if Ai =J-l,., 

whereciEC N 
XNis arbitrary andf;hi = Din the latter case. It 

should be remarked that calculation of Qi and Ri involves 
inverting the matrix r, a (l:iqj) X (l:iri) matrix, which is 
highly nontrivial. 

Next we proceed to the case of the complex Grassman
nian sigma models. As is shown in Sec. II, when the reduc
tion condition (2.9) is imposed on the linear scattering equa
tion (2.3) it reduces to Eq. (2.17). This also imposes the 
following invariance conditions on the solutions of Eq. 
(2.17): 
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(A9) 
tP(A) = U2(tP( - A)) = (t/I( - A )t)-I. 

These are translated into the invariance conditions on the 
dressing matrix X 

X(A) =gtX(1IA )tg-I, X(A) = (x( -A )t)-I. (A 10) 

These conditions are necessary and sufficient to ensure that 
the transformed solution g, Eq. (A2), belongs again to the 
Grassmann manifold or to ~ in Eq. (2.9). The conditions 
(A 10) imply that a poleA; inx (A) should be accompanied by 
a pole 11,1; in X (A ) and that it also requires a pair of poles 
- A; and - 1IA; in X -1(,1 ). Let us denote them as 

(All) 

The above conditions (A 10) for X also impose constraints on 
F; and Hi in Eq. (A4), which are satisfied for all x provided 
the following conditions are met at x = Xo by their initial 
values/; and hi' They are 

0"1; [(go-l)tU;] = [It], [goth;] = [hi], 

(AI2) 
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in which [/;] = [Itt] means 

/;Ai = Itt, 
for some constant matrix A i and go = g(xo). 
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On the axial gauge: Ward identities and the separation of infrared and 
ultraviolet singularities by analytic regularization 

Hoong-Chien Leea) and Michael S. Milgramb
) 

Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada 
KOJ lJO 

(Received 9 October 1984; accepted for publication 1 February 1985) 

It is shown that the method of analytically regulating Yang-Mills theories in the axial gauge 
preserves gauge invariance. Two- and three-point Ward identities are computed and verified at 
the one-loop level. The method also permits a convenient and gauge-invariant separation of 
infrared and ultraviolet singularities in the axial gauge. In the axial gauge the renormalization 
constants Z3 = ZI = 1 + IIg2C2/{481Tc), leading to af3 function which is identical to that 
computed in the covariant 5 gauges. 

I. INTRODUCTION 

Recently, an analytic method1
,2 has been shown to be a 

powerful and elegant means to implement the principal-val
ue prescription3 for regulating and evaluating Feynman inte
grals occurring in Yang-Mills theories in the axial gauges.4 

Such gauges are defined by the constraint n . A a = 0, where 
A: is the vector gauge field, n,.. is an arbitrary constant vec
tor, and the superscript a is an index for the gauge group. In 
particular, analytic representations1

•
2 have been found for 

two-point functions in the general axial gauge (n2#0) (Ref. 
4), the light-cone gauge (n 2 = 0) (Ref. 5), and the special 
gauge defined by p. n = 0 (n2#0) (Ref. 2), where P,.. is the 
external momentum in the two-point functions. 

Although there is a widely held belief (possibly caused 
by using the work "analytic" to describe different and ine
quivalent regularization methods6

) that "analytic regular
ization does not preserve gauge invariance," it will be dem
onstrated that the contrary is true for the new analytic 
method. The preservation of gauge invariance depends on 
the fact that the method preserves such algebraic properties 
as commutativity and associativity of operations in the 
Feynman integrals and that in the appropriate limit the new 
method, for both the infinite and regular parts of a Feynman 
integral, yields results that are identical to those obtainable 
from dimensional regularization. For the light-cone gauge, 
this has already been demonstrated by verifying two- and 
three-point Ward identities7 at the one-loop level.s 

In Sec. II, we extend this study by verifying these identi
ties in the general axial gauge (n2#0). Here again, we find 
that the preservation of algebraic properties mentioned ear
lier is sufficient to guarantee that Ward identities will be 
upheld, even before the Feynman integrals involved in the 
identities are evaluated. 

The capability of distinguishing infrared from ultravio
let singularities is another one of the appealing properties 6f 
analytic regularization. The lack of this capability in dimen-

alTheoretical Physics Branch. 
bl Applied Mathematics Branch. 

sional regularization9 has been the cause of considerable in
convenience in practical calculations using that technique. 
In Sec. III, using integrals appearing in the three-point Ward 
identities as examples, we show how the analytic method can 
easily be employed to separate the two types of singularities. 
We also show that when these two types of singularities are 
not distinguished, the cancellation between the two is the 
direct cause of the vanishing of some tadpoles. 10 In other 
words, if infrared and ultraviolet singularities are separated, 
then not all tadpoles vanish. 

In Sec. IV we show that the f3 function, which can be 
computed from the renormalization constants Z and Z 3 I' 
associated with the self-energy and the three-vertex, respec-
tively, are identical in the axial gauge and the covariant 5 
gauges to lowest order. Furthermore, in contrast to the 5 
gauges, the equality Z 1 = Z3 in the axial gauge allows the f3 
function to be derived directly from the self-energy. 

In Sec. V, we compare our results for the axial gauge 
with those obtained previously for the light-cone gauge. S 

Briefly, other than being ghost-free, the axial gauge shares 
the properties of the covariant gauges,l1 but does not have 
the pecularities possessed by the light-cone gauge. On the 
other hand, computations in the light-cone gauge are much 
less tedious. 

In the following, we briefly review the analytic repre
sentation for the "two-point" integrals-integrals with one 
external momentum-defined by 

S2w{p,n;K,fL,v,s) == f d 2"'q[(p - q)2]K{q2r{q. n)2v+s, 

(I) 
where s = 0 or 1 and liJ, K, /-l, and v are continuous variables. 
Feynman integrals in four-dimensional Euclidean space 
(Minkowski space is reached by analytic continuation) that 
are sometimes divergent and therefore ill defined, corre
spond to those in (I) when K, /-l, and v are integers and liJ = 2; 
these form a subset of (I) which we call primal integrals. 
Methods of analytic regularization 1 were used to find a rep
resentation for (I) in terms of a Meijer G function 12 
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~(p2)"'+K+JL+ v(n2)V(p. n)'F(s + v + !) 
S2ld (p,n;K,p" V,s) = --....:.=-!-----'--'-=--''----'---'----'-'"'''''''--

F( - K)F( -1-l)F( - v)F(2w + K + I-l + 2v + s) 
X G 2,3 ( 11 - W -I-l - v - s,1 + W + K + I-l + v,I + V;), 

3,3 Y O,W + K + v;l/2 - s 

= ~(p2)"'+K+JL(p. n)2v+sF(s + V + !) 
F( -K)F( -p,)F( - v)F(2w +K +p, + 2v+s) 

XG 3,2(l/yII+v,I-W-K;l/2+s+v ),IYI>I, 
3,3 0, - W - K - p"W + P, + 2v + S; 

(2) 

where y == (p. n)2/(p2n2), The right-hand side of (2) is a 
well-defined, analytic function of all its variables and, when 
n2 i= 0, has at most simple poles in the (W,K,p" v) plane. 

The evaluation of any primal integral in terms of the 
independent variables y, p, nand infinitesimals Eo which 
label the singularities, now becomes a well-defined mecha
nistic process, which is discussed elsewhere. 1 Tables of pri
mal integrals have also been prepared. 13 

II. WARD IDENTITIES 

We shall verify both the one-loop radiative corrections 
to the two-point Ward identity 

PJLn~v(p) = n~JL(p)PJL = 0, (3) 

as well as a special case of the three-point Ward identity 

ipAF~t~(p, - p,O) = ijabcPAFAJLV(P, - p,O) 

(4) 

where n ~v( p) is the self-energy less its 0 (gO) longitudinal 
term 

n~v(p) = nJLv(p) - (i/5 )nJLnV' (5) 

g is the Yang-Mills coupling, jabc are the structure con
stants of the gauge group, and 5 is the parameter of the 
gauge-fixing Lagrangian - (l/25)(n • A a)2; the ghost-free 
axial gauge is realized in the limit 5-0, For a derivation of 
the identities (3) and (4) see Ref, 8. 

Equation (3) expresses the well-known notion that 
II ~v (p) is transverse to P JL' Because the subtracted term in (5) 
appears only in the zeroth order (ing), (3) also implies that all 
radiative corrections to nJLv are transverse. The transversi
lity of n ~v may be expressed by writing 

II~v(p) = - i[ IIo(p)PJLV + III(p)NJLv ]' (6) 
where PJLV and NJLv are two linearly independent tensors 
transverse to PJL: 

PJLv = p2/jJLV - PJL p", (7a) 

NJL" = PJL Pv - (pJLn" + PVnJL )p2/p . n + nJLnv p4/(p . n)2, 

(7b) 
Our first task is to verify that, to one-loop order (see Fig. I), 

p -p 

(a) (b) 

FIG. I. Diagrams for 0 ( oi) self-energy. Part (b) is tadpolelike and vanishes 
only in the limit (10). 
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I 
II~" indeed has the form (6), and to also compute the coeffi-
cients II~) and n\l) in the limit 5 = 0. (The superscript de
notes that these are one-loop results.) 

The symbol FAJLV(p, - p,O) in (4) represents the three
vertex with one external line carrying zero momentum; this 
special momentum configuration reduces the three-vertex to 
a two-point function. Feynman diagrams for the one-loop 
radiative corrections to F AJL" are shown in Fig. 2. 

We now digress to explain how it is possible to evaluate 
the tensor II~v' which clearly depends on integrals with 
nonscalar integrands, using only the scalar integral (1). We 
parenthetically note that it would have been impossible to 
derive a viable analytic regularization with generalized ex
ponents, if it were necessary to find representations for inte
grals with tensorial integrands. 

There are four linearly independent, symmetric, rank
two tensors in the axial gauge: /jJLV ' PJL pv,PJLnV + PvnJL' and 
nJLnv' Therefore any symmetric rank-two tensor such as 
II ~v can be expressed as 

II~" =HA1/jJL" +A2PJL P,,/p
2 

+A 3(PJL n" +p"nJL)/p.n 

+ p2A4nJLn,,/(p. n)2]/(t - 1), (8) 

whereA; arescalarfunctionsofp2,n2
, andp· n,andt = l/y. 

These functions can be found by contracting II ~v as follows: 

a l =II~v/jJL'" 

a2 = II~v PJL p,,/p2, 

a3 = II~v PJLnv/p . n, 

a4 = II~vnJLn" p 2/(p. nf, 

q: 
(a) 

(b) 

(9a) 

(9b) 

(9c) 

(9d) 

FIG. 2. Diagrams for 0 (oi) three-vertex. All momenta flow in. The last 
diagram in part (b) vanishes identically because of gauge group and Lorentz 
symmetry. 
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and solving the resulting set of equations. The relations 
between ai andAi are given in Appendix A. This technique 
can be generalized for computing tensors of any rank. Since 
any such tensor can be evaluated by calculating the corre
sponding scalars aj> it follows that (for two-point functions) 
only scalar integrals of the type (1) need ever be computed. 

We now return to follow the simpler of two paths. On 
this path all primal integrals are evaluated in a limit in which 
the infrared and ultraviolet singularities are not distin
guished. (In the next section we consider another limit in 
which the two types of singularities are distinguished.) For 
now, we let 

K = K, It = M, v = N, cu = 2 + E, (10) 

where E is small but finite. This limit is equivalent I to that 
obtainable with the principal-value prescription used in con
junction with dimensional regularization. We emphasize 
that with (10) and analytic regularization, all tadpole-like 
integrals, namely primal integrals satisfying either one or 
both of the conditions 

(i) K>O, 

(ii) M>O, N>O, 

(1Ia) 

(lIb) 

vanish. In comparison, dimensionless regularization, having 
only one generalized variable cu, is insufficiently powerful to 
regulate such integrals. Conventionally,IO such integrals are 
simply assumed to be zero l4 in dimensional regularization. 

Using the method described above, we find that il ~v 
indeed has the form of the right-hand side of (6) [this implies 
that the a2 and a3 of (9) vanish, or equivalently, 
A I + A2 = A4 = - A3]' TheA I andA 3 are listed in Table IV 
of Appendix B in terms of reduced primal integrals defined 
by 

S(K,M,N,s) == 1T-"'(p2)-K-M-2(p. n)-2N-S 

XS4(p,n;K,M,N,s). (12) 

Because of space limitations, all integrals satisfying (11) have 
been omitted from Table IV. 

In the limit (10), using (2) we find 

ilo = g'lC2 _1_ [2: (1 _;) -In (~) (8 _ 6; + ;2) 
32r 1-; 3e ; 

_~+ 44; +2;2+(~-8+2;_L)z] 
9 9 ; 2' 

(13) 

TABLE I. The ten tensors n". of (17) and the operators 0 ~". of (A4). 

0)." P. 
2 0". PA + 0).. P" 
3 p2/p. no)." n. 
4 p2/p . n(o". n). + o'A n,,) 
5 p2/(p.nfn).n"p./(t-1) 

6 p2/(p. n)2(n"n. PA + n. n). p,,)/(t - 1) 

7 p). P" nJ(p· n)/(t - 1) 
8 (p" P. n). + P.PA n,,)/(p. n)/(t - 1) 
9 p). P" pJp2/(t - 1) 
10 p4/(p. n)3n).n"nJ(t - 1) 
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(14) 

where 

lie == liE + Inp2 + y, (15) 
; = lIy, y is Euler's constant, and Z is defined in Table II. 

Noticeably absent from ill is an infinite part. This will 
allow us to comment in Sec. III on the multiplicative renor
malizability of the Yang-Mills theory in the axial gauge after 
having ascertained that the finiteness of ill is not the result 
of a cancellation between the as yet undistinguished infrared 
and ultraviolet singularities. 

We now consider the three-point Ward identity. To ver
ify (4), it is sufficient to expand the left-hand side, which is 
again a symmetric rank-two tensor, as in (9). However, to 
learn more about the three-vertex rP.VA' we shall instead cal
culate it explicitly. This vertex function has the symmetry 
relation 

rAp.v(p, - p,O) = - r pAv( - p,p,O), (16) 

showing that it can be expanded in terms often independent 
tensors T~~v given in Table I: 

_ g 10 (i) 
rAp.v(p, - p,O) - I Bi T AP.V· (17) 

2(; - 1) i= I 

In a manner similar to (9), we compute the ten scalar func
tions Bi by contracting both sides of (17) using the symbol hi 
to label the contracted left-hand sides. The linear relations 
between the sets Bi and hi are given in Appendix A. The 
formidable expressions for Bi , in the form of a sum of primal 
integrals with tadpoles omitted, are given in Table V of Ap
pendix B. When the integrals are evaluated using (2) in the 
limit (10) the B;'s have values given in Table II. 

To satisfy (4), the Bi 's must first satisfy the "transversa
lity" relations 

B3 + (B6 + B7)1(; - 1) = B4 + (Bs + Bs)/(; - 1) 

= - (B6 + BIO)/(;" - 1) (18a) 

and 

BI +2B2+B3+B4= -(;-I)(B6+ B7+Bs+B9)' 

(18b) 

0)." p./p2 
0". PA/p2 
0).1' n./(p· n) 

0". n)./p· n 
n).n" pJ(p. nf/(t - 1) 
n" n.PA/(p·n)2/(t-1) 

p). P" nJp2/p . nIt - 1) 
P" Pv n)./p2/p . n/(t - 1) 
p). P" Pv/p4/(t - 1) 
p2n).n"nv/(p, n)3/(t - 1) 
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TABLE II. Coefficients (in units of glC2/32,r) B, of(17) after evaluating all the integrals in Table v.a Note: lie = liE + r + log(p2). 

Bl = - ~*lIe*(1 - lIy) - ~ - 20/r + 376/(9y) 

+ log(4y)*(46 + lO/r - 34/y - ISy/(1 - y)) + Z *(25 - 32y + 5/r - 15/y + 9y/(1 - y)). 

B2 = ~*lIe*(1 - ly) - ~ + 4/y2 + 124/(9y) 

+ log(4y)*( - 2 - 2fr + lO/y - ISy/(1 - y)) + Z *( - 11 - lIy2 + 3/y + 9y/(1 - y)). 

B, = 32 + 12fr - 32/y + log(4y)*( - 14 - 6/y2 + lO/y + ISy/(1 - y)) + z*(7 - 3/r + 7/y - 9y/(1 - y)). 

B. = 16 - 4/y + log(4y)*( - 14 + 2fy + ISy/(1 - y)) + Z *( - 5 + 16y + lIy - 9y/(1 - y)). 

B, =.1¥ + 20/y2 - 20S/(3y) + log(4y)*( - 70 - lO/r + 50/y + 90y/(1 - y)) 

+ Z *( - 37 + 64y - 5/y2 + 23/y - 45y/(1 - y)). 

B6 = ~ + S/r - 112/(3y) + log(4y)*(26 - 4/r + 2/y + 90y/(1 - y)) 

+ Z*( - I + 16y- 2fr + 5/y- 45y/(I- y)). 

B, = -1¥ - 12/y' + 4D/y2 - 112/(3y) + log(4y)*( - 90 + 6/y' - 14/r + 3S/y - 90y/(1 - y)) 

+ Z *(5 + 3/y' - 9fT + lIy + 45y/(1 - y)). 

Bs = - ~ - 12fr + 116/(3y) + log(4y)*(6 + 6/r - IS/y - 90y/(1 - y)) 

+ Z *(13 - 32y + 3/y2 - Illy + 45y/(1 - y)). 

B9 = J + 12/y' - 20S/(3r) + 344/(3y) + log(4y)*(90 - 6/y' + 14/y2 - 3S/y + 90y/(1 - y)) 

+ Z *( - 5 - 3/y' + 9/r - lIy - 45y/(1 - y)). 

BIO = - 96 - 12fr + 4S/y + log(4y)*(6 + 6/r - IS/y - 90y/(1 - y)) 

+ Z *(13 - 32y + 3/y2 - Illy + 45y/(1 - y)). 

a In the above tables. we use the symbol Z to denote the infinite series 

Z=2i (1),l[lnY_t/!{1+1)+t,b(2.+ 1)]. iyi<1 
1_0 (3/2h 2 

=_1 i H)ly-l-l {[t,b(.l-I)-t/!(1+1)-ln y]2 +2t,b'(.l) -t,b'(I+l)-If(.l-I)}. iyi>1 
2,[ii 1-0 (lh 2 2 2 

r= G 2' ( 1
0•0•0;) ti II = " 1T 3:3 YO. _ • or a y . 

• 0. ! 

which they do. Then they must satisfy 

B3+(B6+B?!I(;-I)= -A3' (I8c) 

B2 + B4 = -AI, (I8d) 

which they also do, both in terms of primal integrals (from 
Tables IV and V) and when the intervals are evaluated [from 
(13), (14), and Table II]. This concludes our demonstration 
by explicit computation that the two- and three-point Ward 
identities are satisfied in our method, in the limit (10). 

We wish to emphasize a rather appealing feature of the 
analytic method, that is, its ability to display the equality (4) 
be/ore the primal integrals on both sides of the equations 
have been evaluated 15 by any means of regularization. In our 
opinion, it is this feature that truly demonstrates the superior 
properties of the analytic method: it allows one to manipu
late divergent integrals using the same formal rules of alge
bra as are used for finite integrals. 

In Table II, the absence ofinfinite parts in B;, i = 3-10, 
is crucial for multiplicative renormalizability. However, a 
final assessment of this desirable result again must be de
ferred until after we have separated the infrared and ultra
violet singularities in the primal integrals. This is done in the 
next section. 
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III. TADPOLES AND THE SEPARATION OF INFRARED 
AND ULTRAVIOLET SINGULARITIES 

The capability of evaluating tadpole integrals lO defined 
by the conditions (11) is special to analytic regularization. To 
illustrate why dimensional regularization is incapable of re
gulating a tadpole integral consider a simple case of (11) with 
K = N = 0, and M arbitrary 

I(w) == f d 2wq(q2)M. (19) 

Clearly, if Re(w + M);;;.O, I(w) is ultraviolet divergent and if 
Re(w + M ).;;;;0,1 (w) is infrared divergent. So regardless of the 
value of M, there does not exist a region in the entire complex 
w plane in which I (w) can be well defined. Therefore, as a 
function of w alone, I(w) cannot be evaluated by analytic 
continuation. In other words, the integral cannot be regulat
ed by dimensional regularization. 

In our analytic regularization, all two-point integrals 
(1), of which (19) is but a special case, are considered to be 
functions over the complex (W,K,f-L, v) (hyper) space, not mere
ly as functions of w. Although no region in the w plane exists 
in which I(w) is regular, there always exists a region in the 
(w,K,f-L,v) space in which the generalized integral is regular. 
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Therefore it is always possible to evaluate (1) by analytic 
continuation. This is why dimension regularization must set 
the right-hand side of (19) equal to zero (or some other value) 
by decree, whereas in analytic regularization, the value of 
any given primal integral with parameters K, M, and N is 
determined by the limiting processes (W,K,,,,, v) 
-(w,K,M,N)-(2,K,M,N). In the limiting process (10) used 
in the last section, all tadpole integrals vanish. See Ref. 1 for 
more details. 

We now return to (19) and consider the special case 
M = - 2. By power counting it is clear that the integral is 
both ultraviolet and infrared divergent when w approaches 
2. Why then should it be finite and zero in analytic regular
ization? The answer is simple: In the special limiting process 
(10) both the infinite and the finite parts associated, respec
tively, with the infrared and ultraviolet singularities exactly 
cancel! (See Table 3 of Ref. 13 for tabulation of this and other 
integrals.) That these two types of singularities can cancel 
each other is certainly consistent with the spirit of dimen
sional regularization because in this method all singularities 
must be expressed as liE poles and are therefore indistin
guishable. Simil~rly, it has already been shown elsewhere I 
that the vanishing of many tadpole integrals defined by (11) 
is caused by the cancellation between infrared and ultravio
let singularities. 16 

In dimensional regularization, with sufficient knowl
edge of what the outcome should be, it is possible to separate 
infrared from ultraviolet singularities. 17 A common practice 
is to to assign a mass to each massless particle. Other than 
being cumbersome, this procedure is also very tricky and 
must be practiced with great care because it does not pre
serve gauge invariance. 

In our analytic method, infrared and ultraviolet singu
larities can be easily separated by ajudicious choice oflimit
ing procedure. The simplest limit that serves this purpose 
(but does not distinguish the two types of infrared singulari
ties l6

) is 

K = K + p, '" = M + p, v = N, 
w = 2 + E, p-o, (20) 

with E small but finite. In this limit, ultraviolet singularities 
are characterized by the pole 

lIe l = - lIEI + Inp2 + y, EI = - 2p - E, (21a) 
and both infrared singularities by 

lIeo = lIEo + Inp2 + y, Eo = E + p. (21b) 
Tadpole integrals that are both ultraviolet and infrared di
vergent are proportional to lIeo - lIe l • The limit (10) is a 
special case of (20) with p = 0, for in that limit such integrals 
vanish: 

(lleo - lIeIlp =o = liE - liE = O. (22) 

We now use limit (20) to evaluate the integrals in Tables 
IV and V. In this limit tadpole diagrams such as (b) of Fig. 1 
contain terms that do not automatically vanish. However, 
the ultraviolet and infrared singularities of the regulated in
tegrals describing Fig. (1 b) cancel among themselves, so that 
in the limit (20) this diagram does vanish. Remarkably, the' 
results for the remaining diagrams are identical to those in 
(13), (14), and Table II except that all pole terms (lIe) therein 
are now replaced by ultraviolet poles (lIe l ); all infrared sin-
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gularities have cancelled! We do not know whether this is a 
general result [Le., whether we can use the simpler limit (10) 
in which all tadpole integrals vanish and treat all poles as 
ultraviolet singUlarities] or if not, what is the reason for this 
remarkable cancellation of infrared singularities at the one
loop level. We do note, however, that the Ward identities (18) 
do not appear to be manifestly satisfied prior to regulariza
tion, if all tadpole integrals and diagrams are retained. 

IV. THE/3FUNCTION 

Our calculation shows that at the one-loop level, all 
infinite parts in llpv and r).pv are of ultraviolet origin, and of 
the operators generated by radiative correction, only those 
that appear in the original Lagrangian at the tree (no-loop) 
level-llo Ppv in llpv and BjD ~1v' i = 1,2,3 in r).pv-have 
infinite parts. These results indicate that Yang-Mills theor
ies are multiplicatively renormalizable in the axial gauge. 
That is, the infinite parts generated by radiative corrections 
can be absorbed into renormalization constants ZI and Z3 
that rescale the gauge field, the coupling constant, and the 
gauge parameter according to 

A a Ii a = Z - I/2A a 
p- p 3 p' 

- ZZ -3/2 Z g-g= I 3 g= gg, 
SO that the bare Lagrangian is 

2'(Ii,g,~) = - HF;v(li,g)) 2 
- (1I2S)(n .Ii;f, 

and from (13) and Table II 

(23a) 

(23b) 

(24) 

zaxial = zaxial = 1 + g2c2 J...!... [..!... + In (L) + ... J 
3 I 16r 3 E A. 2 ' 

(25) 
where the explicit dependence on an arbitrary momentum 
scale A. is displayed. As expected, the two renormalization 
constants are identical in the axial gauge, an outcome which 
is not true in the covariant S gauges, where l8 

zs -1 =g2C2 (~-2-s) [..!...+ ... J, 
I 32r 6 2 E 

zs - 1 = g2C2 (~- s) [..!... + ... J . (26) 
3 32r 3 E 

Although the renormalization constants are gauge de
pendent, the P function, or the logarithmic derivative of the 
renormalized coupling constant, 

a az 
P (g) = A. ..K.. - 2gZ - 1 -g- (27) 

- aA. - g a(lIE) , 

should be gauge independent. This is indeed true since 

zaxial = (zaXial)-1/2 = zs = 1 _ g2C2 ..!.!.. + D(g4) 
g 3 g 32r 3E ' 

(28) 
which leads to the equality 

P ( g)axial = p ( g)S = _ ~C2 ..!.!.. + D ( gS). (29) 
16r 3E 

The point to be noted here is that unlike the S gauges, in the 
axial gauge the equality (25) allows the P function to be de
rived directly from radiative corrections to the self-energy. 

V. AXIAL GAUGE VERSUS LIGHT-CONE GAUGE 

A comparison of our result for the axial gauge with 
results obtained previously2,8 for the principal-value pre-
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scription of the light-cone gauge (n 2 = 0) is summarized in 
Table III, with the following comments. 

(i) The advantages for the light-cone gauge is the simpli
city of the propagator and the extreme ease with which 
Feynman integrals can be evaluated. On the other hand, we 
emphasize that although integrals in the axial gauge are 
comparatively more cumbersome to compute, with the aid 
of analytic regularization, such computations are not the 
kind of brutal undertaking they used to be when the princi
pal-value prescription was used. In any case, two-point inte
grals in both the axial and light-cone gauges have now been 
evaluated and tabulated. 13 

(ii) In this paper and in Ref. 8, analytic regularization 
has been employed to verify that two- and three-point Ward 
identities in Yang-Mills theories are true in both gauges. 

(iii) A pecularity of the light-cone gauge is that some of 
the divergences generated by one-loop radiative corrections 
manifest themselves8,19 as double poles [0 (11 ~)]. This effect 
is directly caused by the coalescence of ultraviolet diver
gences with one type of infrared divergence inherent in the 
analytic regularization of this gauge; only one other Lorentz 
invariant regularization of this gauge exists,20 which mani
fests a nonlocal infinite part residual to the double pole. In 
this aspect the axial gauge is normal: one-loop corrections 
generate only single poles and local interactions. 

(iv) We have shown that in the axial gauge infrared and 
ultraviolet singularities can be separated by letting the gener
alized integrals approach a given primal integral in an appro
priate way [see (20)]. In contrast, for the same reason given in 
(iii) these singularities cannot be separated in the light-cone 
gauge. Indeed, when the limit (20) is used to evaluate the 
integrals in the three-point Ward identity, we find that the 
identity is no longer true. The only limit that we believe does 
not lead to any incorrect result in the light-cone gauge is (10), 
in which all tadpole-like integrals (defined by K;;;.O and/or 
M;;;.O in this gauge) vanish. 

-;(;-1) 
3;2 

-3; 
;+2 

2(;-1) 

-6; 
2(;+2) 

-6 

(v) In the axial gauge, infinite parts generated by one
loop corrections occur only in operators associated with the 
original Lagrangian at the tree (zero-loop) level. Therefore, 
as is well-known, the theory in this gauge is multiplicatively 
renormalizable. In contrast, in the light-cone gauge, new op
erators generated by radiative corrections also have infinite 
parts. 8,19,21 Consequently, the theory in this gauge, assuming 
it is renormalizable, is not multiplicatively renormalizable. 
The renormalization program in the light-cone gauge needs 
to be thoroughly studied. 

Note added in proof All comments in this paper per
taining to the peculiarities of the light-cone gauge refer to the 
principal-value prescription of that gauge. Recent calcula
tions by the authors (Chalk River preprint CRNL-TP-85-II-
11) have shown that the Mandelstam-Leibbrandt prescrip
tion of the gauge does not share such peculiarities; in 
particular it is one-loop renormalizable. 

ACKNOWLEDGMENT 

One of us (HCL) ackowledges the hospitality of Nation
al Taiwan University, at which part of this work was com
pleted. 

APPENDIX A: CALCULATION OF SCALAR FUNCTIONS 
AjANDBj 

Define the scalar functions A i by the general expansion 
for the self-energy (8) and compute the scalar quantities ai 

defined in (9). Substituting (8) into (9) yields the linear rela
tions 

ai = (U ii l)ij Aj' (AI) 

which have inverse relations 

Ai = (U1l)ij aj • (A2) 

For general axial gauges, defining; = p2n2/(p. n)2 = 1Iy, 
we find 

-(; -1)] 
;+2 
-3 ' 
3 

(A3) 

TABLE III. Comparison of axial and light-cone gauges in analytic regularization. 

Evaluation of integrals 
Preserves gauge invariance 
Divergences at one loop 
Infrared and ultraviolet 
singularities separable 
"New" operators in ll!,v( p) at 
one loop contain infinite parts 
"New" operators in r .. !'v(p, - p,O) 
at one loop contain infinite parts 
Multiplicatively renormalizable 

Renormalization constants 

f3 function 

Axial gauge 

moderately easy 
yes 
single poles 
yes [see (20)] 

no 

no 

yes 
iG2 11 Z,=Z3=1+-.-
16,r 3E 

iG2 11 
-16,r'3 
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Light-cone gauge 
(principal-value prescription) 

extremely easy 
yes 
single and double poles 
no 

yes 

yes 

no (see note added in proof) 

? 

? 
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independently of the regularization method. 
Similarly, for the vertex function written in (17), we compute the scalar quantities b; defined by contracting 

b; = L r)./Jv(p, -p,O)O~~v' 
).,/J,V 

(A4) 

where 0 ~/Jv are operators defined in Table I. This defines a linear relation between B; and b; which, upon inversion, yields 

B; = (Ur)ij bj • (A5) 

We find 

U _ 1 
r - 2(; _ 1) 

; 0 -1 0 -; -2 ; 2; _;2 

0 ; 0 -1 -1 -;-1 ; 2; _;2 1 
-1 0 0 2 -; -2 ; -1 
0 -1 0 1 2 -1 -;-1 ; -1 
-; -2 

X 
-1 -;-1 

1 2 3;+2 10 -;-4 -8;-2 ;(;+4) -5 
1 2 5 3;+7 -4;-1 - 5;-5 ;(;+4) -5 

; 2; -; -2 -;-4 - 8; -, 2 ;(3;+ 2) 10; _ 5;2 ;+4 
; 2; -1 -;-1 -4;-1 - 5;-5 5; ;(3;+ 7) _ 5;2 ;+4 

_;2 _ 2;2 ; 2; ;(;+4) 2;(; + 4) _ 5;2 _10;2 5;3 -3;-2 
1 2 -1 -2 -5 

again independently of the method of regularization. 

APPENDIX B: REDUCTION TO PRIMAL INTEGRALS 

In Tables IV and V we list the one-loop scalar functions 
A; and B;. defined, respectively, in (8) and (17) in terms of 
reduced primal integrals defined in (12). TheA;'s andB;'s are 
given in units of g2C2/16r. 

The tables were generated by evaluating the diagrams 
of Fig. 1, contracting as in (9) and (A4), and using the matri
ces (A3) and (A6). All contractions were simplified by reduc
ing them to a sum of primal integrals using both the "shift" 
rule q~p - q in (1) where necessary, and partial fraction 
decomposition of integrals with multiple denominators. See 
Appendix C of Ref. 8 for more details: 

Once the coefficients were reduced to a sum of primal 
integrals, the integrals themselves were reduced to a smaller 
set by using algebraic identities easily obtainable for cases 
with N> O. For example, 
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-10 ;+4 2;+ 8 -3;-2 5 

(A6) 

S(K,M,l,O) = (p. n)2S(M,K,0,0) - 2p· nS(M,K,O, 1) 

+ S (M,K, 1,0). (B1) 

We emphasize that the legitimacy of this technique is 
founded on the fact that divergent integrals obey the usual 
rules of algebra, such as (B 1). We also note that when regu
lating primal integrals, it is vital to preserve this property. 
This is true of both (1) and (20), but it is easy to invent limiting 
processes which do not preserve simple algebraic identities 
such as (B 1). 

Each of the primal integrals was then evaluated accord
ing to (2) by an algorithm described elsewhere. 13 Both limits 
(10) and (20) were investigated. To reduce the tables to man
ageable proportions, those integrals satisfying (11) are omit
ted here. 

All calculations were performed with the algebraic ma
nipulator SCHOONSCHIP,22 except for the matrices (A3) and 
(A6) that were obtained using REDUCE.23 The tables them
selves were formatted, using an on-line editor and type
writer, directly from the computer output. 
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TABLE IV. Coefficients Ai of (S) in terms of primal integrals with tadpoles omitted. 

AI = - (- lIy3 + 2fT)*S( - I,D, - I,D) - ( - 2fy' + 61y2 - Sly)*S( - I,D, - 1,1) 

- (1I(2y')).S( - 1,1, - I,D) - (1Iy' - 2fy2).S( - 1,1, - 1,1) 

- (12 - IOIY).S( - I, - 1,0,0) - S.S( - I, - 1,1,0) - (1I(2y') - 4/T + 4Iy)*S( - I, - I, - I,D) 

- ( - 16 + 1Iy' - 4fT + 16Iy)*S( - I, - I, - 1,1), 

A2 = + (3 - lIy3 + liT - lIy + 3y/(1 - y))*S( - I,D, - I,D) 

+ (- 12 - 21y3 + 41y2 - 12y/(1 - y))*S( - I,D, - 1,1) 

+ H + 1I(2y') + 1I(2T) + 3/(2y) + 3y/(2(1 - y))).S( - 1,1, - I,D) 

+ (- 3 + 1Iy' - liT - 31y - 3y/(1 - y)).S( - 1,1, - 1,1) 

+ (10 - IOly + 6y/(1 - y)).S( - I, - 1,0,0) + (S + 24y/(1 - y)).S( - I, - 1,1,0) 

+ (~+ 1I(2y') -7/(2T) + 3/(2y) + 3y/(2(1 - y))).S( - I, - I, - I,D) 

+ (- 9 + 1Iy' - 31y2 + Illy - 9y/(1 - y)).S( - I, - I, - 1,1), 

A. = - A3 = + (3 - liT - lIy + 3y(1 - y)).S( - I,D, - I,D) 

+ (-12 - 2fT + Sly - 12y/(1 - y))*S( -I,D, -1,1) 

+ (~+ 1I(2T) + 3/(2y) + 3y/(2(1 - y))).S( - 1,1, - I,D) 

+ (- 3 + liT - 31y - 3y(1 - y)).S( - 1,1, - 1,1) 

+ ( - 2 + 6y/(1 - y)).S( - I, - 1,0,0) 

+ (24y/(1 - y)).S( - I, - l,l,0) 

+ (~+ 1I(2T) - 5/(2y) + 3y/(2(1 - y))).S( - I, - I, - I,D) 

+ (7 + liT - 51y - 9y/(1 - y)).S( - I, - I, - 1,1). 

TABLE V. Coefficients Bi of(17) in terms of primal integrals with tadpoles omitted. 

BI = (i + 3/(4y3) - 13/(4y2) + 3/(4y) + 3y/(41l - y))).S( - 2,0, - I,D) 

+ (- ~ + 3/(2y3) - 9/(2T) + 23/(2y) - 9y/(2(1 - y)))*S( - 2,0, - 1,1) 

+ G - 3/(4y3) + 3/(4T) + 3/(4y) + 3y/(4(1 - y))).S( - 2,1, - I,D) 

+ (- 3 - 3/(2y3) + 31T - 31y - 3y/(1 - y)).S( - 2,1, - 1,1) 

+ U + 1I(4y') + 1(4T) + 1I(4y) + y/(4(1 - y))).S( - 2,2, - 1,0) 

+ (- ~ + 1I(2y') - 1I(2T) - 1I(2y) - y/(2(1 - y))).S( - 2,2, - 1,1) 

+ (1- 1I(4y') + 9(4T) - 15/(4y) + y/(4(1 - y))).S( - 2, - I, - 1,0) 

+ (14 - 1I(2y') + 21T - 61y - 2y/(1 - y)).S( - 2, - I, - 1,1) 

+ (- ~ - 13/(4y') + 23/(4y2) - 9/(4y) - 9y/(4(1 - y))).S( - I,D, - I,D) 

+ (9 - 13/(2y') + 13ly2 -71y + 9y/(1 - y)).S( - I,D, - 1,1) 

+ (- 1 + 1Iy' - liT - lIy - y/(1 - y)).S( - 1,1, - 1,0) 

+ (2 + 21y3 - 2fT + 21y + 2y/(1 - y)).S( - 1,1, - 1,1) 

+ (- 6 + IOly - 6y/(1 - y))*S( - I, - 2,0,0) 

+ ( - 12 + 20yl(1 - y)).S( - I, - 2,0,1) + (- S - 24y/(1 - y)).S( - I, - 2,1,0) 

+ (16y/(1 - y)).S( - I, - 2,1,1) 

+ ( -1- 1I(4y3) + 7/(4T) - 1I(4y) - yl(4(1 - y))).S( - I, - 2, - I,D) 

+ (2 - 1I(2y') + 2/T - IO/y + 2yl(l- y))*S( - I, - 2, - 1,1) 

+ (1S - IO/y - 6y/(1 - y)).S( - I, - 1,0,0) + ( - S - 24y/(1 - y)).S( - I, - 1,1,0) 

+ ( - ~ + 5/(2y') - 26/(2T) + 29/(2y) - 3yl(2(1 - y))).S( - I, - I, - 1,0) 

+ (- 23 + 5/y' - 15/T + 251y + 9y/(1 - y)).S( - I, - I, - 1,1), 

B2 = (3 + 3/(4T) - 5/(4y) + 3y/(4(1 - y))).S( - 2,0, - I,D) 

+ (-1- 1I(2y) - 9y/(2(1 - y))).S(2,O, - 1,1) 
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TABLE V. (Continued.) 

+ (i - 3/(4.1) + 3/(4y) + 3y/(4(1 - y))).S( - 2,1, - 1,0) 

+ ( - 3 - 3y/(1 - y)).S( - 2,1, - 1,1) 

+ (1 + 1/(4.1) + 1/(4y) + y/(4(1 - y))).S( - 2,2, - 1,0) 

+ (-! - 1/(2y) - y/(2(1 - y))).S( - 2,2, - 1,1) 

+ U - 1/(4.1) + 1/(4y) + y/(4(1 - y))).S( - 2, - 1, - 1,0) 

+ (- 2 + 1/y - 2y/(1 - y)).S( - 2, - 1, - 1,1) 

+ (- ~ + 1/7' -7/(4.1) + 7/(4y) - 9y/(4(1 - y))).S( - 1,0, - 1,0) 

+ (9 + 2/7' - 4/Y + 9y/(1 - y)).S( - 1,0, - 1,1) 

+ (- 1 - 1/(27') - 1/y - y/(1 - y)).S( - 1,1, - 1,0) 

+ (2 - 1/7' + 1/.1 + 2/y + 2y/(1 - y)).S( - 1,1, - 1,1) 

+ (- 2 - 6y/(1 - y)).S( - 1, - 2,0,0) + (4 + 20y/(l- y)).S( - 1, - 2,0,1) 

+ (- 24y/(1 - y)).S( - 1, - 2,1,0) + (16y/(1 - y)).S( - 1, - 2,1,1) 

+ (-1 + 1/(4.1) - 1/(4y) - y/(4(1 - y))).S( - 1, - 2, - 1,0) 

+ (2 - 1/y + 2y/(1 - y)).S( - I, - 2, - 1,1) 

+ ( - 10 + 10/y - 6y/(1 - y)).S( - 1, - 1,0,0) 

+ (- 8 - 24y/(1 - y)).S( - 1, - 1,1,0) 

+ ( -! - 1/(27') + 7/(2.1) - 3/(2y) - 3y/(2(l - y))).S( - 1, - I, - 1,0) 

+ (9 - 1/7' + 3/.1 - l1/y + 9y/(I- y)).S( -1, - 1, - 1,1), 

B3 = (- i + 1/(4.1) + 5/(4y) - 3y/(4(1 - y))).S( - 2,0, - 1,0) 

+ (- i - 1/(2.1) + 1/(2y) + 9y/(2(1 - y))).S( - ,2,0, - 1,1) 

+ ( - i + 1/(4.1) - 3/(4y) - 3y/(4(1 - y))).S( - 2,1, - 1,0) 

+ (3 + 1/.1 - 1/y + 3y/(1 - y)).S( - 2,1, - 1,1) 

+ (-1- 1/(4.1) - 1/(4y) - y/(4(1 - y))).S( - 2,2, - 1,0) 

+ H -1/(2.1) + 1/(2y) + y/(2(1- y)).S( - 2,2, - 1,1) 

+ (-1- 1/(4.1) + 7/(4y) - y/(4(1 - y)).S( - 2, - I, - 1,0) 

+ (- 6 - 2/y + 2y/(2 - y)).S( - 2, - 1, - 1,1) + (1/7' - 2/Y).S( - 1,0, - 2,1) 

+ (t + 3/7' - 23/(4.1) + 25/(4y) + 9y/(4(1 - y))).S( - 1,0, - 1,0) 

+ (- 9 + 6/7' - 11/.1 + 3/y - 9y/(1 - y)).S( - I,D, - 1,1) 

+ (- 1/(27')).S( - 1,1, - 2,1) 

+ (1 - 3/(27') + 2/.1 + 1/y + y/(I- y)).S( - 1,1, - 1,0) 

+ (- 2 - 3/7' + 4/.1 - 2/y - 2y/(1 - y)).S( - 1,1, - 1,1) 

+ (- 10 + 6y/(1 - y)).S( - 1, - 2,0,0) + (20 - 20y/(1 - y)).S( - 1, - 2,0,1) 

+ (24y/(1 - y)).S( - 1, - 2,1,0) + (- 16y/(1 - y)).S( - 1, - 2,1,1) 

+ (1 + 1/(4.1) - 7/(4y) + y/(4(1 - y))).S( - 1, - 2, - 1,0) 

+ (6 + 2/y - 2y/(l- y)).S( - 1, - 2, - 1,1) + (- 2 + 6y/(1 - y)).S( - I, - 1,0,0) 

+ (24y(1 - y)).S - 1, - 1,1,0) + (- 1/(27') + 4/.1 - 4/y).S( - 1, - 1, - 2,1) 

+ Pi - 3/(27') + 7/(2.1) - 21/(2y) + 3y/(2(1 - y))).S( - 1, - 1, - 1,0) 

+ (- 9 - 3/7' + 7/Y + 7/y - 9y/(1 - y)).S( - 1, - 1, - 1,1), 

Bs = P; - 3/(47') + 1/(4.1) + 17/(4y) - 15y/(4(1 - y))).S( - 2,0, - 1,0) 

1801 

+ (~- 3/(27') + 15/(2y2) - 35/(2y) + 45y/(2(1 - y))).S( - 2,0, - 1,1) 

+ ( -l( + 3/(47') + 9/(4.1) - 15/(4y) - 15y/(4(1 - y))).S( - 2,1, - 1,0) 

+ (15 + 3/(27') - 6/Y + 9/y + 15y/(1 - y)).S(2,1, - 1,1) 

+ ( - i - 1/(47') - 5/(4.1) - 5/(4y) - 5y/(4(1 - y))).S ( - 2,2, - 1,0) 

+ (~- 1/(27') + 3/(2.1) + 5/(2y) + 5y/(2(1- y))).S( - 2,2, - 1,1) 
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TABLE V. (Continued.) 

+ ( - ~ + 1/(4y) - S/(4y2) + 1l/(4y) - Sy/(4(1 - y))).S( - 2, - I, - I,D) 

+ (- 6 + lI(2y) - 3/y2 + 4/y + 10y/(1 - y)).S( - 2, - I, - 1,1) 

+ (!J + 13/(4y) - IS/(4y2) - 19/(4y) + 4Sy/(4(1 - y)))*S( - I,D, - I,D) 

+ ( - 4S + 13/(2y) - 22fy2 + 29/y - 4Sy/(1 - y)).S( - I,D, - 1,1) 

+ (S - lIy + lIy2 + Sly + Sy/(I - y)).S( - 1,1, - I,D) 

+ (- 10 - 2fy + 4/y2 - lO/y - lOy/(1 - y))*S( - 1,1, - 1,1) 

+ (22 - 2fy + 30y/(1 - y)).S( - I, - 2,0,0) 

+ (- 28 - lOOy/(1 - y)).S( - I, - 2,0,1) + (24 + 120y/(1 - y)).S( - I, - 2,1,0) 

+ ( - 80y/(1 - y)).S( - I, - 2,1,1) 

+ (~+ 1/(4y) -7/(4y2) + S/(4y) + Sy/(4(1 - y))).S( - I, - 2, - I,D) 

+ (- 10 + lI(2y) - 3/y2 + 8/y - lOy/(1 - y)).S( - I, - 2, - 1,1) 

+ (- 2 + 2/y + 30y/(1 - y)).S( - I, - 1,0,0) + (24 + 120y/(1 - y)).S( - I, - 1,1,0) 

+ (.1/ - S/(2y) + 23/(2y2) - 33/(2y) + ISy/(2(1 - y))).S( - I, - I, - I,D) 

+ (19 - Sly + 23/y2 - 37/y - 4Sy/(1 - y)).S( - I, - I, - 1,1), 

B6 = ( -lj - S/(4y2) + 17/(4y) - ISy/(4(1 - y))).S( - 2,0, - I,D) 

+ (.y - lI(2y2) - 3/(2y) + 4Sy/(2(1 - y))).S( - 2,0, - 1,1) 

+ (-lj + 7/(4r) -7/(4y) - ISy/(4(1 - y))).S( - 2,1, - I,D) 

+ (IS + lIr - I/y + ISy/(I- y)).S( - 2,1, - 1,1) 

+ ( - i - 3/(4r) - S/(4y) - Sy/(4(1 - y))).S( - 2,2, - I,D) 

+ (~- lI(2r) + S/(2y) + Sy/(2(1 - y))).S( - 2,2, - 1,1) 

+ (- i + 1/(4r) + 3/(4y) - Sy/(4(1 - y))).S( - 2, - I, - I,D) 

+ (2- 2fy + lOy/(1 - y)).S( - 2, - I, - 1,1) + (lly - 4/y).S( - 1,0, - 2,1) 

+ (!J + 2fy - 33/(4r) + 6l1(4y) + 4Sy/(4(1 - y))).S( - I,D, - I,D) 

+ ( - 4S + 4/y - 9/y2 - lIy - 4Sy/(1 - y)).S( - I,D, - 1,1) 

+ ( - lI(2y) - lIr).S( - 1,1, - 2,1) 

+ (S - lIy + 4/r + Sly + Sy/(I - y)).S( - 1,1, - I,D) 

+ (- 10 - 2/y + 4/r - lO/y - lOy/(1 - y)).S( - 1,1, - 1,1) 

+ (2 + 30y/(1 - y)).S( - I, - 2,0,0) + (- 4 - lOOy/(1 - y)).S( - I, - 2,0,1) 

+ (120y/(1 - y)).S( - I, - 2,1,0) + (- 80y/(1 - y)).S( - I, - 2,1,1) 

+ (i - lI(4r) - 3/(4y) + Sy/(4(1 - y))).S( - I, - 2, - I,D) 

+ (- 2 + 2fy - 10y/(1 - y)).S( - I, - 2, - 1,1) + (26 - 2fy + 30y/(1 - y)).S( - I, - 1,0,0) 

+ (24 + 120y/(1 - y)).S( - I, - 1,1,0) + (- lI(2y) + 3/r - 4/y).S( - I, - I, - 2,1) 

+ (~- I/y + S/(2r) - 13/(2y) + ISy/(2(1 - y))).S( - I, - I, - 1,0) 

+ (- 29 - 2/y + Sir - lIy - 4Sy/(1 - y)).S( - I, - I, - 1,1), 

B7 = (lj - lI(4y) + 1/(4r) - 9/(4y) + ISy/(4(1 - y))).S( - 2,0, - I,D) 
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+ (- 11 + lI(2y) - lI(2r) + IlI(2y) - 4Sy/(2(1 - y))).S( - 2,0, - 1,1) 

+ (lj - lI(4y) - 3/(4r) + 7/(4y) + ISy/(4(1 - y))).S( - 2,1, - I,D) 

+ (- IS - lIy + lIr - 3/y - ISy/(I- y)).S( - 2,1, - 1,1) 

+ Ii + lI(4y) + 3/(4r) + S/(4y) + Sy/(4(1 - y))).S( - 2,2, - I,D) 

+ (- ~ + lI(2y) - lI(2r) - S/(2y) - Sy/(2(1 - y))).S( - 2,2, - 1,1) 

+ Ii + lI(4y - 9/(4r) + S/(4y) + Sy/(4(1 - y))).S( - 2, - I, - I,D) 

+ (- 10 + 2fr + 6/y - lOy/(1 - y)).S( - 2, - I, - 1,1) 

+ (- lIy" + 2/y - 2fr + 4/y).S( -I,D, - 2,1) 
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TABLE V. (Continued.) 

+ (- ~ - 3/y4 + 31/(4y') - 15/(4T) - 61/(4y) - 45y/(4(1 - y))).S( - 1,0, - 1,0) 

+ (45 - 6/y4 + 15/y' - 15/y2 + 33/y + 45y/(1 - y)).S( - 1,0, - 1,1) 

+ (1/(2y") + 1/T).S( - 1,1, - 2,1) 

+ ( - 5 + 3/(2y4) - 3/y' - 4/T - 5/y - 5y/(1 - y)).S( - 1,1, - 1,0) 

+ (10 + 3/y4 - 6/y' + 6/T + lO/y + lOy/(1 - y)).S( - 1,1, - 1,1) 

+ (- 18 + lO/y - 30y/(1- y)).S( - I, - 2,0,0) + (44 - 20/y + l00y/(1 - y)).S( - I, - 2,0,1) 

+ (- 24 - 120y/(1 - y)).S( - I, - 2,1,0) + (16 + 80y/(1 - y))_S( - I, - 2,1,1) 

+ (- i - 1/(4y') + 9/(4T) - 5/(4y) - 5y/(4(1 - y)))_S( - I, - 2, - 1,0) 

+ (10 - 2/T - 6/y + lOy/(1 - y)).S( - I, - 2, - 1,1) 

+ (- 42 + 6/y - 30y/(1 - y))_S( - I, - 1,0,0) + (-72 - 120y/(1 - X)).S( - I, - 1,1,0) 

+ (1/(2y4) - 4/y' + 5/T).S( - I, - I, - 2,1) 

+ (- 11 + 3/(2y4) - 9/(2y' + 29/(2y2) - 35/(2y) - 15y/(2(1- y)))_S( - I, - I, - 1,0) 

+ (45 + 3/y4 - 9/y' + 1/T + 5/y + 45y/(1 - y)).S( - I, - I, - 1,1), 

Bs = (1; + 3/(2y') - 9/(4T) - 9/(4y) + 15y/(4(1 - y))).S( - 2,0, - 1,0) 

+ ( - ¥ + 3/(2y') - 8/T + 35/(2y) - 45y/(2( 1 - y))).S ( - 2,0, - 1,1) 

+ (.I; - 3/(4y') - 3/(4T) + 15/(4y) + 15y/(4(1 - y)))_S( - 2,1, - 1,0) 

+ ( - 15 - 3/(2y') + 6/T - 12/y - 15y/(1 - y))_S( - 2,1, - 1,1) 

+ (i + 1/(2y') + 5/(4T) + 5/(4y) + 5y/(4(1 - y)))_S( - 2,2, - 1,0) 

+ (- ~ + 1/(2y') - 2/T - 5/(2y) - 5y/(2(1 - y))).S( - 2,2, - 1,1) 

+ (i - 1/(2y') + 7/(4T) - 11/(4y) + 5y/(4(1 - y))).S( - 2, - I, - 1,0) 

+ (6 - 1/(2y') + 4/T - 7/y - lOy/(1 - y)).S( - 2, - I, - 1,1) 

+ ( - ~ - 2/y3 + 21/(4T) - 13/(4y) - 45y/(4(1 - y))).S( - 1,0, - 1,0) 

+ (45 - 5/(2y') + 2IT + 8/y + 45y/(1 - y)).S( - 1,0, - 1,1) 

+ ( - 5 + 1/(2y') - 3/T - 5/y - 5y/(1 - y))_S( - 1,1, - 1,0) 

+ (10 + 3/T + lO/y + lOy/(1 - y)).S( - 1,1, - 1,1) 

+ (- 26 - 30y/(1 - y)).S( - I, - 2,0,0) + (44 + 4/y + l00y/(1 - y)).S( - I, - 2,0,1) 

+ (- 48 - 120y/(1 - y)).S( - I, - 2,1,0) + (16 + 80y/(1 - y)).S( - I, - 2,1,1) 

+ ( - i + 5/(4T) - 5/(4y) - 5y/(4(1 - y)).S( - I, - 2, - 1,0) 

+ (10 - 1/(2y') + 2/T - 5/y + lOy/(1 - y)).S( - I, - 2, - 1,1) 

+ ( - 14 + 2/y - 30y/(1 - y)).S( - I, - 1,0,0) + ( - 72 - 120y/(1 - y)).S( - I, - 1,1,0) 

+ ( - 11 + 3/(2y3) - 11/(2T) + 17/(2y) - 15y/(2(1 - y)))_S( - I, - I, - 1,0) 

+ (13 + 3/y' + l1/T + 13/y + 45y/(1 - y)).S( - I, - I, - 1,1), 

B. = (- J} - 3/(4y4) + 7/(4y') + 1/(4T) + 1/(4y) - 15y/(4(1 - y)))_S( - 2,0, - 1,0) 

+ (¥ - 3/(2y4) + 9/(2y') - 15/(2y2) - 3/(2y) + 45y/(2(1 - y)))_S( - 2,0, - 1,1) 
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+ ( - J} + 3/(4y4) + 3/(4y') - 3/(4T) - 15/(4y) - 15y/(4(1 - y))).S( - 2,1, - 1,0) 

+ (15 + 3/(2y4) - 3/y3 + 15/y + 15y/(1 - y))_S( - 2,1, - 1,1) 

+ ( - i - 1/(4y4) - 3/(4y') - 5/(4T) - 5/(4y) - 5y/(4/( 1 - y)))_S ( - 2,2, - 1,0) 

+ (~- 1/(2y4) + 1/(2y') + 5/(2T) + 5/(2y) + 5y/(2(1 - y))).S( - 2,2, - 1,1) 

+ ( - i + 1/(4y4) -7/(4y') + 15/(4T) - 5/(4y) - 5y/(4(1 - y)))_S( - 2, - I, - 1,0) 

+ (10 + 1/(2y4) - 2/y' + 3/T - lO/y + lOy/(1 - y))_S( - 2, - I, - 1,1) 

+ (~+ 5/(4y4) - 9/(4y') - 11/(4T) + 45/(4y) + 45y/(4(1 - y))).S( - 1,0, - 1,0) 

+ ( - 45 + 5/(2y4) - 5/y3 + lO/T - 45/y - 45y/(1 - y))_S( - 1,0, - 1,1) 
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TABLE V. (Continued.) 

+ (5 + 1Iy' + 5/y + 5/y + 5y/(1 - y)).S( - 1,1, - 1,0) 

+ (- 10 - lO/y - lO/y - 10y/(1 - y)).S( - 1,1, - 1,1) 

+ (30 - 10/y + 18/y + 30y/(1 - y)).S( - 1, - 2,0,0) 

+ (- 92 + 4/y - l00y/(1 - y)).S( - 1, - 2,0,1) + (88 + 8/y + 120y/(1 - y))( - 1, - 2,1,0) 

+ (48 - 80y/(1 - y)).S( - 1, - 2,1,1) 

+ (i + 1I(4y4) - 9/(4y') + 5/(4y) + 5/(4y) + 5y/(4(1 - y))).S( - 1, - 2, - 1,0) 

+ (- 10 + 1I(2y4) - 2/y' + ll/Y - lO/y - lOy/(1 - y)).S( - 1, - 2, - 1,1) 

+ (30 - lO/y + lO/y + 30y/(1 - y)).S( - 1, - 1,0,0) 

+ (120 + 24/y + 120y/(1 - y)).S( - 1, - 1,1,0) 

+ (-If - 3/(2y4) + 13/(2y') - 25/(2y + 15/(2y) + 15y/(2(1 - y))).S( - 1, - 1, - 1,0) 

+ (- 45 - 3/y4 + 9/y' - lIy - 5/y - 45y/(1 - y)).S( - 1, - 1, - 1,1), 

B4 = - B2 + (1Iy' - 2/Y).S( - 1,0, - 1,0) 

+ (2/y' - 6/y + 8/y).S( - 1,0, - 1,1) + (- 11(2y')).S( - 1,1, - 1,0) 

+ ( - 1Iy' + 2/Y).S( - 1,1, - 1,1) + ( - 12 + lO/y).S( - 1, - 1,0,0) 

- 8.S( - 1, - 1,1,0) + (- 1I(2y') + 4/y - 4/y).S( - 1, - 1, - 1,0) 

+ (16 - 1Iy' + 4/y - 16/y).S( - 1, - 1, - 1,1), 

BIO = - B6 + (- 1Iy' + 4/y).S( - 1,0, - 1,0) + (- 2/y' + lO/y - 20/y).S( - 1,0, - 1,1) 

+ (1I(2y') + IIY).S( - 1,1, - 1,0) + (1Iy' - 4/Y).S( - 1,1, - 1,1) 

+ (8 - 2/y).S( - 1, - 1,0,0) + 24.S( - 1, - 1,1,0) 

+ (1I(2y') - 3/Y + 4/y).S( - 1, - 1, - 1,0) 

+ (- 16 + 1Iy' - 6/y + 12/y).S( - 1, - 1, - 1,1). 
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lOA tadpole diagram is a Feynman diagram in which all external lines eman
ate from one vertex and all internal lines are propagators of massless parti
cles. Conservation of momentum dictates that the total momentum car
ried by the external lines must be zero. The conventional argument for 
assigning a zero value to tadpole diagrams is that one could not find a 
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dimensionful scale to express such a diagram were its value finite. It is 
clear that this argument has at least one loophole: a dimensionless dia
gram certainly could have a finite (constant) value. By analogy, primal 
integrals with K = 0 may be called tadpole integrals. Since the new analyt
ic method reveals that such integrals are but a special subclass of a much 
larger class of vanishing (in a certain limit) integrals, we call the whole 
class of integrals tadpolelike integrals or "tadpoles." They are identified 
by satisfying either or both of the conditions (11). 

liSee, e.g., E. S. Abers and B. W. Lee, Phys. Rep. C 9, 1 (1973). 
12See, e.g., Y. Luke, The Special Functions and Their Approximations (Aca

demic, New York, 1969), Chap. 5. 
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ISOn the other hand, having different sets of integrals on the two sides of (4) 

does not necessarily imply the two sides are unequal. They would be une
qual only if it could be proven that among the different integrals those on 
one side were independent of those on the other. We have not made an 
attempt to rigorously assure that the integrals used to express Bi are from 
an independent set, but have simply reduced them to a simple form using 
straightforward algebraic identities. 

I~here are actually two types of infrared singularities in the integral (1): 
those occurring at q = 0 and those occurring at p = q. The singularities 
associated with each one of these must not be distinguished. 

17R. Gastmans and R. Meuldermans, Nucl. Phys. B 63, 277 (1973); W. J. 
Marciano, Phys. Rev. D 12, 3861 (1975). 
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We analyze the mass spectrum of a strongly coupled (p = 2/g2 small) Wilson action lattice gauge 
theory in 3 + 1 dimensions. In the subspace generated by the time zero plaquette functions and 
their complex conjugates we show that there is at least one and not more than four masses. Each 
mass admits a representation of the form m(p) = - In (3 + rlf3), where rlf3 ) is a gauge group 
representation-dependent function analytic in (3 or (31/2 at (3 = O. For a gauge group 
representation with real character there is at least one and not more than two masses of the above 
form and rlf3) is analytic at (3 = O. Furthermore C n , the nth (3 = 0 Taylor series coefficient of rlf3 ), 
can be obtained by a finite algorithm. 

I. INTRODUCTION AND MAIN RESULTS 

Recently much theoretical and numerical work has 
been done to determine the low lying glueball mass spectrum 
oflattice gauge theories (see Refs. 1-4). Here we obtain re
sults on the mass spectrum of strongly coupled (p = 2/ g2 
small) Wilson action gauge theories in 3 + 1 dimensions. We 
restrict our attention to the spectrum in the subspace gener
ated by the time-zero plaquette functions and work in the 
Euclidean formulation (see Refs. 5 and 6). We let X denote 
the character of the irreducible unitary representation of the 
gauge group. We state our main result. 

Theorem A: The mass spectrum has at least one and not 
more than four isolated points. Each mass has a representa
tion 

m(p) = - 4 In (3 + rlf3), 

where rlf3) is a gauge group representation-dependent func
tion analytic in (3 or (3 1/2 at (3 = O. 

In order to simplify the exposition we restrict our dis
cussion in Secs. II-IV to X real for which the above theorem 
takes the form. 

Theorem B: For X real the mass spectrum has at least 
one and not more than two isolated points. Each mass has a 
representation 

m(p) = - 4 In (3 + rlf3 ), 

where rlf3 ) is a gauge group representation-dependent func
tion analytic in (3 at (3 = O. The nth (3 = 0 Taylor series coef
ficient of rlf3,) Cn , can be computed by a finite algorithm. 
Here, Cn depends on a finite number of (3 = 0 Taylor series 
coefficients of finite lattice correlation functions at a finite 
number of points. 

Both theorems follow from the solution of an implicit 
equation for the mass or masses which depends on (3 and 
momentum space analyticity properties of the Fourier trans
form of a matrix-valued correlation function (abbreviated cf 
hereafter) and its matrix-valued convolution inverse. The 

alOn leave from Departamento de Fisica do ICEx. Universidade Federal de 
Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. 

crucial analyticity properties follow from the space, imagi
nary-time decay of the cf and a faster imaginary-time decay 
of its convolution inverse, as in Ref. 1. 

The main difference between the 2 + 1 mass spectrum 
problem treated in Refs. 1 and 2 and the 3 + 1 problem is 
that in the 3 + 1 case we are dealing with an asymptotically 
(p!O) degenerate level (rather than a nondegenerate level) so 
that the spectral analysis is more complicated. We develop 
techniques of spectral analysis for asymptotically degenerate 
levels which can be easily generalized to apply to the analysis 
of the spectrum of other models, i.e., multicomponent spin 
and gauge-matter models. Generally, the mass spectrum is 
contained in the set of momentum values (with positive 
imaginary-time component and zero space component) for 
which the determinant of the Fourier transform of the con
volution inverse matrix of the cf matrix is zero. 

We describe the organization of the paper. In Secs. 11-
IV X is real. Symmetry, analyticity, and decay properties of 
the cf and its convolution inverse are given in Sec. II. In Sec. 
III we develop the spectral analysis needed to relate the mo
mentum space analyticity of the cf to the mass spectrum. In 
Sec. IV we introduce implicit equations for the masses and 
prove Theorem B. In Sec. V we treat the case X = X r + iXi 
complex and prove Theorem A. The proofs of lemmas and 
theorems which do not require major modifications of analo
gous ones in the 2 + 1 dimension case of Refs. 1 and 2 are not 
given. Section VI is devoted to some concluding remarks. 
We take 1(31 to be small throughout. 

II. SYMMETRY, DECAY, AND ANALYTICITY OF 
CORRELATION FUNCTIONS 

In this section we introduce a matrix-valued cf and ob
tain its symmetry, analyticity, and decay properties. The 
crucial faster imaginary-time decay of the convolution in
verse of the cfis also obtained (see Lemma I1.3b) as well as its 
symmetry and analyticity properties. 

We let G (x,/3) denote the 3 X 3 matrix-valued plaquette
plaquette cf with matrix elements 

1805 J. Math. Phys. 26 (7), July 1985 0022-2488/85/071805-05$02.50 @ 1985 American Institute of Physics 1805 



                                                                                                                                    

Gay(x,/3) = lim GAay(Y;z,/3), X = Y - z, XJ',z eA CZ 4
, 

ArZ' 

a,Y = 1,2,3 where we denote points of Z4 by x = (XO, Xl' X2, 
X 3) = (xo,x). Here 

GAay(Y;z,/3) = (X(gp)X(gP)A - (X(gP)A (X(gP)A' 

Py (Pz ) is the plaquette located at y(z) perpendicular to the Xo 
direction and to the Xa (Xy) direction, (. > A is the Gibbs en
semble average with Boltzmann factor expf/3 'l:pX(gp I], and X 
is a real character of an r-dimensional irreducible unitary 
representation of the compact gauge group. Existence, P 
analyticity, and translation invariance of the A tZ 4 limitfol
low from the polymer expansion of Ref. 6 for small IP I. 

The symmetry properties of G ay(x) are given below. Let 
1,M denote the 3 X 3 matrices with matrix elements I ij = oij 
andMij = (l-oij)andsetGay (xo) = 'l:xGay(xo, x). We have 
the following lemma. 

Lemma lL 1: G (xo) = G11 (XO)/ + Gdxo)M. 
Proof To show G11 (XO) = Gzzlxo) make a rotation of 

-'IT/2 about the X3 axis in GA 11(0; XO, x), sum over x, and 
taketheA tZ 4 limit. ToshowG13(xo) = G23(XO) make a rota
tion of - 'IT/2 about X3 in GA 13(0; XO, x), sum over x, and 
take the A f Z 4 limit. Similar considerations apply to the oth
er components. 

The decay of G (x) and the existence, P analyticity, and 
decay of the convolution inverse F (x,/3 )=F (y; z,/3 ), 
X =y -z, where 

z.p 

are given in Lemmas II.2 and II.3 below. 
LemmalL2: 

(a) IGay(x,/3)I..;;ellePI4Ixol + lxi, 

(b) Gaa(x = (xo' 0),/3) > e3le~ 141xol, P> O. 

Lemma lL3: Let P have matrix elements 
Pay(x;y) = Gaa(x;x)oxyOay. Then the following hold. 

00 

(a)r=G- I = 'l: (_I)n[p-I(G_p)]np-l; 
n=O 

the series is convergent in norm and r is analytic. 

(b) IFay(x,/3)I..;;e2Ie'PI5Ixol + lxi, 

x¥(xo = ± 1,0), a¥y; 

for X = (xo = ± 1, 0) and a = y replace the 5 by 4. 
Let denote the Fourier transform, i.e., 

G(p) = 'l:xe-iPXG(x), p=(Po, pI, px='l:t=OPiXi' We set 
G (Po) = G (Po, p = 0) and l' (Po) = F (Po, p = 0). The symme
try, decay, and analyticity properties of Lemmas II.l-II.3 
translate into the P space properties of G (Po) and F (Po) given 
in Lemmas II.4 and II.5 below. 

Lemma II.4: G (Po,/3) is jointly analytic for IP I small, 
Ilmpol < - 4lnlePI, lePI < I, IRe Pol <'IT, and 

(a) G (Po) = G11(po)/ + G12(Po)M, 
(b) det G (Po) = (G11 (Po) + 2GI2(PO))(G11(po) - G12(PoW, 
Lemma 11.5: F (Po) is jointly analytic for IPI small, 

Ilmpol < - 5Inle'PI, le'PI < 1, IRe Pol <'IT, and 

(a) F(PO)==l'l1(PO)/ + F12(Po)M, 

(b) det F(Po) = (l'l1(PO) + 2F12(PO))(F11(po) - l'12(Polf, 
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(c) l'l1(PO) - F 12(PO) = (G11(Po) - GI2(PO))-I, 

(d) F 11 (po) + 2F12(po) = (G11 (Po) + 2GI2(PO))-I. 

Proof By explicit computation. 

III. SPECTRAL CONSIDERATIONS 

In this section we use the momentum space analyticity 
properties of G (Po) and F (Po) as well as the factorization of 
their determinants to obtain a spectral representation for 
G (Po) (a multicomponent lattice Kallen-Lehman type repre
sentation). Using this representation we give criteria for a 
point Po to belong to the mass spectrum. 

Similar to Ref. 1, G (Po) has a spectral representation 
given by the following lemma. 

Lemma IlL 1: There exist finite signed measures dpay, 
positive if a = y, such that 

- 1 1 -A 2 
Gay(Po) = I U A 2 dpay(A ), 

[O,e-mj - cos Po + 
where m = lim ( - l/xo)ln('l:x Gaa (xo, x)). Furthermore 

Xofoo 

dpaa = dPrr and Idpay I ..;;dpaa· 
Let aiM) denote the mass spectrum. We know that 

u(M) C [m, 00) and that m'E aiM) if and only if e - m' 
E U supp dpay = supp dp11' From the above representation 
we can obtain a direct relation between supp dpay and the 
points PoE i[m, 00), where Gay(Po) is not analytic. It is con
venient to write Gay(Po) in terms of the variable a and the 
measure dVay defined by 

dv (a) = I -A (a)2dfl a(A) = (I-A )2. 
ay U(a)'-' U 

As a(e- m
) = cosh m - I we have 

Gay(Po) = Fay (cos Po - 1), 

where 

is analytic in C - [cosh m - 1, 00). Using the inversion for
mula 

vay(d) - vay(e) = lim~[ [Faytu + iE) 
e!O I'IT c 

- Faytu - iE)]dp., 

valid for points e, d, e < d, of continuity of dvay , it follows 
that Fay(z) is analytic in z E [cosh m - 1, 00) if and only if 
zEisupp dvay . Thus we have the following lemma. 

Le,!,malIL2: Letm'>m. Thene- m' E supp dpay ifand 
only if Gay is not anal~tic atpo = im'. 

By Lemma 11.3 r(po) is analytic for IRe Pol <'IT, 0 
< 1m Po < - 5 In I e'PI so that the functions Gay (Po) are 
meromorphic in this region. Then we have the following. 

LemmaIIl.3:m'EaiM)n[m, - 510gle'pl)ifandonlyif 
F 11(im') - l'dim') = 0 or F 11(im') + 2Fdim') = O. 

Proof From the above observation and Lemma III.2 it 
~ollows that e - im'E supp dVay if and only if im' is a pole of 
Gay. We conclude that m'EaiM) ifand only ifim' is a pole of 
some Gay, which can occur only if det F (Po) 

- - 2 - -= (r11(PO) - r 12(Po)) (r11(PO) + 2rI2(PO)) = o. 

M. O'Carroll and W. D. Barbosa 1806 



                                                                                                                                    

IV. IMPLICIT MASS EQUATION AND PROOF OF 
THEOREMB 

In this section we obtain and solve implicit equations 
for the masses for X real. The analytic implicit function 
theorem does not apply directly to the implicit mass equa
tions. However, by introducing an auxiliary complex vari
able and function we obtain an implicit equation to which 
the analytic function theorem applies and yields the masses. 

Towards obtaining implicit mass equations we obtain 
the /3 = 0 Taylor expansion of I' (Po) with the /3m, 0<m<4, 
terms explicited. The explicit terms are obtained from the 
/3 = 0 expansion for G (Po) and the relation G (Po)F (Po) = 1. 
The G (Po) expansion follows from the /3 = 0 expansion of 
G (x, /3) for certain x given in the following lemma. 

LemmalVol: 
(a) x = 0: GI1(x) = 1 + 0(f3), Gdx) = o (f34), 

(b) x = (1,0): GI1 (x) = /3
4

4 

+ o (f35), Gdx) = o (f36). 
r 

The /3 = 0 expansion of G (Po) is given by the following 
lemma. 

LemmalVo2: 

G(Po) =/(1 + ±gk/3k + ~(e-iPO + eiPO)) 
k= 1 r4 

+ a/34M + o (f35), 

wheregk' I <k<4, and a are group representation dependent 
constants. 

The /3 = 0 expansion of F (Po) is given by the following. 
LemmalVo3: 

I' (Po) =/(1 + ± Yk/3k - /34

4 

(e- iPo + eiPO)) 
k= I r 

- a/3 4M + o (f35), 

where Yk = Yk(g" g2' g3' g4)' l<k<4, are determined from 
G (Po)F (Po) = I using Lemma IV.2. 

Define 
4 /3m am F 

Fs (x) = r (x) - I -, --;;;- (x, /3 = 0) 
m=O m. a/3 

and similarly for 1' •. Define, for n = 0,1, ... , 

r. (n,{3) = Ir. (xo = n, x,{3 ). 
x 

Let R ± (Po) = FII(po) + ((1 ± 3)/2)F'2(PO) so that 

R ±(Po) = I + ± Ykpk - /3
4 

(e-ipo + eiPo) _ (1 ± 3)a/34 
k=' r4 2 

co 

+ R .± (n = 0,{3) + I R .± (n,{3)(e - ipon + eiPon ). 
n=' 

Introduce the auxiliary complex variable w and func-
tions H± (w,{3) such that H ±(w = 1- (f34Ir4) 
xe- iPo,/3)=R ±(po),where 

H ±(w,{3) = W + ± Ykpk _ /3
4 

- (1 ± 3)a/34 
k=' r4(1 - w) 2 

co 

+ R .± (n = 0,{3) + I R .± (n,{3 ) 
n=' 
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As H± (w,B) are jointly analytic, H± (0,0) = 0 and 
aH± law(O,O) = I, we have the following. 

Lemma lVo4: For 1/31, Iwl small, 3 unique analytic 
functions w ± (f3), not necessarily distinct, w ± (0) = 0, such 
that H± (w ± (f3),{3) = O. 

We now give the proof of Theorem B. From the spectral 
considerations of Sec. III and Lemma IV.4 the mass or 
masses m ± (f3) are given by 

R ± (Po = im ± (f3)) 

=H± (w± = 1- (f34Ir4)em
± (/3),{3) = 0 

or 

m ± (f3) = - 4ln /3 + 4ln r + In( 1 - w ± (f3)). 

The /3 = 0 Taylor coefficients Cn can be determined from 
those of w ± (f3) using H ± (w,{3) as in Ref. 2. 

V. COMPLEX CHARACTER 

We treat the case of a complex character in this section 
in a manner analogous to the X real case and give the proof of 
TheoremA. 

For X = X r + iX i complex we define the 6 X 6 matrix 
valued correlation function G (x,{3 ) with matrix elements 

x = Y - z, where 

GAaruv (Y;z,{3) = (Xu (gp)Xv (gp) A 

- (Xu (gPy)A (Xv (gP)A , 

with u, v = i,r; the rest of the notation is as in Sec. II. The 
convolutioninverseF(x,{3) = F(y;z,{3 ),x = y - z,ofGisthe 
6 X 6 matrix which satisfies 

L Gac5ut(y;W)rc5rtv(W;Z) = 8yz 8a/)uv, 
W,c5,t 

and as in Lemmas 11.2.3 we have the following. 
Lemma V.l: 

(a) I Garuv (x,{3 )1 <c,lc/314Ixol + 1"1, 

(b) Gaauu((xo,0),{3»c3(cfi)4IXoI, /3>0, 

(c) Iraruv(x,{3)I<c2Ic'/3lsIXoI + lxi, 

except for a = Y, u = v, x = ( ± 1,0) where the 5 is replaced 
by 4. 

Recall that G (Po)=G (Po,O), F (Po) I' (Po,O), and I (M) 
are the 3 X 3 matrices with elements lij = 8ij(Mij = 1 - 8ij). 
We have the following. 

Lemma Vo2: G (Po,{3 ) is analytic for small 1/31, 
IImpol < - 41nlc/3l, IRepol <'fr, and 

(a) G(Po) = [~"(Po) ~ir(Po)], 
Gir(po) Gii(PO) 

where Guv (Po) = Glluv(Po)l + G'2UV(PO) M is a 3 X 3 matrix, 

(b)det G(po) = (det G -(PO))2 det G +(Po),whereG± (Po) 
is a 2 X 2 matrix with elements G!v (Po) = G lIuv (Po) 
+ [(1 ± 3)/2] G12uv (PO)' 

Proof: (a) Follows from symmetry properties of G in a 
manner analogous to Lemma 11.1. 

(b) Since the 3X3 matrices Guv(Po) commute we have 
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det G (Po) = det(Grr(po)Gjj(Po) - G;,(Pof); calculating this 
last determinant gives (b). 

Lemma V.3: F(Po,/3) is analytic for small 1.0 I, IImpol 
< - 510glc',B I, IRe Pol <1T, and 

(a) l' (Po) = [~rr(Po) ~;,(Po)], 
r;, (Po) ru (Po) 

where Fuv(Po) = FlluV(Po)/ + F 12uv (Po)M is a 3X3 matrix. 

(b)det l' (Po) = (det F -(Polf det l' + (Po), wherer± (Po) 
is a 2 X 2 matrix with matrix elements I' u=;; (Po) = I'lluv (Po) 
+ [(1 ± 3)/2]rI2uv (PO)' 

(c) (1' ± (Po)) -I = G ± (Po). 
Proof The matrices Gar commute so that 

l' (Po) = (G(PO))-I 

_ [ Gu(GrrGu - G~,)-I - G;r(G"Gu - G~,)-I] 
- - - - - 2 -I - - - - 2 -I . 

- G;,(G"G;; - G ;,) G"(G"G;; - G ;r) 

The inverse as well as the product of two matrices of the form 
aI + bM has the same form so that (a) follows. 

(b) Similar to (b) of Lemma V.2. 
(c) By direct calculation. 
We also have the representation - I l-A2 
Garuv(Po) = 1 U A 2 dParuv(A), 

[O,ml - COS Po + 
where m = inf{m;, m, j, 

mu = lim - J...IOg(IGaauu(Xo, x), 
xotco Xo x 

and dparuv is a finite signed measure, positive if a = rand 
U=V. 

and 

The mass spectrum a(M) is contained in [m, 00) and 
I 

m E u (M) if and only if e - mE U SUpp dparuu 

= SUpp dplI"u SUpp dpllu' By arguments similar to those 
in Sec. III we see that mE a(M)n[m, - 510glc',B il ifand only 
if it is a pole of some function Garuv which results in the 
following lemma. 

Lemma V.4: mEa(M )n[m, - 5 log Ic',B il if and only if 
det I' -lim) = 0 or det l' +(im) = O. 

We now obtain implicit equations for the zeroes of 
det r± (Po). 

We have the,B = 0 Taylor expansions, valid for 11m Pol 
<4 log Ic,B I, 

G u~(Po,/3) = Glluu (Po,/3) + [(1 ± 3)/2]GI2uu (P0,/3) 

4 

G ;;-(Po,/3) = I Ck±,Bk + 0(,85) 
k=1 

so that 

det G ± (Po,/3) = J... + ± d k± pk 
4 k=1 

Defining 

4 .om amr 
rs(x)=r(x)- I ---(x,,B=O), 

m=O m! a,Bm 

rs(n,/3) = Irs(xo = n,x,,B), n = 0,1,2 ... , 
x 

and using rG = I, we have the,B = 0 expansions of l', valid 
for 11m Pol < - 510glc',B I, 

l' ;;- (Po, .0 ) = ± b k±,Bk + r sll ;, (0, ,B) + 1 ±2 3 Fs12;, (0, .0 ) + f (rSllir (n, .0 ) + 1 ± 3 rsl2ir (n, .0 )) (eipon + e - ;pon). 
k=1 n=1 2 

Introducing the complex variable w, the 2 X 2 matrices 
H± (w,,B) given by 

H u=;; (w = 2 - (,84/8r4)e - iPo,,B) = l' u=;; (Po,,B) 

and defining 

F± (w,,B) = detH± (w,,B), 

we have as in Theorem 111.3 of Ref. 2, using the Weierstrass 
preparation theorem (see Ref. 7), the following lemma. 

Lemma V.5: For Iwl, 1.0 I small 

(a) F± (w,,B) is analytic in w, .0, 

aF± ~F± 
(b)F± (0,0) = 0, ~O,O) = 0, aw

2 
(0,0) = 2, 

(c)F± (w,,B) = (A o± (,8) + A I± (,8)w + w2)M ± (w,,B), 

where A o± (,8), A I± (,8) are analytic, A o± (0) = A I± (0) = 0, 
and M ± (w,,B) is analytic in w,,B with M ± (w,,B )#0. 
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We now prove Theorem A. From Lemma V.5 the ze
roes ofF ±(w,,B) are the zeroes of A l(fJ) +A 1±(,8)W + w2

• 

There are only two possibilities. 
(1) There exists one zero w ± (,8 ), where w ± (,8 ) is analyt

ic and satisfies F ± (w ± (,8),.0) = 0 and w ± (0) = O. 
(2) There exist two zeroes wt= (,8), wf (,8), where both 

are analytic functions of,Bor,B 1/2 and satisfy F ± (w l± (fJ),,B) 
=F ±(wf(,8),,B) = 0 and WI±(O) = wf(O) = O. 

The zeroes of det l' (Po, .0 ) are of the form im, m > O. As 
F±(w=2-(,84/8,A)e-iPo,,B)=detl'±(po,,B) we have 
m ± (,8) = - 4 log .0 + log 8r4 + log(2 - w ± (,8)), where 
w ± (,8) satisfies (1) or (2) above. 

VI. CONCLUDING REMARKS 

It would be nice to have an argument to show that there 
are not more than four mass points without having to intro-
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duce and solve the implicit mass equations. Note that in the 
nondegenerate case this follows from the resolvent represen
tation of G. A preliminary reduction due to symmetries of 
the space lattice as in Refs. 3 and 8 may simplify the analysis 
here. 
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The gauge field propagator is calculated in configuration space using an expansion in spherical 
harmonics for the scalar Green function and in vector spherical harmonics for the tensor Green 
function. We work in the Coulomb gauge where the scalar Green function is instantaneous and 
the frequency-dependent tensor Green function is transverse. Explicit expressions are obtained to 
solve for the propagators in the presence of inhomogeneous dielectric media. 

I. INTRODUCTION 

Several bag models have been introduced in the last 
years as phenomenological models of quantum chromodyn
amics (QCD) (see Refs. 1 and 2). One of these is the soliton 
bag model of Friedberg and Lee.2,3 A scalar field u is intro
duced to represent the complex structure of the vacuum. 
Color gluon fields are introduced as in QCD, except that 
they interact with the soliton field through a color dielectric 
function K(U). The color magnetic susceptibility is fl = K- 1

• 

Color confinement is effected by the requirement that K = ° 
in the physical vacuum, andK;:::; 1 in the interior of the "bag." 

The bag problem corresponds to a system where the 
dielectric medium is inhomogeneous. Here we consider the 
general problem of a dielectric function K as an arbitrary 
function ofr. The calculation of such a propagator can also 
be used in a wide range of problems in electrodynamics and 
electrical engineering. ~ The homogeneous K problem was 
first solved in polar coordinates by Johnson, Howard, and 
Dudley6 in 1979. 

We calculate the Green functions by making an expan
sion in spherical harmonics for the scalar Green function 
and in vector spherical harmonics for the tensor Green func
tion. In Sec. II we derive the differential equations for the 
propagators, in Sec. III we solve these for the scalar Green 
function, and in Sec. IV for the tensor Green function. The 
numerical implementation is described in Sec. V. A brief 
summary is given in Sec. VI. 

II. DIFFERENTIAL EQUATION FOR THE PROPAGATOR 

If we include explicit gluon effects only to lowest order 
in the strong coupling constant, the non-Abelian term in the 
QCD gauge field tensor 

F~v =aI'A~ -avA~ +labcA~Ae (2.1) 

can be neglected and the QCD Euler-Lagrange equation for 
the gauge field reduces to 

iJ"KFl'v = Jv' (2.2) 

We have suppressed the color index, because the equations 
decouple for different colors and the gluon propagator is 
therefore diagonal in color indices. The equations are the 

"'Present Address: Mission Research Co., P.O. Drawer 719, 735 State 
Street, Santa Barbara, California 93102. 

same as the inhomogeneous Maxwell equations in quantum 
electrodynamics (QED). 

To solve these equtions, we choose the Coulomb gauge 

V'(KA) = ° (2.3) 

to decouple the equations into the time component 

V'KVAo = - Jo (2.4) 

and the space component 

- KA + V2KA - VX(KAX(lIK)VK) = - J,. (2.5) 

The SUbscript "/" stands for the transverse component, 
which satisfies 

V'J, =0, (2.6) 
and can be constructed by 

J, =_I-vxvxfd3rl J(r') 
417' Ir - r'l 

(2.7) 

We should note here that it is KA that is required to be trans
verse rather than the vector potential A. Equations (2.4) and 
(2.5) determine the defining differential equations for the 
Green functions. 

III. SCALAR GREEN FUNCTION 

The time-independent equation for the scalar Green 
function G (r,r')=GOO(r,r') is 

V'K(r)VG (r,r') = 0 3(r - r'). (3.1) 

To simplify this equation and to avoid infinities for K-<l we 
define 

G (r,r')=f,((r)G (r,r')~K(r'), 

where G satisfies 

(V2 - W(r))G (r,r'r = - 0 3(r - r'), 

with the "potential" W(r) given by 

W(r)=!IV In K(rW + ~V21n K(r). 

(3.2) 

(3.3) 

(3.4) 

We expand W(r) and 0 3(r - r') into spherical harmonics 
Y1m(IJ), 

W(r) = WLM(r) YLM (IJ ), (3.5) 

03(r - r') = (lIr)O(r - r')YLM(IJ )Y!M(IJ '), (3.6) 

where the repeated index summation convention is used 
throughout. 
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For the scalar Green function we make the ansatz 

6 (r,r') = Caa,Ja(r < )Na'(r> ) 

= Caa, -I-Jim (r < ) YJm (n < ) 
r< 

x -}- nr:m' (r> ) Y r.m' (n> ), 
> 

(3.7) 

where the quantities (r < ,n < ,i < ) refer to (r,n,i) if r < r' and 
to (r',n ',t) if r> r'; (r> ,n> ,i> ) is defined correspondingly. 
After multiplying with Y'!:.. (n ) and integrating over the an
gular coordinates n, the ansatz (3.7) reduces the homogen
eous partial differential equation (3.3) to a differential equa
tion for the radial functions nr~ (r) and Jim (r): 

{( _ ~; + 1(/: 1))~w~mm' + WLM(r)(lmIYLMll'm')} 

{
It'm,(r)} 

X =0, 
nr:m·(r) 

(3.8) 

The set {a} of solutions, which are regular at the origin, is 
given by { Itm 1 and the set { a'}, which are regular at infinity, 
by {nr:m' }. If K(r) goes asymptotically to a constant greater 
than zero the corresponding boundary conditions are 

Itm(r)-,J + l~rm' for r~, (3.9a) 

a'() l~a' ~ nJ·m, r - ,J' UJ'm" lor r-+oo. (3.9b) 

If K(r) has a different asymptotic behavior, another choice for 
the boundary condition must be made at infinity, e.g., K(r) 
falling off exponentially, requires also an exponential decline 
for nr:m,(r). 

If there are no symmetries in the problem, all (I,m) are 
coupled. In an axially symmetric problem, the potential W 
can be expanded in terms with the magnetic quantum num
ber M = 0 only, and then the integral 

(1m I YLO I/'m') 

==fdfl Y'!:..(n)YLO(n)YJ'm·(n) 

= ( _ l)mC21 + 1)(2£ ~ 1)(21' + 1) y/2 

(
I L 1')( I L I') 

X 0 0 0 -m 0 m' 
(3.10) 

shows explicitly the conservation ofthe quantum number m. 
The second 3j symbol vanishes unless m = m'. Therefore, 
the differential equations (3.8) decouple for different m. Sim
ilar considerations hold for reflection symmetry: then the 
expansion of W has terms with even L only, and the first 3j 
symbol in (3.10) shows explicitly the conservation of parity. 
Given the solutions of (3.8) we then need to determine the 
coefficients Caa· in 13.7). The ansatz (3.7) automatically satis
fies symmetry under interchange of the variables rand r': 

G(r,r') = 6 (r',r). (3.11) 

Continuity at r = r' for all angular coordinates leads to the 
first matching condition 

lim 6 (r + E,n,r,n ') = lim G (r - E,n,r,n '). (3.12) 
£...0 £...0 
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A second matching condition arises from the defining differ
ential equation (3.3). Using the partial wave expansion of the 
~ function (3.6), we obtain 

lim (+£drr{V2 - W(r)}6(r,r')= - yLM(n)Y!M(n'). 
£...0),,-£ 

(3.13) 

By operating with f dn Y'!:.. (n ) and f dn' Y1m (n ') on Eqs. 
(3.12) and (3.13) we get the following sets oflinear equations: 

{Jim(r)nr:m,(r) - Ji'm,(r)nr~(r)}Caa' = 0, (3. 14a) 

{ (! Jim (r) )nr:m' (r) 

(3. 14b) 

at any radius r. 
The range of the labels a and a' must be equal to the 

range of (l,m) and (/',m'). First we note that if we have axial 
symmetry in the problem the matrices { } in (3.14) become 
block diagonal in the quantum number m. Second, in the 
case of parity conservation, there is no mixing between 
modes of different parity. This means that (/,1') odd and (/,1') 
even also give a block diagonal form of the matrix. We have 
more equations than needed to determine the coefficients. 
Therefore some of these equations are linearly dependent on 
the others and redundant. In the set (3.14a) all equations are 
antisymmetric under interchange of (I,m) and (/',m'), there
fore only (3. 14a) with (say) I < I' are not redundant. Taking 
the derivative of (3.14a) with respect to r leads to 

{(:/im (r))nr:m. (r) - It'm.(r{:r nr~(r)) }Caa. 

= {(:rlt'm,(r))nr~(r) -Itm(r{:r nr:m,(r))}Caa,. 
(3.15) 

This means that all equations (3. 14b) with [< I' are redun
dant. These considerations reduce the two sets of equations 
to one linearly independent set of equtions: 1< [' for (3. 14a) 
and /',1' for (3.14b). After solving the linear equations for 
Caa' , the scalar Green function is completely determined. 

In the special case K(r) = 1, 6 (r,r') = G (r,r'), the differ
ential equation (3.8) reduces to 

( _~ 1(/+ 1)){Ji(r)} =0 
dr + r nr'(r) , 

(3.16) 

which has the solution Ji(r) = ,J+ l~r and nr'(r) = ,;. -l)~r'. 
The set of linear equations (3.14) has the solution 
CIl' = [1/(21 + 1)]~Il" Therefore 

G(r,r')= L_l_~ y1m(n)Y'!:..(fl'), (3.17) 
I 21 + 1 ,J>+ 1 

which is the well-known solution ofthe Poisson equation. 

IV. TENSOR GREEN FUNCTION 

The differential equation for the vector potential is time 
dependent. After a Fourier transformation in the time and 
defining the transverse Green function as 

6 1I'(r,r',w) = K(r)G W(r,r',w), (4.1) 
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we get 

(w2 + V2)G /I'(r,r',w) - Eikl a k(Elmn G mi'(r,r',w)an In K(r)) 

= - 8~"(r - r'), (4,2) 

with the restriction 

a'G ii'(r,r',w) = o. (4.3) 

The Coulomb gauge condition (2.3) requires the asymmetric 
definition (4.1) ofGii'(r,r',w). 

The transverse part of the dyadic 8 function is defined 

{

'I-I 
X {}(r- r') ~+2 ~L+ l,m(n)~G_I,m(n') 

+ {}(r' - r) ~:: ~L_I.m(n )~G+ I,m(n')}, (4.4) 

This form of the dyadic 8 function was constructed with the 
help of (2.7) and the definition of the vector spherical har
monics ~ JLM in Edmonds 7: 

~ JLM(n )= L (L m 1 qlJ M )eq YLm (n), (4.5) 
m.q 

where the unit vectors eq are 

e+ 1 = - 4(ex + iey ), 

and ex,y,z are the unit vectors in the cartesian coordinate 
system. The set 

{fMlm(r) ~/lm(n ),VXfElm(r) ~/lm(n)J (4.7) 

is a complete orthonormal basis for transverse vector func
tions;! Mlm (r) andfElm (r) are arbitrary functions of r; E and M 
denote electric and magnetic modes, respectively. 

In calculating the tensor Green function, we pursue the 
same path as for the scalar Green function. Because the ten
sor Green function must be transverse, we use an expansion 
in the vector spherical harmonics out of the set (4.7). From 
(4.4), we see that because of the (}-function contributions, the 
transverse 8 function is, contrary to Morse and Feshbach,8 

nonlocal. Therefore, we now have to solve a differential 
equation which is inhomogeneous over all space and not 
only at 1 r 1 = 1 r' I· A general solution of the differential equa
tion will be a general solution of the homogeneous equation 
plus a special solution of the inhomogeneous equation. The 
ansatz for the solution of the homogeneous differential equa
tion is 

F(r,w) = (lIr)fMlm(r,w) ~/lm(n) 

- i(Vx (lIr)fElm (r,w) ~/lm(n)) (4.8a) 

;.!jIm (r,w) ?#jlm (n ), (4.8b) 

where 

( j ) 1I2( a j) 1 
./j,j+ I,m (r,w) = 2j + 1 ar -; -;IEjm(r,w), 

./jjm (r,w) = (lIrifMjm (r,w), (4,9) 

( 
j + 1 ) 1I2( a j + 1) 1 

./j,j_I,m(r,w) = 2j + 1 ar + -r- -; fEjm(r,w). 

Throughout the paper, every set of functions {./jIm (r,w) J 
with three indices is equivalent to the set {fMlm ,fElm J and 
fulfills the relations (4.9). The symbolfis generic here and 
stands forj,n,z,a,b used below. 

After expanding In K(r) = In K LM (r) YLM (n ) into spheri
cal harmonics the homogeneous differential equation 

(w2 + V2)F(r,w) - VX(F(r,w)XV InK(r)) = 0 (4.10) 

(4.6) can be transformed to a coupled set of equations in r by 
operating with fdn ~j~m (n ): 

O=(-w2_J...~r+ 1(/+ 1)){lfim(r,w)} 
r ar r nflm(r,w) 

+ ( - l)m~(2/ + 1)(2j + 1)/417' ( .! m ~, L)(W~T(LM') Vfl'(LM' ) i.) {ll,'m,(r,w)} 
M )1 ,r +)1 ,r a ' 

ar nll'm' (r,w) 
where 

and 
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V}t(LM;r)= - ~(2L + 1)(2/' + 1)(21 + 1)(~ L 
o 

j 

/' 
L} d 
1 dr In KLM(r), 

w~t(LM;r)== - ~(2L + 1)(2/' + 1)(21 + 1) (~ L 

o 
j 

I' ~} 
( 

d 2 2 d L (L + 1) ) 
X dr InKLM(r)+-;~lnKLM(r)- r InKLM(r) 

+ (2L + 1)(21' + 1)~(21 + I)L (L + 1)1 '(1' + 1) ~ In KLM(r) 
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(I' L I)U' 
X 0 0 0 11 
+ (- 1)/+l~(2/' + 1)(21 + 1) 

{(
I' L+2 I){j j' 

X 0 0 0 1 L+l 
L }{L + 1 
I' I 

X~(2L + 5)(L + 2)(L + 1) ---- --- InKLM(r) (d L + 1)(d L) 
dr r dr r 

_ (I' L I){j 
o 0 0 1 

j' 

L + 1 
L }{L + 1 
I' I 

I' j} 
1 L 

X(L+ 1)~2L+ 1 (~+L+2)(~-!::...)lnKLM(r) 
dr r dr r 

_(/'L I){j j' L}{L-l I' j} 
o 0 0 1 L-l I' IlL 

XL~2L + 1 (~_ L - 1)(~+ L + 1) InKLM(r) 
dr r dr r 

+ (~ L ~ 2 ~){{ L ~ 1 ~,}{L 7 1 II' L ~ 2} 

X~(2L-3)(L-l)L -+- -+-- InKLM(r) . ( d L)(d L+l) } 
dr r dr r 

(4.13) 

Note that the functionslftm and njim contain first derivatives. Therefore Eq. (4.11) is a set of coupled differential equations: 
one second-order equation for each magnetic function and two third-order for each electric function. By elimination this can 
be reduced to one second-order equation for each electric function: 

0= (- w2 _ ~ + 1(1 + 1)){.r:Jm (r,w)} + (A ~l:..m'(r) +B~l:..m'(r)~){.r:/'m,(r,w)} 
ar'l r'l nMlm(r,W) ar nMI'm' (r,w) 

(
A EI'm'(r) BEI'm'(r) ~ eEI'm'(r) ~){j'::I'm,(r,W)} 

+ Mlm + Mlm a + Mlm a-2 a ( )' r r nEI'm' r,w 
(4. 14a) 

0= (_w2 _ ~ + 1(1 + 1)){r:lm (r,w)} + (A ~!:.m'(r) +B~!:.m'(r) ~){.r:I'm,(r,w)} 
ar'l r'l nElm(r,w) ar nMl'm' (r,w) 

(
A EI'm'(r) BEI'm'(r) ~ eEI'm'(r) ~){hl'm,(r,w) } . 

+ Elm +EI", a+ Elm a..2 a () r r nEI'm' r,w 
(4. 14b) 

The matrics A, B, e are defined as follows: 
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A ~l,;'(r)=( _ l)m((21 + 1)(2/' + 1))1I2( I 
41T -m 

~, ! )( Wlt(LM;r) - + vlt(LM;r)). (4.15a) 

B~I:..m'(r)==(_I)m((2/+ 1)(2/'+ 1))1I2( i 
41T -m 

/' L) /'/' 
m' M VI/ (LM;r), (4. 15b) 

A fj;;:'(r)=( - ItC21 + 1~/' + 1))112( ~ m ~, !) 
X (JP ( + Wi?' - I(LM;r) - ~ V:?' - I(LM;r)) - JJ'+T (+ W:?' + I(LM;r) - ~ V:/' + 1 (LM;r)) ). 

(4.15c) 

I' L) 
m' M 

x ( JP+I{ Wl/' - I(LM;r) + /' ~ 1 vi?' - I(LM;r)) + $'( Wl/' + I(LM;r) /' : 2 Vl/' + I(LM;r))). 

(4.15d) 

efj;;:'(r)==( _ l)m( 21 + 1 )1I2( / 
41T - m m' 

I' 
(4.15e) 

A Ml'm'(r)==( _ l)m( 2/' + 1 )1I2( / 
Elm 1(1 + 1)41T - m 

I' ~) m' 
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x ( /I (rwtL 1 (LM;r) - V~:r- 1 (LM;r)) + .JT+T (rWU~ 1 (LM;r) - vU~ 1 (LM;r))). 

BMl'm'(r)=( _ l)m( 2/' + 1 )1/2( I [' ML )(/1 rvl,L 1 (LM;r) +.JT+T rVU~ 1 (LM;r)) , 
Elm 1(1 + 1)417' - m m' 

A ~l::'(r)=( - 1 )mC (/ +\ )417' y/\ I m ~, ~ ) 

X(/'~/(I' + 1) (W~/~ll(LM;r) - ~ VV'~ll{LM;r)) 

- (I I + l)fll' ( WV-~ t I(LM;r) - ~ Vl/':' t l(LM;r)) 

-l'~(l + 1)(/' + 1) (wti~ll(LM;r) - ~ V~.'i~ll(LM;rl) 

+(/'+I)~([+II/'(wti~tl{LM;r)- ~V~.'i~tl(LM;r))), 

B El'm'{ )_( l)m( 1 )1I2( [ [' L) 
Elm r = - [(I + 1)41T m m' M 

X(~l(/, + 1) (rWV':'11(LM;r1+(ll -1)VtLI1(LM;r)) 

+ fll' (rwl/':' t I(LM;r) - (I I + 2)Vl/~ t I(LM;r)) 

- ~(l + 1)(/' + I) (rw~.'i~ll(LM;r) + (/' - 1)V~j~ll(LM;r)) 

- ~(I + 1)1' (rwti~t I(LM;r) - (I' + 2)Vti~t l (LM;r))) , 

CEl'm'( )_( l)m( 1 )1I2( I [' L) 
Elm r = - 1(/ + 1 )417' - m m' M 

X [~/(l' + 1) rVt/':'ll(LM;r) + fll' rVV~tl(LM;r) 

- ~(l + 1)(1' + 1) rVri~ll(LM;r) - ~(l + 1)/' rV:'i~t I(LM;r)]. 

Note that Eq. (4.11) and the definitions (4.15) and (4.16) contain implicit summations over (L,M). 

(4. 16a) 

(4. 16b) 

(4. 16c) 

(4.16d) 

(4. 16e) 

The fundamental solutions of the homogeneous equation are UMlm (r,w)')~lm (r,w) J and {nMlm (r,w),n~lm (r,w) J. The 
index a denotes the different sets of solutions; there are as many sets as there are (Mlm I, (Elm) values. The { lMlm 'him J are re
gular at the origin and the (nMlm ,n';;/m J are regular at infinity. This implies the same boundary conditions as for the scalar 
Green function [see discussion relating to (3.9)], 

TlMlm(r,w)-r' + lc5Mlm , for r~, 

nMlm(r,w)-(l/r')c5Mlm , for r-oo, 

l::lm(r,w)-r'+ lc5~lm' for r~, 

n~lm(r,w)-(1/r')c5';;/m' for r-oo. 
Writing the special solution ofthe inhomogeneous Eq. (4.2) in product form, we get 

G ~~(r,r',w) = F l(r,w)F ,I'(r'), 

The inhomogeneous differential equation (4.2) for r=j:r' can be rewritten as 

F'(r')[( _w2 _+ :~r+ 1(l;I))z},,;«r,w) 

+ (- l)mC2j' + 1)(2) + Il~/' + 1)(21 + 1))1I2(! m ~, ~)( Wf/'{LM;r) + Vr(LM;r) :J zji:,;;, (r,w)] 

= _~/(I 1) . . JVJ+I.1 J,j-I.m , {(r'i- l / rj+2\f<. '?JI. (11') for r>r', 

+ (rJ- 1/r'J+2)c5j _ 1./'?JIj.j+I,m(I1'), for r<r'. 
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Then Eq. (4.19) determines F'(r') up to a constant 

{
r' J,?!/.. (12 '), for r> r'; 

F'( ') 'V' X ]]m (4.20) 
r = -I 1/r'1+ l'?!/jjm(n '), for r<r'. 

As before z.fi,;, < (r,w) contains first derivatives. Therefore 
using (4.9), (4.15), and (4.16), the inhomogeneous equation in 
r is transformed the same way as the homogeneous equation 
(4.11): 

( _ 2_~+ 1(/+ 1)) >'« ) 
w ar r Z Mlm r,w 

(A MI'm'( )+BMl'm'() a) >,< ( ) + Mlm r Mlm r ar ZMI'm' r,w 

( 
EI'm' EI'm' a EI'm' a

l
) > + A Mlm (r) + B Mlm (r) ar + C Mlm (r) ar'l ZE/';;" (r,w) 

=0, (4.21a) 

( _2_~+/(/+l))>,« ) 
w ar r zE/m r,w 

(A MI'm'() BMI'm'() a) > < ( ) + Elm r + Elm r ar ZMi'm' r,w 

( 
EI'm'() B EI'm' a CEI'm'() az) > + A Elm r + Elm (r) ar + Elm r ar'l ZE/';;"(r,w) 

1 {r- I, for r> r' 
= 21 + 1 ,J + \ for r < r' 

={b ~/m(r), for r>r', 

b Elm (r), for r<r'. 
(4.21b) 

Note that the equations (4.21a) and (4.21 b) are coupled. Then 
a special solution of the inhomogeneous equation can be 
found by a quadrature as follows: 

(
ZMi,;;(r,W)) = (.h.!lm(r,w)) r dr" W!.,;«r",w) 
z~/;..«r,w) IElm(r,w) J>.< W(r",w) 

(n~/m(r,w)) r dr" W';:;/(r",w) 
+ n~/m(r,w) J>.< W(r",w)' 

(4.22) 
where 

r>'< _ {co, for r>r', 
- 0, for r<r'. (4.23) 

The Wronskian ofthe fundamental solutions is 

W(r" ,w) = de 

Ikl'm' (r" ,w) 

Al'm' (r" ,w) 

!.... Ikl'm' (r" ,w) 
ar 

!.... AI 'm' (r" ,w) 
ar 

n~'/'m' (r" ,w) 

n~1' m' (r" ,w) 

a p (") - nMI'm' r ,w 
ar 

a p (" ) - nEl'm' r ,w 
ar 

(4.24) 
where /3,I',m' are the matrix indices for the determinant. 
The determinant Wi.a (r" ,w) is defined by replacing the col
umn a ofthej functions in W(r" ,w) by 

C1J forr>r. CJ.J fO"<:.251 
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Wn•a (r" ,w) is defined correspondingly by replacing the col
umn a of the n functions. The determinants are well defined, 
because the index a runs over all (Mlm,Elm). The functions 
Zjtm (r,w) are regular at the origin and the functions z}im (r,w) 
are regular at infinity. 

The general solution of (4.2) for r < r' is 

Gii'(r,r',w) 

=.l}im (r,w)'?!/5Im (12 jail'm' (r' ,W)'?!/;I'm' (JJ ') 

+ zjtm (r,w)'?!/5Im (n)( - iV' X_l_ '?!/1'1'm.(n '))'" 
r'I'+1 

(4.26a) 
and for r> r' is 

G ii'(r,r' ,w) = nftm (r,w)'?!/5Im (n )b il'm' (r' ,w)'?!/;:I'm' (12 ') 

+ Z}im(r,w)'?!/J/m(12 )[ - iV'Xr'I''?!/l'l'm,(n') r 
(4.26b) 

The functions {aftm 1 and {b ftm 1 are determined by ap
plying similar matching conditions as in the scalar case (3.12) 
and (3.13). These conditions are 

limG ;r(r + e,n,r,n ',w) = lim G i'"(r - e,n,r,n ',w) 
£-+0 £-+0 

(4.27a) 
and 

i r'+£ { 
lim dr r (wl + Vl)G i'"(r,r',w) 
£-0 r'-£ 

- eikla" (elmnG mt(r,r',wja n InK(r))} 

= - {'?!/;Im (12 )'?!/;~;" (12 ') 

(( 
1 )112 . 

- 21 + 1 '?!/I,I+ l,m(n) 

+ ( 1 + 1 )112 ,?!/i (12)) 
21 + 1 1,1-1m 

(( 
1 

)
112 

,?!/i'· 12 
X 2/+ 1 1,1+1,m() 

+ (~)1I2 '?!/,.. _ (12 'I)}. 21 + 1 1,1 l.m (4.27b) 

These equations are then transformed into linear equations 
in r for the unknown functions { a~/m ,a~/m 1 and 

{b~/m,b~/m 1: 
.h.!lm (r,w)a~l'm' (r,w) - n~/m (r,w)b ~/'m' (r,w) = 0, 

J"f.tlm (r,wja~l'm' (r,w) - n~/m (r,w)b ~/'m' (r,w) 

+Z~/m(r,w)~, -ZMlm(r,w),J'+1 =0, 

him (r,wja~l'm' (r,w) - n~/m (r,w)b ~/'m' (r,w) = 0, 

hlm(r,w)a~l'm' (r,w) - n~/m (r,w)b ~/'m' (r,w) 

+ ZElm (r,w+- - Z~/m (r,w),J' + 1 = 0, 

(:r.h.!lm (r,w))a~l'm' (r,w) 

- (:r n~/m (r,w)) b ~I'm' (r,w) = 6I,I,6m,m" 

BickebOller, Goldflam. and Wilets 
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(:/Mlm(r,ld)) a~l'm,(r,UJ) - (:r nM1m(r,UJ)) b~l'm,(r,UJ) 

+ (:r Z~lm(r,UJ)) ~, - (:r ZMlm(r,UJ)) ,J'+ 1= 0, 

(4. 29b) 

(:rJE1m(r,UJ)) aMl'm,(r,UJ) 

- (:r n~lm (r,UJ)) b Ml'm' (r,UJ) = 0, (4.29c) 

(4.29d) 

These linear equations reduce in the same way as in the sca
lar case to a set of linearly independent equations. 

We now consider spherical symmetrical forms of 
K(r) = K{r), then the functional matrices (4.12) and (4.13) be
come diagonal. The magnetic and the electric modes and 
different I's decouple. Equation (4.11) has, for the magnetic 
modes, the form 

( _ UJ2 _ ~ + I (I + 1) + (~ In K(r))!.. 
a,:z ,:z dr ar 

+ (~lnK(r))){jMl(r,UJ)} = 0, 
dr nMl(r,UJ) 

and, for the electric modes, 

(4.30a) 

( _UJ2_~+ 1(/+ 1) +(~lnK(r))!..){jEl(r,UJ)} =0. 
a,:z ,:z dr ar nE/(r,UJ) 

(4.30b) 

Because all functions decouple, the index a is not needed; 
also there is no dependence on the magnetic quantum num
ber m. The inhomogeneity vanishes for the magnetic modes. 
Therefore the inhomogeneous solutions (4.22) are all trans
verse magnetic. All other equations remain the same except 
that there is now no summation over a. 

For K(r) = 1 we can give the solutions analytically. The 
terms involving In K(r) in (4.30) vanish and the homogeneous 
equations (4.30) have the solutions 

(4.31a) 

(4.31b) 

where the spherical Bessel functions jl (UJr) and the Neumann 
function n I (UJr) are defined as usual. For UJ = 0 the solutions 
reduce to simple power forms: 

jMl(r,O) = jEl(r,O) =,J+ I, 

nM1(r,O) = nEI(r,O) = r-l. 

The inhomogeneous equation can be rewritten as 
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(4. 32a) 

(4.32b) 

1 {r - I, for r> r' 
=-- (4.33) 

21 + 1 ,J+ 1, for r<r'. 

Here we have to distinguish the two cases UJ = ° and UJ#O. 
For UJ#O the solutions are 

zEr\r,UJ) = - (1/UJ2)[1/(21 + l)]r- l, 

zEI(r,UJ) = - (1/UJ2
)[ 1/(21 + 1)],J+ I, 

and forUJ = ° 
ZEI (r,O) = - [1/2(21 + 1)( 1 - 21)],:z - I, 

z.m(r,O) = - [1/2(2/+ 1)(21+3)],J+3. 

(4. 34a) 

(4. 34b) 

(4.35a) 

(4.35b) 

The linear equations (4.28) and (4.29) give as solutions for 
UJ#O, 

aMI(r,UJ) = - UJrnl(UJr), 

aE/(r,UJ) = - (1/UJ)rn/(UJr), 

bM/(r,UJ) = - UJlj/(UJr), 

bE/(r,UJ) = - (1/UJ)ljl(UJr), 

and for UJ = 0, 

aMl(r,O) = - [1/(21+ l)]r- l
, 

aE/(r,O) = - [1/2(2/+ 1)(1-2l)],:z-I, 

bMI(r,O) = - [1/(21 + 1)],J+ 1, 

bE/(r,O) = - [1/2(21 + 1)(21 + 3)],J+3. 

(4.36a) 

(4.36b) 

(4.36c) 

(4.36d) 

(4. 37a) 

(4.37b) 

(4.37c) 

(4.37d) 

Therefore we can write the solutions for UJ#O in a sym
metrical way as 

G i'-(r,r',UJ) 

= - UJ[j/(UJr <) ~lIm(n < )]i< [nl(UJr » ~~m(n> If> 
_ (1/UJ)[VXh(UJr <) ~lIm(n< )]i< 

X [Vxn/(UJr» ~~m(n> If> 
- (1/UJ2)[1/(21 + l)l[Vx,J< ~lIm(n< )f< 
X [Vx(1/,J>+ I) ~~m(n> }f>. (4.38) 

The first term is the magnetic mode and the second and third 
terms compose the electric mode. The second term is the 
solution of the homogeneous differential equation (4.11) and 
the third term is the solution of the inhomogeneous differen
tial equation (4.21). 

The behavior for UJ-o is of interest. We can construct 
the Green function by using the solution for UJ = 0[(4.32), 
(4.35), (4.37)] and writing it again in a symmetric way. An
other instructive way is to expand the Bessel functions in 
(4.38),jl(UJr) and ndUJr), for small arguments UJr: 

. ( \ .. ~ (UJr)1 ( 1 (UJrf ) 
il UJr~ (21 + I)!! - 2(21 + 3) +... , (4.39a) 

nl(UJr}- _ (2/- I)!! (1 (UJr)2 ) 
(UJr)l+ I 2(1 - 2/) + ... , (4. 39b) 

where (21 + 1)l! = (21 + 1)(2/- 1) .. ·(3)(1). Then (4.38) trans
forms into 
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G it(r,r',O) 

1 1< ['?Y (n )]i< ['?Y* (n )]i> = Ul 1+ I 11m < 11m > + > 

1 (Vxl+2'?Y (n )i< 
2(21 + 1)(21 + 3) < 11m < 

( 
1 )i> 

X VX1>+1 '?Y~m(n» 

1 (VXI '?Y (n )i< 
2(21 + 1)(1 - 21) < 11m < 

( 
1 )i> X VX-- '?Y~m(n» . ,-I-I 

> 

(4.40) 

The divergent terms in the electric mode in (4.38) cancel each 
other. This nonuniform behavior for w-o relates to the non
uniqueness of the special solution of the inhomogeneous 
equation. We can always add to it a solution ofthe homogen
eous differential equation. 

v. NUMERICAL IMPLEMENTATION 

We have written a computer program which calculates 
the propagator for special cases. The differential equations 
developed above are solved using a Runge-Kutta method 
with variable step size. The linear equations are solved nu
merically by matrix inversion. In the above calculation of the 
propagators we used polar coordinates. To test the program, 
we fold an arbitrary source J'" , expanded in spherical har
monics, with the propagators and get the potential A'" ex
panded in spherical harmonics. By calculating both sides of 
the differential equations (2.4) and (2.5) in Cartesian coordi
nates, we check various factors in the propagator very effi
ciently. 

The program for the scalar and tensor Green functions 
has been implemented and successfully tested for axially and 
reftectionally symmetric systems. We will use these Green 
functions to calculate one gluon exchange energy contribu
tions to various hadronic processes including N-N scatter
ing. Work on the calculation of static properties of spherical 
bags is completed9 and will be reported in a subsequent pub
lication. 

VI. SUMMARY 

We have obtained expressions for the gauge field propa
gator expanded in spherical harmonics for the scalar Green 
function and in vector spherical harmonics for the tensor 
Green function. We require the propagators to be regular at 
infinity and at the origin. The differential equations for the 
propagators are solved by first calculating the solutions of 
the homogeneous equation without the {j function inhomo
genity. We work in the Coulomb gauge, which requires 
transversality for the tensor Green function. Therefore we 
must use also the transverse dyadic {j function, which is non
local and causes a nonlocal inhomogenity in the differential 
equation for the tensor Green function; a special solution of 
the inhomogeneous differential equation is found by quadra
ture. 
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This leads to two sets of solutions, which have to be 
matched at r = r', where the {j functions are irregular. The 
matching conditions are obtained from the requirement that 
the Green function is continuous at r = r and the first deri
vative has a discontinuity given by the {j function. The result
ing linear equations determine the Green function complete
ly. 

The gauge field propagator is used frequently in electri
cal engineering. The numerical technique used to calculate 
the propagator as an expansion in spherical harmonics can 
be used as a powerful tool in problems involving media, 
where the dielectric function is not constant, e.g., lenses.4 

The technique also allows different boundary conditions. 
In the context of QCD the propagator is very useful in 

problems relating to bag models. I
-

3 In the soliton bag mod
el2

,3 the dielectric function K is a function of the soliton field, 
which is calculated in general only numerically. Different 
bag problems might allow simplifications. For static spheri
cal bags only the MI mode of the tensor Green function is 
needed.9 In scattering of two nucleons the problem is axially 
symmetric, which allows the decoupling of differential equa
tions and linear equations for different m values. 
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We analyze in this paper the group theoretical meaning ofthe covariant derivatives, and show 
that they are horizontal left-invariant vector fields on superspace obtained from a (super)Lie 
group which at the same time exhibits the structure of a principal bundle with a canonical 
connection. The geometrical construction is general and not restricted to the super-Poincare 
group. 

I. INTRODUCTION 

As is well known, covariant derivatives constitute an 
essential ingredient for the formulation of supersymmetric 
theories on Salam-Strathdee superspace. I Covariant deriva
tives were originally introduced l

•
2 (see also, e.g., Refs. 3 and 

4) as differential operators which are invariant under super
translations and which are covariant in the sense that they 
transform as Dirac (Weyl) spinors, and also through the dif
ferent transformation laws which can be defined for super
fields. This is essentially the way they are still presented to
day in the physical literature while, as far as we know, they 
have not been discussed in more mathematical analyses (see, 
e.g., Refs. 5-7) but for a few exceptions (see, e.g., Refs. 8-10). 
In this paper we wish to present a simple derivation of the 
covariant derivative which is valid for any graded Lie group 
having a semidirect structure whose soluble part is the Z2-
graded translation group grTr (i.e., translations plus super
translations) and which is based on treating superspace as a 
principal bundle endowed with an invariant connection. 

II. THE GRADED TRANSLATION GROUP AND THE 
SUPER-POINCARE GROUP AS GROUP EXTENSIONS 

Let us recall first a few notions from group extension 
theory by an Abelian kernel. II An extension of a group B by 
an Abelian group A on which B acts as a group of operators 
(i.e., there exists a homomorphism on the group of automor
phisms of A, O':B_Aut A ) is given by a group G such thatA is 
normal in G and G I A-B. Such an extension is characterized 
by its factor system. Because not all factor systems lead to 
different extensions, the inequivalent extensions are in one
to-one correspondence with the cohomology group obtained 
by taking the quotient by the equivalent system of factors 
(the second cohomology group, i.e., two cocycles/two co
boundaries; factor systems which give the same extension 
differ in a coboundary). When B does not act on A (0' is 
trivial), A belongs to the center of G and the extension is 
called central. 

According to the above definitions, it is simple to see 
that the graded translations group grTr is the result of cen-

a) On leave of absence from the Departamento de Fisica Teorica, Facultad 
de Ciencias Fisicas, Universidad de Valencia, Burjasot (Valencia), Spain. 

trally extending the supertranslations by the translations. 
The fact that the starting point is the supertranslations group 
exhibits once more the fundamental character of the Fermi 
variables. Using Majorana spinors in the Weyl realization 
fJ = (fJa, Ba) (a, a = 1,2), the supertranslations sup Tr 
group law (b" = b '*b) is given by 

fJ" = fJ' + fJ [representationDO,1/2 (B D 1/2,0 ofSL(2,C)] 
(2.1a) 

or 

fJ; = fJ ~ + fJa (D 0,1/2), B IIa = B,a + B a (D 1/2.0). 

(2.1b) 

The extension of (2.1) by the ordinary translations requires 
the definition of a two-cocycle (the "factor system") with 
values in R4 (four-translations group - Minkowski space), 
i.e., an application sl-':B XB_R4 such that sl-'(b, e) 
= sl-'(e, b) = 0 E R4 and 

sl-'(b', b) + sl-'(b '*b, b") = sl-'(b, b") + sl-'(b', b *b H), 

(2.2) 
which is just a consequence of the associativity of the group 
law. It is easy to see that 

sl-'(fJ', fJ) = - iB'''!'fJ 

= - i[ fJ ,a(d')aiJ BP + B ; (d'FfJu ], 

(2.3) 
where (d')ap:=(l, 0') and (d')aP=(l, - 0'), fulfills (2.2) and 
thus the finite composition law of the centrally extended 
group, which in general is given by 

(a', b')*(a, b) = (a", b") = (a' +a + sIb', b), b'b), 
(2.4) 

is in this case 

(x"l-',fJ") = (x'l-' + xl-' - iB'''!'fJ, fJ' + fJ). (2.5) 

There are two ways of obtaining the super-Poincare 
group as an extension (now obviously noncentral, 0';60). The 
first one is by extending the Lorentz group by grTr [(2.5)]. In 
this case there is a homomorphism O':L t+ -Aut (grTr) (the 
action of B on grTr) given by 

O':A E V+ [SL(2, C)]-o1A), 

o{A ):(xI-',fJ )-(A ~xv, S (A )fJ ), 
(2.6) 
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where S (A ) belongs to the spinorial (Dirac) representation of 
SL (2, C) [(2.1a)). In this way, one gets the super-Poincare 
group as the semidirect extension of L by grTr, with group 
law (A E L !+ ' (x, 0 ) E grTr), 

[(x'P, 0 '), A '] * [(xP, 0), A ] 

= [(x'l' + (A 'xjl' - lo't' S(A ')0, 

0' +S(A ')0),.,1'.,1]; (2.7a) 

in terms of dotted and undotted spinors 

x"l' = x'l' + A ~:xv - i[ 0 W(d')apS 1/2.0(.,1 '~or 

+0~(d')aPSO.1/2(A ')p:Oy], (2.Th) 

0; = 0 ~ + SO.I/2(A ')a~ Op, 

O"a = o,a + S 1/2.0(.,1 ')<:pOP. 

The other way of obtaining the super-Poincare group is 
to extend the group composed of the Lorentz group and 
supertranslations (0', A ')*(0, A) = (0' + S(A ')0, .,1'.,1 )by 
ordinary translations; in this case A = Tr, B = sup Tr 0 L. 
The group law for an extension of B by A in the general case 
is 

(a', b ')*(a, b) = (a' + oib ')a + s(b', b), b' b), (2.8a) 

where now 5 (b ' b ) satisfies 

s(b', b) + s(b' b, b") 

= oib ')5 (b, b ") + 5 (b', bb "). (2.8b) 

Both expressions reduce to (2.4) and (2.2), respectively, for 
central (0' = 0) extensions. 12 For the super-Poincare group, 
the extension is achieved by means of the following cocycle 
[cf. (2.3)) 

(2.9) 

which is easily seen to satisfy (2.8b) with oib') = A " and 
again the group law (2.7) is obtained. 

The above reasonings show that the extension nature of 
the super-Poincare group allows us to give different expres
sions for the group law if the cocycle which defines the exten
sion is modified with the addition of a coboundary. For our 
purposes it will be sufficient to consider the group grTr 
[(2.5)]; the modification introduced here by a coboundary is 
easily transported to the complete super-Poincare group or 
it can be directly introduced in (2.8a) by means of different 
5 's, instead of simply using (2.9). 

In general, a two-cocycle is said to be a coboundary Se if 
there is an A-valued function on B, ; (b), such that 
; (e) = 0 EA and 

Se(b', b) = ;(b'b) - oib ');(b) - ;(b). (2.10) 

For the case of the graded translations group, the extension 
is central and oib ') is trivial. It is very simple to check that, 
for instance, the following functions (A E R): 

;I':sup Tr~R4, 

;1'(0 )-;I'(Oa' oa) 

= - itA 12)Ort'0 = AiOa(d')apOP, 

generate the family of coboundaries 
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(2.11) 

Se(O', 0) = AiO ,a(d')ai/OP + AiO a(d')apO ,p. (2.12) 

Adding (2.12) to (2.3) we obtain new cocycles defining the 
same extension but through different group laws. Here we 
give a couple of new cocycIes for two specific values of A: 

A = + 1, 51'( 0 " 0) = 2iO a(d')aP ° ,P, (2.13a) 

..1,= -1, 51'(0',0)= -2io,a(d')ai/OP' (2.13b) 

III. SUPERSPACE AS A PRINCIPAL FIBER BUNDLE 
WITH INVARIANT CONNECTION AND COVARIANT 
DERIVATIVES 

Given a (graded) Lie group law, we may derive from it 
the expression for the left-invariant and right-invariant vec
tor fields. Both sets of vector fields generate the (graded) Lie 
algebra by commutation, their commutators being equal ex
cept for a minus sign. The left (XL) [right (XR)] invariant 
vector fields of the graded translations group corresponding 
to the cocycIes (2.3), (2. 13a), and (2.13b) are given, respective
ly, using Van der Waerden-Weyl notation for the spinors, by 

XL =~+i(d')ai/OP~ 
a aoa axP' 

a -' a x R = -- - i(d')ai/OP-
a aoa axP' 

(3.1a) 

(3.1b) 

(3.1c) 
X~ = ~. + 2iOP(d')pa~, X~ = ~., 

ao a axP ao a 

plusX:; =X! = alaxP. As already mentioned, theXL and 
X R of (3.1) satisfy commutation (anticommutation) relations 
which differ in a relative minus sign. Specifically, we have 

(X~,X~) = 2i(d')ai/ aI" (X!,X~) = - 2i(d')ai/ aI" 
(3.2a) 

(X!,X!) = 0 = (X!,X!), 
(3.2b) 

and 

(3.3) 

It is clear from their expression that we may identify the 
various vector fields X~ with the covariant derivatives D ~ 
in their different forms; in particular, those of (3.lb) and 
(3.1c) are associated with the chiral and antichiral represen
tations, respectively. In the same way, the vector fields X R 

may be identified with the operators Q defining the group 
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action. The compatibility between the restrictions imposed 
by the covariant derivatives and the group action is guaran
teed by the general property (3.3) of commutativity (anti
commutativity) of the left- and right-invariant vector fields. 
Note, nevertheless, that the above are only convenient parti
cular choices of the group law, and that they are not the only 
possibilities because of the arbitrariness in the election of the 
coboundary. 

On any Lie group there is a left-invariant canonical one
form (see, e.g., Ref. l3, p. 41). It is simple to generalize it for 
graded Lie groups. Writing 

A =A la)x; +A la)x; +A IIL)X~), (3.4) 

where A (a), A la) have Grassmann character, we have 

A (a) = A~) dxP + A ip) dBP + At) dOiJ (3.5) 

and similar expressions for the other two components Ala) 
and A IlL). Now, from the definition conditions 
A (X;) =X;,A (X;) =X;,A (X;) =X;, 

we getI4 

A IlL) = dxfL + i[dBa(a"')aiJOiJ - BP(a"')pa doa], 

A (a) = dBa, A (a) = Jija; 

A IlL) = dxP + 2i dB a(a"')aiJ 0 iJ, 

Ala) = dBa, Ala) = dOa; 

A IlL) = dxP - 2i Ba(a"')a/JdoiJ, 

Ala) = dBa, Ala) = dOa, 

(3.6a) 

(3.6b) 

(3.6c) 

expressions which correspond to the cocycles given by (2.3), 
(2.13a), and (2.13b), respectively. Note that the difference 
between the various A IlL) is an exact one-form. 

Let us now turn to the fibered structure of Salam
Strathdee superspace. Because (graded translation group)! 
(translations in Minkowski space) -supertranslations, it is 
clear that superspace has the structure of a principal bundle 
whose base is the supertranslation group and whose struc
ture group is the ordinary translation group. Furthermore, it 
is a principal bundle endowed with an invariant connection 
e, which is given by the "vertical" component of A, i.e., by 
the translation Lie algebra (vector) valued one-form A IlL). 

Because the structure group is Abelian, the curvature is sim
ply given by 

fJ IlL) = dA 1IL)=de IlL) = - 2i(a"')a/J dB a 1\ dO iJ, (3.7) 

which is obtained from any of the (3.6) because although A IlL) 

depends on the election of the coboundary, the curvature is 
insensitive to it. 15 Moreover, one may immediately check 
that the curvature fJ is also given by 

fJ(XL, yL)= (XL, yL)ITr= -e(XL, yL»), (3.8) 

where ITr means the component on the translation Lie alge
bra and XL, Y L are any left-invariant vector fields generat
ing supertranslations ("horizontal" vector fields); (3.8) is a 
consequence of extending a general theorem on invariant 
connections (Ref. 13, p. 103) to graded Lie groups. 

We are now in a position to understand why the left
invariant vector fields X L=D of(3.1) in their various forms 
are indeed covariant derivatives, even before their behavior 
under Lorentz transformations is considered. Once a princi-
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pal bundle is endowed with a connection e, the lifting of 
vector fields X defined on the base (super)manifold is given 
by the vector field X, 

X Ie (X) = 0, 1TT 0 X =X, (3.9) 
1T 

where 1T is the projection gr Tr~sup Tr. Here, e is the verti-

cal component A v of the canonical one-form. In our case, the 
basic vector fields tangent to the supertranslations manifold 
(the base space of the bundle) are 

a a 
(3.10) 

aBa' aoa' 

and accordingly their horizontalliftings-by definition, the 
covariant derivatives in supers pace-are given by 

D -~- [A IIL)(~)] ~ a - aB a aB a axfL' 

Da = a:a - [A lIL{a:a)] a~' 
(3.11) 

It is clear that (3.11) reproduces the customary expressions 
for the covariant derivatives [(3.1)] by using the appropriated 
one-forms A IlL) [(3.6)]. 

As is well known, the covariant derivatives may be used 
to define chiral or antichiral superfields. There is no field 
which satisfies both D a</) = 0, D a rP = 0; this is due, in this 
language, to the fact that the (anti)commutator of D a and D a 

is no longer horizontal. In general, the maximum set of com
patible conditions is given by the maximal horizontal left
invariant subalgebra. This observation is especially relevant 
for the N-extended super-Poincare group, with or without 
central charges. 

IV. FINAL COMMENTS 

The foregoing analysis may be generalized to the com
plete super-Poincare group, whose group law is given by 
(2.7). Looking at it as an extension of (sup Tr) 0 SL(2, C) by 
the space-time translations, it is not difficult to evaluate the 
vertical one-form dual of the ordinary translations algebra. 
The left-invariant vector fields are now 

X L - DPSO.1/2(A) a 
IOu) - p., 

x~ =D·S I / 2.O(A)IP) 
(Ou) P . a 

(4.1) 

(note the explicit appearance of the Lorentz transformations 
because of the noncentral character of the extension) and 
(3.6) is replaced by 

A IlL) = (A -1Y.'vA (Vi. (4.2) 

The left-invariant vector fields associated with supertransla
tions in the base manifold (sup Tr 0 SL(2, C)) are given by 

SO.1/2(A) a~ S1/2.0(A)~a !!... (4.3) 
p. aBp' aBP 

and the horizontal lifting of these fields now leads to 

va = DPSO.1/2(A) a D. = D· S 1/2.0(A Ii1 (4.4) p., a P I·a, 

as expected. (The left vector fields associated with rotations 
and boosts, which we will not write here, are already hori-
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zontal and so left unaltered by the lifting.) 
The differential operators D, iD differ from the earlier 

covariant derivatives in the presence of the SL(2, C) matri
ces. But these are regular matrices and may be ignored when 
using these operators for imposing constraints on the super
fields. However, when this is done, the remaining D, 15 are no 
longer left-invariant vector fields commuting with the gener
ators of the group action (the right-invariant ones). As a re
sult, the differential operators D, 15 transform as Weyl spin
ors under the Lorentz group, a property customarily used in 
their definition. 

Obviously, this construction also applies to the N-ex
tended super-Poincare group. Also, the presence of central 
charges does not alter the fibered structures that we have 
previously defined because of their central character. For 
instance, for the N = 2 super-Poincare group the principal 
bundle structure discussed in Sec. III now includes the U( 1) 
parameter l1~e;rp in the base manifold and the covariant de
rivatives are the left-invariant vector fields 

~ n. (....P-)r{3~ n{3 =-+ Uri V' + me;jU j -, aO{3; ax" 
a a - _ 

--:=-:- + 0 T(d')rP - - meijOj{3 .::: 
aofax" 

(4.5a) 

(_ . a) 
.::: ='11 al1 ' 

(4.5b) 

where we have interpreted the central charge associated with 
the U( 1) generator E as the mass. 16 (The role of the central 
charge as the mass is discussed in Refs. 17 and 18, and in Ref. 
19 in the context of a pseudoclassical particle model.) Other 
fibrations are of course possible. In particular, for the N = 2 
super-Poincare extended by a central charge it is especially 
interesting to take the group U( 1) as the structure group; in 
this case the above left-invariant vector fields (4.5) are also 
horizontal.2o To conclude let us mention that the same pro
cedure can be applied to the super-Galilei group,21 and that 
there the covariant derivatives also play the same role. 

Note added in proof After this paper had been complet
ed, the authors became aware ofa paper [A. Jadczyk and K. 
Pilch, Commun. Math. Phys. 78, 373 (1981)] in which a fiber 
structure of the superspaces underlying rigid supersym
metry, also with the supertranslations in the base and the 
translations in the fiber, is discussed. A fibered structure of 
superspace is also discussed in J. Hruby and J. Soucek, Rep. 
Math. Phys. 14, 15 (1978). Finally, one of the authors (J.A.) 
wishes to thank Kurt Sundermayer for an interesting discus
sion. 
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The wave functions for bosons and fermions, classified according to the supergroup chain 
U(N IM)::J OSp(N IM)::J O(N) X Sp(M)::J .. " are given in this paper. The method presented here 
adheres closely to the standard raising and lowering method commonly used in quantum 
mechanics. When the so-called star representation [n J is decomposed into the irreducible 
representation of the OSp(N 1M), one obtains a reducible, but not completely reducible, 
representation of the OSp(N 1M). This decomposition is quite different from a regular Lie group 
chain and has very interesting physical implications. 

I. INTRODUCTION 

As an outgrowth of the boson models for collective nu
clear states, I dynamical supersymmetry (SUSy)2 was recent
ly proposed as the unifying symmetry of the even-even I and 
even-odd3 nuclei. The normal dynamical supersymmetry 
(or group chains) used in this context is 

U(6IMPUB(6)XUF(Mp .. ·::JSpin(3). (1.1) 

In Eq. (Ll), the superscript B denotes boson groups 
(fully symmetric representations) and the superscript F de
notes fermion groups (antisymmetric representations). In 
the context of applying it to nuclear physics, a salient feature 
of such a group chain is that it leads to a dynamical symme
try Hamiltonian which conserves baryonic number. Such 
chain decompositions have been discussed at length by var
ious authors2 and will not be repeated here. 

On the other hand, there is another (potentially impor
tant) group chain, proposed previously4 (in the present con
text) as a possibility for the analysis of nuclear spectra, espe
cially when the "standard" decomposition ofEq. (1.1) is not 
possible. This group chain differs from Eq. (1.1) in a funda
mental way in that the symmetry of the supergroup U(N 1M) 
is not broken by a regular Lie (product) group but by another 
supergroup: an orthosymplectic supergroup OSp(N 1M). 
Such a chain is as follows: 

U(N IMPOSp(N IMPOB(N)XSpF(Mp .. ·::JSpin(3). 

(1.2) 

In this paper, we shall discuss the mathematical struc
ture of this chain. In Sec. II, a review of the decompositions 
of the Lie groups UB (N) and UF (M) will be discussed. This 
serves the purpose of defining the necessary mathematical 
language for the following sections. In Sec. III, the so-called 

aJ On leave of absence from the Physics Department, Qing-Hua University, 
Beijing, People's Republic of China. 

bJPermanent address: Drexel University, Philadelphia, Pennsylvania 
19104. 

Bose-Fermi realization as well as the Casimir operator for 
the OSp(N 1M) are given, followed by, in the next section 
(IV), a construction of the irreducible representations for the 
OSp(N 1M) within the same realization. The Fock wave func
tions are then calculated according to the subgroup chain 
(1.2) in Sec. V. Finally, a discussion of the mathematical re
sults obtained in this paper together with their physical im
plications is given in the last section (VI). 

II. DECOMPOSITION OF LIE GROUPS UB(N) AND UF(M) 
IN THE BOSE AND FERMI REALIZATIONS 

In constructing the group chain based on Eq. (1.1), one 
needs to futher decompose the unitary algebras UB (N) and 
UF (M). Clearly, the most relevant (for physics, at least) de
compositions here are those in the Bose and Fermi realiza
tions. The discussions in this section, which are about such 
decompositions, will serve as the basis for the subsequent 
sections. Since the material presented in this section is well 
known, we shall only quote the relevant results here. 

A. Bose realization of UB(N) 

In the Bose realization, the generators for the UB (N) are 
defined as 

(2.1) 

where b ~ (b", )[a==(/,m)] is the creation (annihilation) boson 
operator with integer angular momentum quantum number 
I and z component m. Clearly N = (21 + 1). The first- and 
second-order Casimir operators are 

CIVIN ) =Nb , 

C2VIN ) = Nb(Nb +N - 1), 

(2.2a) 

(2.2b) 

where Nb is the boson number operator. In this realization, 
the irreducible representation (IR) is the fully symmetric 
representation, denoted as [nb], where nb is the total number 
ofbosons. 
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Likewise, the generators for the O(N) are defined as 

=' - ( )1 + mb t b ()I' + m'b t -aa' - - I-m I'm' - - I' _m,blm . 

(2.3) 

The second-order Casimir operator for the O(N) is 
A A t-

C2 0(N) = Nb(Nb + N - 2) - 2P bPb , (2.4) 

where the operators PI and Pb are the two invariants of 
O(N), defined as 

pt=~(_)I-mbt bt (2)-1/2 
b ~ ~ I-m , (2.5a) 

1m 

P =P =~(_)I-mb b (2)-1/2 b b 1m 1- m , 
m 

(2.5b) 

According to the group chain U(N)::::> O(N)::::>· . " one 
obtains the following orthonormal basis vectors: 

Inb Ub Yb) = ( 
(N + 2ub - 2)!! )112 

!5b!(N + 2Ub + 2!5b - 2)!! 

t6bl ) XP b ub ub Yb , 

!5b = !(nb - ub), 

where it is assumed that 

Pblub Ub Yb) =0. 

(2.6) 

(2.7) 

The quantum number Ub is the O(N) IR's label while Yb 
labels the basis vectors of the IR of O(N). We shall refer to U b 

as the generalized seniority number of O(N), which is in ac
cordance with its definition in Eq. (2.6). 

B. Fermi realization of UF(M) 

In the Fermi realization, the generators for the UF (M) 
are 

Ejl-'ll-" = aJl-'all-" , (2.8) 

where a1 (aA )[A. =(j"u)] is the fermionic creation (annihila
tion) operator with half-integer angular momentumj and z 
component p.. Clearly M = l:(2 j + I). The first- and second
order Casimir operations are 

A 

CIU(M) =Nf , 
A A 

C2 U(M) = Nf(M + I - Nf )· 

(2.9a) 

(2.9b) 

In the Fermi realization, the IR is fully antisymmetric, de

noted as [I nf] where nf is the total number of fermions. 
Likewise, the generators for Sp(M) are defined as 

~I-'ll-" = (- y+l-'aJ -I-'all-" + (- (+I-"a; -I-',ajl-" (2.10) 

The second-order Casimir operator of Sp(M) is 
A A t-

C2SP(M) =NAM+2-Nf )+2Pf Pf , (2.11) 

where P J and Pf are the two invariants of Sp(M), defined as 

pt = ~ (_ y'-I-'at at (2)-1/2 
f ~ JI-' j -I-' ' 

(2.12a) 
jl-' 

Pf = L (- y-I-'0JI-'0jl-' (2)-1/2, (2.12b) 
Jp 

h - - ( y+p w ereajp - - aj _I-" 
According to the group chain U(M)::::> Sp(M)::::>· . " the 

orthonormal basis vectors in this realization can be obtained 
as 
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(
(M - 2uf - 2!5f )!!) -112 6 

Inf Uf Vf) = !5AM _ 2!5
f

)!! PJ~Uf Uf Yf)' 

!5f = Mnf - uf)' (2.13) 

where it is assumed, in analogy to Eq. (2.6), for the Bose 
realization, that 

(2.14) 

The quantum number uf is the Sp(M) IR's label while Yf 
labels the basis vectors of the IR ofSp(M). We refer to uf as 
the generalized seniority number ofSp(M), which is in accor
dance with its definition in Eq. (2.13). 

III. BOSE-FERMI REALIZATIONS OF U(NIM) AND 
OSp(NIM) 

are 
The generators of the so-called Lie supergroup U(N 1M) 

Elm I'm' = b 1m bl'm' , 

E11-'1l-" = afl-' all-" , 

(3.1a) 

(3.lb) 

Flmjl-' = b 1m ajl-' ' (3.1c) 

Fjl-'Im = aJI-' blm . (3.ld) 

We have assumed that the operators ofbosons and fermions 
are mutually commutative. Calculated according to the usu
al definition, the first- and second-order Casimir operators 
are 

A 

CI U(NIM) = N, 
A A 

CZU(NIM) =N(N +N -M -1), 
A 

whereNis 

A A 

(3.2a) 

(3.2b) 

(3.3) 

(3.4a) 

(3.4b) 

In (3.3), Nb and Nf are, obviously, the respective num-
ber operators for bosons and fermions. 

The generators of the OSp(N 1M) can be written as 

Elml'm' = (- )I+mbl -m bl'm' - (- (+m' bj. -m' blm' 

(3.5a) 

=' -( )I+mb t +( y'+1-' t b -Imjl-' - - I-m ajl-' - aj -I-' 1m' 

(3.5b) 
(3.5c) 

where the operators Elml'm' and ~I-'lp' are the so-called even 
operators while the operators Elmjl-' are the so-called odd 
generators. 

Using the creation and annihilation operators ofbosons 
and fermions, one finds that there are two invariants of 
OSp(N 1M), namely pt and P, which will commute with all 
the generators ofOSp(N 1M). The definitions ofPt andPare 

pt = pJ + PI. (3.6a) 

P = Pb + Pf , (3.6b) 

where PI and Pb are defined by Eqs. (2.5a) and (2.5b), re
spectively, while P J and Pf are defined by Eqs. (2.12a) and 
(2.12b), respectively. 
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It is straightforward to verify the following commuta-
tion relations: 

[Pt,E1ml'm'] = [P,E1m.I'm'] = 0, (3.7a) 

[Pt,~/l-l/l-' ] = [P'~/l-l/l-' ] = 0, (3.7b) 

[Pt,E1mil-'] = [P,E1mil-'] = O. (3.7c) 

It is natural to regard pt and P as the generalized pair cre
ation and annihiliation operators. Although it is obvious, it 
is nevertheless worth stressing that P = Pb + Pf is not an 
invariant ofthe OSp(N 1M). 

The second-order Casimir operator can, in terms of N, 
pt, and P, be written as 

_ A A t-
C20SP(NIMI- N (N+N-M-2)-2P P. (3.8) 

The results for the Casimir operators in this section are iden
tical to that given in Ref. (5). 

IV. IRREDUCIBLE REPRESENTATIONS OF THE 
OSp(NIM) IN THE FOCK SPACE 

As a natural extension of the results of Sec. II, the wave 
functions, as classified according to the group chain 
OSp(N 1M)::> O(N) X Sp(M), can be written as 

Q(2) = (M - 2uf)P! + (N + 2ub)P}, 

Q(4) = (M - 2uf)(M - 2uf - 2)P!2 

(4.1) 

where 0' labels the IR of OSp(N 1M). The other quantum 
numbers Ub' Yb' 0'1' and YI' have previously been defined in 
Sec. III. From Sec. III, we can easily obtain the basis vectors 
for the group chain U(N) X U(M)::> O(N) X Sp(M)::>· .. as 

(4.2) 

We shall now establish a relationship between the basis vec
tors of(4.1) and (4.2). 

It is easy to see that 

(4.3) 

where IUb Ub Yb) and IUf uf Yf) were defined previously in 
Sec. II. If we let 

10' = uf + Ub, Ub Yb uf Yf) = IUb Ub Yb) IUf uf Yf)' 

(4.4) 

then using Eqs. (3.8) and (4.3), we get 

C20sp (N IM)lu = Ub + uf ' Ub Yb uf Yf) 

=u(u+N-M-2)lu=ub +uf,ub Yb ufYf)· (4.5) 

Next, we define a series of operators Q (2), Q (4), ... , Q (2.1 ), 
where 

(4.6a) 

+ 2(M - Zuf - 2)(N + 2ub + 2)P!P} + (N + 2ub)(N + 2Ub + 2)PP, (4.6b) 

Q(2.j)= ± (.j)( (M-2uf -20)!!(N+2ub +2.j-2)!! )1I2p!~_.5p}"', 
.5=0 8 (M - 2uf - 2.1 )!!(N + 2Ub + 2.1 - 20 - 2)!! 

(4.6c) 

whose action on 10', Ub Yb uf Yf) will not alter the valueub or 
uf' but only u. From the commutation relation between P 
and Q (2.1 ), it is easy to show that 

PQ(2.j )IUb + uf Ub Yb uf Yf) = O. (4.7) 
In this way, the relation between (4.1) and (4.2) can be estab
lished. Clearly, Q(2A )Iub + uf Ub Yb uf Yf) must be an ei
genvector ofC20SP(NIMI ,just as IUb + uf' Ub Yb uf Yf) is but 
with different eigenvalue, that is, 

C20SP(NIMIQ(2A )IUb + up Ub Yb uf Yf) 

= (ub + uf + 2.1 )(Ub + uf + 2.1 + N - M - 2) 

XQ(2A )Iub + uf ' Ub Yb uf Yf)' 

Using Eqs. (2.6) and (2.12), we obtain 

Iu=ub +uf +2.j Ub Yb ufYf) 

= C'Q(2A )Iub + uf Ub Yb uf Yf) 

= C .5b+~=~ (;:) 

(4.8) 

( 
(M - 2uf - 2O)!!(N + 2ub + 2.1 - 2)!! )112 

X (4.9) 
(M - 2uf - 2.1 )!!(N + 2ub + lOb - 2)!! 

X Inb = Ub + lOb' Ub Yb}lnf = Uf + 2Of ' Uf Yf}· 
The C and C' in (4.9) are normalization constants, the indices 
8f and.j satisfy the inequalities 
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(4.10) 

which result from the inherent Pauli exclusion principle. 
The quantum numbers 0', Ub' Yb' uf' Yf will determine the 
wave functions entirely. Thus 0', and only 0', labels the IR of 
OSp(N 1M) in a Bose-Fermi realization. Thus,becauseofEq. 
(4.7), we shall refer to 0' here as the generalized seniority 
numberofOSp(N 1M). 

The wave function 10' Ub Yb uf Yf) i~lso an eigenvec
tor of the total particle number operator N with eigenvalue 
0', i.e., 

Nluub Yb ufqf) =uluub Yb ufYf)· (4.11) 

For a given IR(u) ofOSp(N 1M), decomposed according to 
the group chain OSp(N 1M)::> O(N) X Sp(M)::> .. " we have 

uf = 0, 1, .. . ,M 12, 
(4.12) 

Ub +uf =u,u-2, ... ,u-M. 

All the wave functions (basis vectors ofIR (0'») can be de
rived from (4.9). 

We notice that the wave functions here with different 
quantum numbers are orthogonal. For illustration, consider 
the IR(u) ofOSp(3/2)4, where we have 

IUUYb 0Yf) = IUUYb)IOOYf)' 

10'0'-1 Yb 1 Yf) = 10'-10'-1 Yb)111 Yf)' 
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Iuu - 2 rb Orf) = .J2luu - 2 rb)IO 0 rf) 

+~2u-1Iu-2u-2rb)120rf)' 

(4.13) 

V. DECOMPOSITION ACCORDING TO THE 
SUPERGROUP CHAIN U(NIM)::)OSp(NIM) 
::) O(N) X Sp(M)::)· .. 

In the Bose-Fermi realization, the eigenvalue n of total 
particle number N labels the IR ofU(N 1M). From (4.11), the 
wave function IUUb rb uf rf) in this supergroup chain is 

In( = u) U Ub rb uf rf) 
U(NIM) OSp(NIM) O(N) SP(M) 

(5.1) 

Operating repeatedly on the state given in Eq. (5.1) by the 
invariantpt ofOSp(N 1M), we can obtain the general wave 
functions, classified by the supergroup chain U(N 1M) 
::>OSp(N IM)::>O(N) X Sp(M)::>· .. , as 

In = U + 2p U Ub rb uf rf) 

= cptPln = UUUb rb ufrf) 

=c L (:)p!6,pj6fln=uUUbrbUfrf)' 
6.+6f =p b 

For a definite IR [n} ofU(N 1M), we have 

U = n, n - 2, ... , 1 or 0, 

Ub +uf=u,u-2, ... ,u-M, 

uf = 0, I, ... , (M 12). 

(5.2) 

(5.3) 

We see that, in particular, when U = Ub + uf , (5.2) can 
be written explicitly in the following form: 

In = U+ 2pu= Ub + ufub rb uf rf) 

(
(N + 2ub + ~b - 2)!!(M - ~f)!!)1/2 

X (N + 2ub - 2)!!((M - 2uf - ~f)!! 
xlub +2~b Ub rb)luf+2~fufrf)' (5.4) 

As an example, the wave functions of the IR [n} of U(3/2) 
are given in Table I. 

From the table we see that the wave functions 
1220 rb 0rf) and 1200 rb 0rf)' 1331 rb 0rf) and 
13 I 1 rb 0 rf)' 1442 rb 0 rf) and 1422 rb 0 rf)" .. , etc., 
are not orthogonal according to the usual meaning of ortho
gonality. This means the wave functions of the supergroup 
chain with the same quantum number n, Ub' rb' uf' rf but 
different U are not orthogonal. This nonorthogonality prop
erty is general for any supergroup chain of the type 
U(N IM)::>OSp(N IM)::>O(N) X Sp(M). 

VI. EXAMPLE: U(3/2)::) OSp(3/2)::> 0(3) X Sp(2) 

Here we give an example of such a decomposition. This 
decomposition is different from that of a regular Lie algebra 
chain. It is well known that a Hermitian (unitary) representa
tion of a Lie algebra is completely reducible when it is de
composed according to a compact Lie algebra chain. In or
der to study the properties of superalgebras, Scheunert, 
Nahm, and Rittenberg5 have generalized the concept of Her
mitian representations to Lie superalgebras. They defined 
the adjoint and grade adjoint operations instead of the usual 
adjoint operations in Lie algebras. For completeness and for 
the purpose of the present discussion, we will briefly summa
rize their results here. 

An adjoint operation in a Lie superalgebra L is a map
pingA~A t of L into itself which satisfies the four conditions 
ofEq. (6.1): 

the adjoint of an even (odd) element is even (odd), (6.1a) 

(aA + bB)t = a*A t + b *B t, (6.lb) 

(A,B)t = (Bt,A t), (6.lc) 

(A tIt =A, (6.ld) 

TABLE I. The wave functions of U(3/2) classified according to U(3/2):>OSp{3/2):>O(3) X Sp(2). 

n U u. u, In uu. Y. uf y,> 

0 0 0 0 100 Y. >100 y,> 
I I I 0 II I Y. > 10 0 y,> 

0 I 100 Y. > II I y, > 
2 2 2 0 122 y.>IOO y,> 

I I II I Y.) 11 I y, > 
0 0 v112 0 Y.) 10 0 y,> + v'J10 0 Y. > 12 0 Yf> 

0 0 0 v'J120 Yb > 10 0 y,> + v1100 Yb>12 0 Yf> 
3 3 3 0 133 Yb)100y,) 

2 1 122 Yb)111 y,> 
I 0 ",1 31 y.)IOOy,> +",111 Yb>120Yf> 

3 I 0 ",1 31 y.>IOOYf> +",11 1 Yb>120y,> 
0 I 120Yb)111 Yf) 

4 4 4 0 144 Yb>100y,> 
3 I 133 Yb>llly,> 
2 0 ~142Yb)100y,) +~122Yb>120y,) 

4 2 2 0 ~14 2 Yb)IOO y,) + v'J12 2 Yb )12 0 y,) 
1 I 131 y.)111 y,> 
0 0 .tf140Yb>100y,> +~120Yb)120y,> 

4 0 0 0 ~140Yb)100y,) +.tf120y.>120y,) 
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where A, B L, a,b, are complex numbers and 

( ) 
_ {[ A,B], when either A or B, or both are even, 

A,B -
{A,B 1, when A and B are both odd. 

A grade adjoint operation in a Lie superalgebra L is a 
mappingA-+A t ofL into itself which satisfies the conditions 
in (6.2): 

the grade adjoint of an even (odd) 
element is even (odd), 

(aA + bB) = a* A + b * B, 

(A,B) = ( - t·/3 (B,A ), 

(6.2a) 

(6.2b) 

(6.2c) 

(6.2d) 

where Y and {3 are the degrees of the elements A and B. The 
generalized Hermitian representations in Lie superalgebras 
are the star and grade star representations. If Lie superalge
bra L is equipped with an adjoint (grade adjoint) operation, 
then the star (grade star) representation of L in a graded 
Hilbert space V is a representation p which satisfies 

(6.3a) 

In the realization of U(N 1M) and OSp(N 1M) as we 
have discussed previously, the adjoint of bosonic and fer
mionic operators have already been defined in the Fock 
space. From (3.1) we see that adjoint operation in the usual 
sense maps U(N 1M) into itself, because it satisfies the condi
tions given by (6.1). So the finite-dimensional representa
tions [n 1 ofU(N 1M) are, by definition, the star representa
tions. However, from (3.5c) we see the usual adjoints of the 
odd elements of OSp(N 1M) 

:;,t _(_y'+u+l-m 
- Imju -

x [( - ),-mbTm aj -u - (- y-uaJubl_m] 

(6.4) 
do not belong to OSp(N 1M). The usual adjoint does not map 
OSp(N 1M) into itself. Thus, OSp(N 1M) neither has the ad
joint operation nor the star representation in this realization. 
Therefore, the irreducible representations (u) are not star 
representations. This is consistent with the conclusion that6 

"There is no finite--dimensional star representation of 
OSp(N 1M) when N ;62." 

Many authors have previously decomposed6
•
7

,8 the star 
representation [n 1 according to a compact Lie algebra chain; 
it is thus completely reducible. Yet, when one decomposes 
[n 1 according to the superalgebra chain U(N 1M) 
::J OSp(N IM)::J . .. , then one is actually decomposing a star 
representation according to the nonstar representation (u). 
Therefore, it is reasonable in Sec. V to expect that OSp(N 1M) 
is a reducible but not completely reducible representation, 
even though we may still use the quantum number u for state 
classification. 

In order to understand the above points easily, we 
shall demonstrate it in detail via the example 
U(3/2POSp(3/2PO(3)XSp(2). The generators of 
OSp(3/2) can be written as 
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L, = -.:, -110' Lo=E, -11" L_, = -ElO11 , 

J, = - E'/2 _ 112 112 - 112/2.,fi, 

Jo = EII2 '/2112 _11212, (6.5) 

J -I = - EI/2 112 11211212.,fi, 

T - ( Y'+q+ 112:;, 
IP(1I2)q - - -1-P(1I2)-q' 

P = 0, ± 1, q = ±!. 
In the decomposition OSp(3/2PO(3)XSp(2), we can 

choose the simultaneous eigenvectors I/mju) of L 2, Lo, J2, 
and Jo as the basis vectors. The reduced matrix element is 
defined as 

(I I m' j' p' I T IP(1I2)q II m j p) 

= (I m Ipil I m') (j p ! qlj' p')(1 I j' II T Il/j), (6.6) 

where (I m 1 pil I m'), (j p ! qlj' p') are the Clebsch-Gor
dan coefficients with 1= ub, m = Yb,j = uf l2, andp = Yf' 
The multiplets II mj p) contained in a representation of 
OSp(3/2) are decided entirely by the reduced matric ele
ments (1'j'IITll/j). 

From (5.2) we obtained the three multiplets with the 
same quantum number nand u, when u;;;'2. 

In u u - 1 m 1 p) = In - 1 u - 1 m) 11 1 p) = Ix(u), 

In uum 00) = [(n + u+ 1)/(2n + 1)]1/2In um)IOOO) 

+ [In - u)l(2n + lJp/21n - 2 u m) 1200) 

= ItPI(u), 

Inuu-2mOO) (6.7) 

= [(n - u + 2)1(2n + l)p/2ln u - 2 m) 10 0 0) 

+ [(n+u-l)1(2n+ 1)]1/2In-2u-2m)1200) 

= ItPI(u). 

The wave function orthogonal to ItPI(u)(ltPI(u)) is ItP2(U) 
(ItP2(U)), where 

ItP2(U) = [(n + u - I)I(2n + 1)] 1/21n u - 2 m) 10 0 0) 

- [(n - u + 2)/(2n + IW /2 

X In - 2 u - 2 m) 1200), (6.8) 

ItP2(U) = [In - u)l(2n + IW /2 1n u m) 1000) 

- [In + u + I)/(2n + 1)] 1/21n - 2 u m) 1200). 

The corresponding reduced matrix elements are 

(tPI(u)IITllx(u) = [2u(2n + I)/(2u+ 1)]1/2, 

(x (u)1 ITI ItPI(u) 

= - (2u + I)[u/(2n + 1)(2u + I)P/2, 

(tP,(u)IITllx(u) 

= - [(2u - 2)(2n + 1)1(2u - 3)] '/2, 

(X (u)1 I T I ItPI(u) 

= (2u - 3)[(u - 1)1(2n + 1)(2u - lJp12, (6.9) 

(x(u)IITlltP2(U) 

= - 2[u(n - u)(n + u + 1)1(2n + I)(2u - 1)] 112, 

(x (u)1 ITI ItP2(U) 

= - 2[(u- 1)(n - u+ 2)(n + u- 1)1 
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n = 0 n = 1 /,'11 
o 

(a) (b) 

+:Z<n + 2) 

FIG. 1. Diagrammatic representations of the multiplets and the reduced 
matrix elements. The circle 0 represents a state. The line, with an arrow 
sign, represents a nonzero reduced matrix element from one state to an
other. 

(2n + 1)(2u - 1)] 1/2, 

(t/12(U) I ITI Ix (u) = (<P2(U) I ITI Ix (u) =0. 

The reduced matrix elements between I<pI(u), 1<P2(U), and 
In u - 2 u - 3 m l,u) = Ix (u - 2) are 

(<PI(ullITllx(u- 2) 

= 2[(2u - 4)(n - u + 2)(n + u - 1)1 

(2u - 3)(2n + 1)] 112, 

(x(u-2)1 ITI I<p(u) =0, 

(<P2(U) I ITI Ix(u- 2) 

= [(2u - 3)(2u - 4)1(2n + 1)P/2, 

(X(u- 2)1 ITI I <P2(U) 

= - [(u - 2)(2n + 1)1(2u - 5)] 1/2. 

From (6.9) and (6.10) we obtain Fig. 1. 

(6.10) 

From Fig. 1 we see the multiplets <P2(n + 2), X (n), <PI(n) 
form an invariant subspace; <P2(n + 2), X (n), <PI(n), <P2(n), 
X (n - 2), <PI(n - 2) form another invariant subspace; and so 
on. Thus the [n J representation ofU(3/2) is a reducible but 
not completely reducible representation of OSp(3/2). 

VII. CONCLUSIONS 
The use of dynamical supersymmetry as a means to 

study the spectroscopy of nuclear and atomic9 structure is 
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now widespread. In this paper we have studied the Fock 
wave functions of one such chain [Eq. (1.2)]. There are still 
some rather serious difficulties of applying such a symmetry 
chain to nuclear structure physics; one such difficulty is that 
it will lead to baryonic nonconservation. This is clearly evi
dent in the wave functions of Table I which show clearly that 
they contain an admixture of states with different baryon 
number (i.e., nucleus with different mass number). How det
rimental this will be for the study of nuclear structure re
mains to be seen. One should be reminded, however, that 
baryonic non conservation is by no means a nontolerated 
problem in nuclear physics (i.e., BCS). The question here is, 
of course, how serious are the baryonic nonconserving com
ponents in this theory. Such studies are currently being pur
sued. 
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A space of supertwistors is introduced as a graded vector space by starting with ordinary twistor 
space multiplied with even Grassmann coefficients and combining it by an othogonal direct sum 
with a one-dimensional space mUltiplied with odd Grassmann coefficients. A treatment of the 
algebraic properties of supertwist or space and of Grassmann-linear transformations on this space 
leads to a systematic procedure for deriving the structure equations for the graded Lie algebra 
su(2,2Il). 

I. INTRODUCTION 

Shortly after supersymmetry was proposed indepen
dently by Volkov and Akulov1 and Wess and Zumin02 as a 
means of constructing action functionals which are invariant 
under the interchange ofbosons and fermions, it was recog
nized that the gauge groups for supersymmetric theories 
were the graded Lie groups. 

The mathematical structures of graded Lie algebras 
and graded Lie groups have been extensively discussed in the 
literature,3 and Salam and Strathdee4 made use ofSU(2,2I1) 
for the purpose of introducing the concept of superspace and 
superfields. 

Although both Penrose5 and the authors of the paper 
cited above suggested that supersymmetry and twistors 
might be closely related, it was in the works of Daniel6 and 
Ferber7 that the precise connection between these two theor
ies was further investigated. 

The approach of Daniel towards establishing a connec
tion between the spinorial charges of supersymmetry and 
twistors is based on the identification of the superconformal 
algebra as the graded Lie algebra of the generators of the 
inhomogeneous group of rotations in the eight-dimensional 
spinor space associated with the pseudo-Euclidean space 
E (4,2). In this procedure, twistors appear as linear combina
tions of the four-component semispinors into which the 
spinorial charges split off. The spinorial charges, themselves, 
transform according to the eight-dimensional representa
tion of SU(2,2). 

Ferber's treatment, on the other hand, is based on an 
enlargement of the space of twistors via the introduction of 
additional Grassmann components. The resulting su
pertwistors transform, then, under a representation of 
SU(2,2/1) [or SU(2,2IN), in general, if internal symmetries 
are included]. 

Thus, while twistor variables in Penrose's theory8 ap
pear as basic ingredients from which composite space-time is 
constructed, the supertwistors of Ferber are formed by the 
space of all triples (A A ,Il A ' ,5) from which a point (X, () ) in 
superspace is defined as the incidence of trajectories given by 
the equations for the conserved generators [cf. Eqs. (6), (9), 
and (10) in Ref. 7] for particular values of such a triple. In this 
formalism, the spinor components AA are taken to be ordi
nary complex numbers, and the components fl A in conjugate 

spinor space are assumed to be even elements of the Grass
mann algebra generated by the anticommuting components 
frA of N Weyl spinors (a = 1,2, ... ,N). The anticommuting 
Lorentz scalars 5 are defined by 5 = () ~ A A. 

Moreover, by requiring invariance of a bilinear form9 

constructed on supertwistor space, Ferber exhibits the gen
eral form which superconformal infinitesimal transforma
tions [generalized to SU(2,2IN)] must take. Note, however 
(as was also pointed out by Ferber), that if the AA are as
sumed to be ordinary complex numbers, then the space of 
triples (A A ,Il A ' ,5 ) will not be invariant under action of the 
superconformal infinitesimal transformations. In the deriva
tion below of explicit forms of the generators of the graded 
algebra, we will use a larger supertwistor space (in essence, 
both A A and fl A , will be allowed to contain even elements of 
the Grassmann algebra) to remedy this problem. 

The extension of the concept of supertwistors to curved 
fermionic twistor space has been studied by Lukierski, 10 who 
also derived differential realizations of the generators of the 
SU(2,2/1) algebra on supertwistor space. 

Given the above summary of some of the published ma
terial pertinent to the subject, we now set out to describe our 
own objectives. In some previous work ll

-
13 we initiated a 

program with the purpose of combining the twistor formal
ism and fiber bundle techniques in order to be able to con
struct in a unified manner gauge theories incorporating both 
compact and noncompact group symmetries. 

Our approach differs from the authors' investigations 
to which we referred before in the essential fact that we do 
not use twistors and supertwistors as basic ingredients to 
build up space-time and superspace, respectively. We as
sume, instead, the formal point of view of regarding twistor 
space in its strictly mathematical conception as the funda
mental complex four-dimensional linear space representa
tion of the group SU(2,2), which is (4-1) homomorphic to the 
conformal group via SU(2,2) ~ 0(2,4) ~ C(3,1). 

In analogy, supertwistors will be regarded as the funda
mental complex five-dimensional [(4 + N )-dimensional ifin
ternal symmetries are included] linear space representation 
of the graded group SU(2,2Il) [or SU(2,2IN) for extended 
supersymmetries] . 

The present two consecutive papers (see Ref. 14) are 
intended as a continuation of our program which will allow 
supergravity theories to be included in the formalism. Spe-
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cifically, this paper has a threefold purpose: (i) to derive a 
formalism of supertwistors as a graded vector space which 
acts as a natural representation space of SU(2,2/1); (ii) to 
derive explicit linear realizations of the generators of the 
superconformal algebra expressed as anti-Hermitian su
pertwistors which, to our knowledge, have not been given in 
this form in the literature, and (iii) to provide the necessary 
material on the characteristic graded Lie group for the devel
opment, in the accompanying paper, of supergravity gauge 
theories based on supertwistor fiber bundles. 

Thus, our second paper relies to a large extent on the 
expressions derived here. 

The presentation is organized as follows: In Sec. II we 
review some ofthe basic twistor structures which have been 
extensively discussed in Refs. 5, 8, and 11. Supertwistors are 
then introduced by enlarging ordinary twistor space to a 
graded vector space given as an orthogonal direct sum of 
subspaces with even and odd Grassmann coefficients. 15 The 
structure of the subspace of odd degree in the Grassmann 
coefficients contains features which make our formalism 
somewhat different from other approaches appearing in the 
literature. 

The essential aspects of supertwistor algebra are treated 
here following, as closely as possible, the formalism original
ly introduced by Penrose5,8 for ordinary twistors, since that 
notation seems to be more widely accepted and understood 
than the abstract, index-free, formalism proposed in Ref. 11. 
We feel, however, that the axiomatic approach introduced in 
our above cited paper has some advantages, at least within 
the context of the theories for which we use twistors. Those 
readers interested in further exploring this possibility will 
find in the notational equivalences provided in Ref. 11 a use
ful tool for readily going over from one type of notation to 
the other. 

In Sec. III we present a systematic procedure for deriv
ing explicit supertwistor expressions for the generators of the 
graded Lie algebra for SU(2,2!1), in a form most directly 
applicable to the construction ofthe supertwistor fiber bun
dles on which our supergravity theories in the following pa
per are based. Finally, in Sec. IV we display the relations for 
the resulting graded algebra, and point out the procedure by 
means of which our results can be generalized in a straight
forward manner to SU(2,2! N), in order to include the inter
nal symmetry group SU(N). 

II. SUPERTWISTORS 

Twistor space ~ = ~ 2,2 is a four-dimensional complex 
vector space with a Hermitian type inner product (11m>, 
antilinear in F E ~ and linear in ma E ~, having the signa
ture (+ + - - )(lowercase Greek indices run from 0 to 3). 
The dual twistor space ~' = ~ ;,2 is the set of linear func
tionals on ~, such that each element ka E ~' acts on each 
element la E ~ to produce a complex number ka F . 

Twistors in ~ can be mapped onto twistors in ~' by 
means of the conjugation operation F E ~ - la E ~', 
which is an antilinear map defined by 

for all ma E ~ . From the Hermiticity of the inner product, 
it follows that 

(2.2) 

where * denotes ordinary complex conjugation. 
Define the conjugation operation on ~', ka E ~' 

_ ka E ~ to be the inverse of the conjugation operation on 
~ , i.e., ia = F. Note that with this definition (2.2) implies 

(2.2') 

With these axioms, and the requirement on transforma
tions that the inner product be invariant, ~ constitutes a 
fundamental representation space for the group SU(2,2). 

In the following, we shall use the notation. 

la = (mA
,1TA ,) 

to denote a twistor which corresponds to the pair of spinors 
(mA 

,1TA ,)· 

Similarly 

la = (1TA, wA'j 

will be used to denote the conjugate twistor. 
We complete this brief summary of twistor space with 

some material that will be required later in our discussion. 
First note that from ~ 2,2 we can construct various kinds of 
tensor spaces such as ~~;, ~~i, ~'N, ~'~24, ~2,2 
® ~' 2,2' etc. In the one-dimensional subspace ~ ~i, assume 
that a privileged element ",aP1'8 is given which satisfies the 
normalization requirement 

TJaP1'8",ap1'8 = 41. (2.3) 

With TJ aP1'8 and ",aP1'8 we can form duals of antisymme
tic twistors by means of the following operations: 

B [1'8) E ~ 112_B[aP) E ~'1I2 :B[aP) =! TJaP1'8B [1'8), 

(2.4) 

C[1'8 ) E ~'1I2_ ClaP) E ~ 112 :c[aP) = !",aP1'8C[1'8)' (2.5) 

Also, with the aid of TJaP1'8 ' we can define inner pro
ducts in ~ 112 and ~'II 2 as 

!A [aP)TJap1'8B [1'6) = A [aP)B[aP) = A[ap)B lap) (2.6) 

and 
- aP On -[aP)- - -lap) 

!A[aP)'" l'B[r8 )=A B[aP)=A[ap)B • (2.7) 

Skew-symmetric twistors B [ap) = B ap E ~ 112, for which 

BapB ap = 0, (2.8) 

are called null, and skew-symmetric twistors of the form 
BaP = lamP - mal P are called simple and satisfy the prop
erty 

B aPBp1' = O. (2.9) 

(Note also that JJaP being simple implies ~P is null, and vice 
versa.) Of special importance is the space ~ of real skew
symmetric twistors, which is a real subspace of ~ 112 with the 
inner product AapB aP as part of its structure, and is defined 
by 

~ = ~2,4 = {paPlpaP E ~1I2, paP =paPJ. (2.10) 

The inner product in ~ has signature (+ + - - - -). 
(2.1) Null, real twistors form a null cone JV in ~. Among 
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these, we distinguish the infinity twistor FP which is simple, 
and the origin twistor aaP which is simple and satisfies 
lapaaP = 2. The infinity twistor allows the definition 
of a five-dimensional hyperplane % = {P aplP ap E '!l, 
laPP ap = 2j which intersects the null cone ff to form a 
four-dimensional hypersurface 7r = {paPlpaP E '!l, 
PappaP = 0; lappaP = 2 j, which corresponds to Min
kowski space-time. Acting as a tangent vector space to this 
surface at aaP we have the four-dimensional subspace, 
.'7 = {TaPlraP E '!l, laP TaP = 0, OapTaP = OJ. The in
ner product in .'7 is a Minkowski inner product with signa
ture (+ - - -). 

Recall now that the twistor space ~ 2,2 can be decom
posed into the direct sum8

,ll 

~ 2,2 = Y I (B Yo (2.11) 

(where Y I is the space of two-component Weyl spinors and 
Yo is the corresponding conjugate spinor space) by making 
use of the idempotents 

(SI)ap=larOpr++~GEBG = {jAB' (2.12) 

(Sotp==oarlpr~A'G,~'G' = {j!:. (2.13) 

In fact, since (SI t P and (So t P are mutually orthogonal 
projection operators from ~ 2,2 onto Y I and Yo, respec
tively, we can define Y I and Yo by 

SI = {(SI)apI B liP E ~ 2,2j = {A A j, (2,14) 

Yo = {(Sol"pIPI/PE ~2,2j = {1TA,j, 
or, equivalently, by 

Y I = {fa E ~ 2,21(SI)apIP = laj 

= {fa E ~2,21(So)apIP = OJ, 

Yo = {fa E ~ 2,21(So)apI P = laj 

= {la E ~2,21(SIlapIP = OJ. 

(2.15) 

(2.14') 

(2.15') 

We now enlarge our twistor space ~ 2,2 and introduce 
the concept of supertwistors by following an analogous pro
cedure to that used by Ferber. 7 We define a supertwistor as 
an element of the graded vector space given by the orthogo
nal direct sum 

r 3,2 = r 2,2 (B rl> 
where 

r2,2=[§e®~2,2' r'=[§o®7r" (2.16) 

and [§ e and [§ 0 are the even and odd subsets, respectively, 
of a real Grassmann algebra [§ of dimension 2d generated by 
a d-dimensional real vector space Kd , where d> 1 can be 
finite or infinite. 

The space 7r, is a one-dimensional complex vector 
space with its inner product being i times a Hermitian type 
inner product. So the inner product (7]15) for 5 ',7]' E 7r, is 
antilinear in 7]', linear in 5', with 

(2.17) 

and (7] 17]) is pure imaginary. 
This type of inner product is an essential ingredient, 

which leads to the correct structure for r 3,2 which will be 
invariant under SU(2,2/1). 

We also have a conjugation operation 5' E 7r, ~ t, 
1830 J. Math. Phys., Vol. 26, No.7, July 1985 

E 7r; (where 7r; is the space dual to 7r ,) as an antilinear 
map defined by 

tl7]' = (517]). (2.18) 

It follows from (2.17) and (2.18) that 

(t,7]')* = (517])* = - (7]15) = -ii,s'· (2.19) 

Now define the mapA, E 7r', ~l' E 7r, to be minus 
the inverse of the conjugation map from 7r, to 7r; . Thus 

t '= - 5 " (2.20) 

and, by Eq. (2.19), we have 

(2.21) 

Furthermore, by virtue of(2.17) and (2.18), we can take 
as a normalized basis for 7r, any element 1" E 'fI"", satisfying 

(TIT) = 7\1" = i. (2.22) 

The spaces ~ 2,2 and 7r, discussed above can be 
viewed as subspaces of a larger space ~ 3,2 given by ~ 3,2 

= ~ 2,2 (B 7r,. In this sense we make the identifications 

~2,2=~2,2 (B {OJ, 7r,={Oj (B 7r,. (2.23) 

Prior to introducing Grassmann coefficients in order to 
arrive at the gradation given in (2.16), it will prove conven
ient to consider some operations in ~ 3,2' since generaliza
tion of the results to r 3,2 can be achieved readily by extend
ing linearly in the real Grassmann coefficients. 

Thus we first represent an element L ~ E ~ 3,2 by 
L ~ = (la,s'), where r E ~ 2,2 and 5' E 7rl (capital Greek 
indices will range from 0 to 4). In particular, twistors in the 
subspace ~ 2,2 will be written as l~ =(r ,0), and elements in 
the subspace 7r, will be written as 5~ =(0,5'), We can also 
writeL~ = l~ + 5~' 

An element K ~ E ~ 3,2 = ~ i,2 (B 7r;, where ~ 3,2 is 
the space dual to ~3,2' will be represented by K~ = (ka' A,) 
where ka E ~ i,2 and A, E 7r; . By definition, the action of 
K~ on L ~ is given by 

K~L~=kala+A'5" (2.24) 

We define the inner product of L ~ = (la,s') and 
M~ = (rna ,7]') in ~ 3,2 by 

(L 1M) = (11m) + (517]). (2.25) 

Note that by (2.2) and (2.17) 

(L IM)* = (mil) - (7]15) =I (M IL). (2.26) 

Making use of this inner product, we can now define a 
conjugation operation 

L~ E ~3,2 ~I~ E ~3,2 

by 

I~M~ = (L 1M), 

which together with (2.25) implies 

I~ = (la' til. 
It follows from (2.26) that 

(L~M~)* =M~G~rLr, 

where the operation of 

G~r ={j~r -28t{jf 

C. P. Luehr and M. Rosenbaum 
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(2.28) 

(2.29) 

(2.30) 
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on L Z = (F, s I) just reverses the sign of the last component 
ofLz , i.e., 

(2.31) 

For ~ i,2 we define the conjugation operation 
K Z e~ i,2 -+ It Z e ~ 3,2 by the equation 

ItzMz = (KzMZ)*, (2.32) 

for all M Z e ~ 3,2' It follows from (2.32) that for Kz 
= (kO',AI)e ~i,2 andforLze ~3,2 we have 

Itz = (ICO', .:p) (2.33) 

and 
GZ rL r = L z. (2.34) 

It is important to note from (2.34) that the conjugation oper
ation is not an involution. 

Multiplying elements of the subspaces ~ 2,2 and Jrl of 
~ 3,2 as identified in (2.23) by even and odd Grassmann 
numbers, respectively, leads directly to the space r 3,2' Thus 
for a supertwistor L Z = I Z + SZ = (/0', S I) e r 3,2' F is a 
twistor with complexified even Grassmann components 
while S I will be a complexified odd Grassmann component. 
(From hereon we shall use capital Latin letters with capital 
Greek indices to denote supertwistors.) 

The inner product (L 1M) for L z,M Z e r 3,2 follows 
directly by extending (2.25) bilinearly in real Grassmann co
efficients. In particular, because of the anticommutivity of 
the odd Grassmann numbers, we will now have 

(L IM)* = (MIL), (2.35) 

instead of (2.26). 
Note that in our formalism the complex conjugate of a 

complexified Grassmann quantity is obtained by replacing i 
by - i wherever it appears. Thus, in the case of products of 
complex Grassmann numbers the order of the factors is pre
served under the operation of complex conjugation. 

A similar grading procedure applied to the dual spaces 
leads to ri,2 = Y e ® ~ i,2' r; = Yo ® Jr; and ri,2 

= ri,2 Ell r;. Thus for an element Kz = kz 
+ Az = (kO', A.) e ri,2' kO' is adualtwistor with complexi

fied even Grassmann components, while Al will be a com
plexified odd Grassmann component. The action of K Z on a 
supertwistor L Z is given by 

KzL Z = kO'IO' + AIS I. (2.36) 

It is important to note that 

LZKz =KzGzrL r, (2.37) 

where G Z r was defined in (2.30). 
We can now directly define the conjugation operations 

Z - -z 
L e r3,2-+LZ e ri,2 andKz e ri,2-+K e r 3,2' from 
the previously introduced conjugation operations in ~ 3,2 

and ~ 3,2' respectively [cf. Eqs. (2.27) and (2.32)], as an ex
tension linear in real Grassmann coefficients. Thus we ob
tain 

LzMZ = (L 1M), 

ItzMz = (KzMZ)*, 

and (2.35) together with (2.38) implies 
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(2.38) 

(2.39) 

(LzM Z)* =MzLz. (2.40) 

Making use of (2.40), (2.39), and (2.37) yields 

MzLz = (LzM Z)* = LZMz = MzGzrLr 

for arbitrary MZ 
• Therefore 

L Z = GZrL r. (2.41) 

Note that (2.41) is the same as the result in (2.34) for the 
nongraded space ~ 3,2' In fact (2.41) is just the linear exten
sion by real Grassmann coefficients of (2.34). 

In the next section we shall be considering the space .J?f 
of transformations r 3,2 -+ r 3,2 which are linear in com
plex even Grassmann coefficients. An arbitrary transforma
tion U Z r e .J?f can be expressed in general as complex linear 
combinations of elementary maps of the following forms: 

A Z r = Pelzmr :r2,2 -+ r 2,2' 

B Z
r =PerTr :rl -+ r l , 

C Z
r =PolzTr :rl -+ r 2,2' 

(2.42a) 

(2.42b) 

(2.42c) 

D Z
r =pormr :r2,2 -+ r l , (2.42d) 

where/z , mZ e ~2,2;Pe,po are any real even and odd Grass
mann numbers, respectively, and r is our chosen normal
ized basis in Jrl (Tzr = i). The Hermitian conjugate 
(ut )Z r of U Z r is defined by 

(2.43) 

for all Z r e r 3,2' Since in the discussion below we will make 
extensive use of this operation, we write down the Hermitian 
conjugate of the elementary forms given by Eqs. (2.42) as 

(A t)Zr =Pemz1r :r2,2 -+ r 2,2' (2.44a) 

(Bt)Zr = -PerTr :rl -+ r l , (2.44b) 
tZ J-(C ) r =PoT Ir :r2,2 -+ r l , (2.44c) 

(Dtfr =PomzTr :rl -+ r 2,2' (2.44d) 

These expressions follow readily from (2.43) and the proper
ties of the various operations on twistors and supertwistors 
defined previously. For example, (2.44c) is derived as fol
lows: 

yZ = CZrZ r =PolzTrZr, 

Yz =po7z(Tr Z r )* = -P)zZrr 
- - - tr 

=ZrPor /z =Zr(C ) z, 

where use has been made of (2.19), which also applies when 
1]1 in that equation is an odd complex Grassmann number, 
and the anticommutativity of odd Grassmann numbers was 
also used. 

Finally, it can be verified from these results that for 
U Z

r e.J?f we have 

(utt)Zr = U z
r . 

III. THE GENERATORS OF SU(2,2/1) 

The set of transformations which leave the inner pro
duct (Z I W) = Zz WZ in r 3,2 invariant, and have graded 
determinant equal to one constitute a realization of the grad
ed group SU(2,2/1). To obtain the generators of this group, 
first let 

(3.1) 
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denote an infinitesimal transformation. Here E is a real 
infinitesimal parameter, the element 1 IrE (~ 2.2 

® ~ 2,2) e ('1r 1 ® '1r; ) acts as the identity operator on 'Y 3,2' 

i.e., II rZ r = Z I for all ZI E 'Y 3,2' and SIr is an infinite
simal generator ofSV(2,2/1). 

The most general form of U I r (and therefore also SIr) 
has to be in the space ('Y3,2 ® 'Y~,2) e ('1rl ® '1r;). In order 
to further restrict SIr. note that from the invariance of the 
inner product in 'Y3,2 and from (3.1), 

(st)Ir = -SIr. (3.2) 

This expression is the generalization of the anti-Hermitian 
property to supertwistors. 

Moreover, since we are considering transformations 
with graded determinant equal to 1 we have, from the prop
erty 

In[gdet(UI
r )] = gtr(ln VIr), (3.3) 

that 

gtr(SIr ) = o. (3.4) 

The definition of the graded trace operation is equiva
lent to the following: 

gtr(SIr ) =SIrGr
I , (3.5) 

where Gr 
I was defined in (2.30). 

Note that this definition leads directly to the usual cy
clicity property 

gtr(M I r N r n) = gtr(N I rM r n), (3.6) 

for M I r> N r nEd as required for graded transforma
tions. 

Conditions (3.2) and (3.4) are sufficient to determine all 
possible forms of the infinitesimal generators SIr. In fact, as 
we pointed out previously, SIr will be given as linear combi
nations of the elementary forms (2.42) such that 

SIr EdaHCd, 

where 
d aH = ('Y3,2 ® aH 'Y~,2) e ('1rl ® aH '1r;), (3.7) 

and the subscript "aH" indicates the restriction to the sub
space of anti-Hermitian elements, using (3.2) as the defini
tion of anti-Hermiticity. 

First consider anti-Hermitian transformations SIr 
constructed from (2.42c) and (2.44c). We have 

SIr =CI
r _(ct)Ir =Po(fITr -rlr)' (3.8) 

The condition (3.4) is automatically satisfied in (3.8) be
cause of the orthogonality of '1r 1 and ~ 2,2' Thus, SIr will 
assume the following two possible forms: 

(i) (SsT)Ir =Po(hITr -rhr ), (3.9) 

where h I = (h ",0) = (tl A ,0,0) E .Y [ C ~ 2,2; and 

(ii) (SsK)Ir =Po(pITr - rpr), 

where pI = (P",O) = (0, 'ITA' ,0) E .Yo C ~ 2,2' (3.10) 

The infinitesimal generators (SST f rand (SSK)I rare 
the generators of supertranslations and superconformal 
boosts, respectively. 

Note that the same results will follow from (2.42d) and 
(2.44d). 
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Next we analyze the anti-Hermitian transformation 
SIr constructed from (2.42a) and (2.44a). We obtain 

(3.11) 

There exist four possibilities, depending on particular 
choices of II and m I 

. 

One of the choices is 
I- I-(iii) (ST)Ir =Pe(h kr - k hr ) (3.12) 

for hI = (h ",0), k I = (k ",0) E .Y [. 

Equation (3.12) satisfies automatically the condition 
(3.4), since elements in .Y [ are orthogonal to each other. The 
transformation (STf r maps a complex two-dimensional 
twistor in .Yo onto .Y [, and is the infinitesimal generator of 
translations. 

If we now take as a choice of (3.11) the operator 

(iv) (SK)Ir =Pe(PIqr - tTPr), 

for pI = (P",O), tT = (q",O) E.Y 0' (3.13) 

then once again (3.4) will be automatically satisfied. How
ever, (S K )I r maps a complex two-dimensional twistor in .Y [ 
onto .Yo, and is therefore identified with the infinitesimal 
generator of conformal boosts. 

Another choice, obtained by combining transforma
tions of the form (3.11) is 

(v) (SDfr =Pe [(S[)Ir - (SO)Ir ], (3.14) 

where 

(3.15) 

and (S[)"y and (Sol"y are given in (2.12) and (2.13). Note that 
(SD)I r has zero trace, as required by (3.4). This infinitesimal 
transformation is the generator of dilations. 

The last possibility for transformations of the form 
(3.11) corresponds to 

(vi) (SdIr =Pe(hIPr -pIhr ), (3.16) 

for hI = (h ",0) E .Y [, pI = (P",O) E .Yo with hIp I = O. It 
can be shown that infinitesimal transformations with which 
(3.16) is associated leave the origin and infinity twistors in
variant. Hence the elements (S L)I r are the infinitesimal gen
erators of Lorentz transformations. These generators can 
also be characterized by the conditions 

gtr [(S[)Ir(SL fA ] = gtr[(So)Ir(SLfA] = O. (3.17) 

We are finally lead to consider anti-Hermitian transfor
mations constructed from (2.42b) and (2.44b). This will be of 
the form 

(3.18) 

Note however that (3.18) is not traceless and, therefore, 
(SSS)I r will not be an infinitesimal generator of our group. 
There is, however, one last possibility which consists of com
bining the nontraceless element (SSS)I r with nontraceless 
anti-Hermitian elements obtained from (2.42a) and (2.44a) in 
order to get-an infinitesimal generator. Clearly 
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is both anti-Hermitian and traceless. It is in fact the infinite
simal generator of phase transformations. 

IV. GRADED ALGEBRA 

The infinitesimal generators given in the equations 
marked (iHvii) in the previous section can be used to obtain 
in a straightforward manner the graded algebra su(2,2/1). 
Thus we can write (with tensor indices deleted) the following 
Lie brackets l6

; 

[Sle,S2e] = [S ~E;.r/.Ej ] 

= S~r/. [E;.Ej ] = S~VJ/Ek' 
[Sle,S2o] = [S~E;.p~Q.] 

= S ~p~ [ E;.Q.] = S ~p'J:s'Q" 
[Slo,s20] = [~Q.,p~Q,] 

(4.1) 

(4.2) 

= ~p~ [Q.,Q, I = ~P'J./Ek' (4.3) 

where Sle = S ~E; and S2e = r/.Ej are any two different lin
ear combinations of the infinitesimal generators with even 
Grassmann numbers that we derived above, the E; represent 
the even generators of the graded algebra, and 
Sio = ~Q., S20 = p~Q, are any two different linear combi
nations of our infinitesimal generators with odd Grassmann 
numbers while Q. denotes the odd generators of the graded 
algebra. The quantities /;j \ /;. " and Is, k are the structure 
constants of the graded algebra. 

As particular case of(4.3) take two infinitesimal genera
tors of the form given in Eq. (3.9), i.e., 

1833 

(Slo)Ir =cro(QI)Ir , where (Qlfr =hIrr -rliro 

hI = (h U,O) E.5"'1> (4.4) 

(S2o)Ir =Po(Q2fr, where (Q2)Ir = kIrr - rkr , 

kI = (h U,O) E .5"'1' 

The Lie bracket is then given by 

[Slo,s20]Ir = [croQI,poQ2]Ir 

= (croQIlIA~oQ2)Ar - ~oQ2)IA(croQI)Ar 

= croPo [(QI)I A (Q2)A r + (Q2f A (QI)Ar ] 

= croPo [QI,Q2I I r 

= - croPo [(ih I)kr - kI( ih)r]. 

(4.5) 

Note that the last expression in the above equation is of 
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the same form as that given in Eq. (3.12), and thus it repre
sents an infinitesimal generator of a translation. This is one 
of the well-known results of the graded algebra su(2,2/1), 
which allows the coupling of fermions and bosons in super
symmetry theories such as the one we present in the accom
panying paper. 

As a final remark we point out that our formalism can 
be extended to encompass the group SU(2,2/ N) by replacing 
the one-dimensional space 7r I by an N-dimensional space 
')Y N with an inner product being i times a positive definite 
Hermitian form. 
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A gauge theory of supergravity which allows one to obtain first-order Lagrangians that are locally 
gauge invariant by construction is presented. The formalism makes use of supertwistors as a 
representation space for the construction of a typical fiber of a vector bundle associated with a 
principal bundle, where the structural group is the super-Poincare group. The approach proposed 
provides a means of resolving one of the central problems of gauge field theories of external 
symmetry groups, that is the satisfactory treatment of translations. 

I. INTRODUCTION 
In earlier papers! we have discussed some of the essen

tial difficulties which result from attempting to apply the 
Utimaya2 procedure, appropriate for the gauging of internal 
symmetry groups, to external groups. In particular we ana
lyzed the work of Kibble/ which enlarged Utimaya's for
malism to include inhomogeneous Lorentz transformations, 
and found that some apparently well-established results 
could not be properly justified by means of such an ap
proach.4 

The same type of difficulties occur in several of the arti
cles appearing in the current literature which utilize the 
above-mentioned procedures as a starting point to obtain 
gauge theories for the supersymmetric groups.5 

The purpose of the present paper is to show how the 
twistor bundle formalism, which we developed previously6 
in order to construct gauge theories for noncompact groups 
correctly, can be extended to supersymmetric groups in a 
way which leads one to unambiguous supergravity theories. 

We believe that through our formalism one of the cen
tral problems of gauge field theories that have the Poincare 
group as a characteristic subgroup, which is the gauging of 
the translations in a satisfactory manner, has been adequate
ly resolved. 7 

The essential features of our theory are the use of su
pertwistors8 obtained by means of enlarging ordinary twis
tor space to a graded vector space given as an orthogonal 
direct sum of elements with even and odd Grassmann coeffi
cients [one adjoins a one-dimensional (N-dimensional) com
plex vector space with odd Grassmann coefficients for sim
ple (extended) supersymmetries]. Making use of these 
structures we can generate the required supertwistor bun
dles by a procedure based on an extension of our results in 
Ref. 6. Another important feature of our formalism is that 
the base space of our fiber bundles is a four-dimensional 
manifold which has no a priori additional structure imposed, 
but which acquires the metric structure of space-time as a 
consequence of the formalism. Thus, even though supertwis
tors are closely related to superspace in that the former may 
be regarded as the basic ingredients from which composite 
superspace is constructed,9 the fibers in our theory are not 
based on superspace and superfields. Rather our approach 
relies on the formal point of view of considering supertwistor 
space as the fundamental complex five-dimensional 

[(4 + N)-dimensional if the internal symmetry group SU(N) 
is included] linear space representation of the graded group 
SU(2,2/1) [or SU(2,2/N) for extended supersymmetries]. 
This representation space serves to define a typical fiber 
from which our vector bundles are constructed. 

Our procedure then leads to the calculation of a su
pertwistor curvature, in terms of which all possible Lagran
gians permitted by the theory may be expressed as scalar 
functionals by means of appropriate contractions. These La
grangians will be gauge invariant by construction; a feature 
of the theory which is made possible by the specific relations 
between the gravitino field and the Riemann and torsion 
tensors, imposed by the form of the supertwistor curvature. 

It is interesting to note here that in the case of N = 0 
supertwistors, i.e., of ungraded standard twistor space, our 
formalism reduces to a gauge theory for ordinary gravitation 
(arrived at in a somewhat different, and perhaps simpler, 
manner than the one used in Ref. 6). This is the main reason 
for the particular choice of assignment of statistics in the 
construction of our supertwistors. 

As a final remark, we point out that in this paper we 
have introduced the additional requirement that the null 
cone at infinity be part of the supertwistor structure. Thus 
we have broken superconformal invariance and retained 
only the group of super-Poincare linear transformations 
which leave the infinity twistor invariant. Also, within this 
restriction we have only considered in detail the Lagrangian 
for simple supergravity, although this is only a particular 
case of the possible invariant scalars which are allowed by 
the theory. 

The plan of the presentation is as follows: In Sec. II we 
give a very brief summary of the algebra of supertwistors 
which was developed in the immediately preceding paper 
(hereafter referred to as I). For details the reader is referred 
to that work. We also present in this section the essential 
arguments which lead, by incorporating these structures, to 
an extension of our formalism for a gauge theory of gravita
tion based on twistor bundles6 to the construction of a gauge 
theory for the super-Poincare group. The section also con
tains the basic aspects of supertwistor calculus which enable 
us to define supertwistor connections and arrive at a su
pertwistor curvature which is further related to the Riemann 
curvature, the torsion, and additional terms resulting from 
the gravitino field. 
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Section III is dedicated to the construction of the La
grangian density for simple supergravity, even though, as 
noted previously, this is only a particular case of the scalars 
that may be obtained from the more general functional form 
of the permissible invariant scalar Lagrangians. 

We also outline in this section the procedure for obtain
ing field equations by a variational principle applied to the 
gauge fields, and show that in our formalism the fundamen
tal quantities to be varied in an action principle are the super
symmetric connections. We further show how the variation 
of the supersymmetric connection may be split into three 
independent variations involving the gravitino field, the con
torsion tensor, and one more variable, which is associated 
with the variation of the covariant gradient of the origin 
twist-tensor field. In Sec. IV we give concluding remarks and 
suggestions for further work. 

At the end of the paper we include two appendices 
which contain five theorems where we prove several rela
tions that are used throughout the text. In Appendix A, we 
derive a theorem on the product of skew-symmetric twistors 
and their duals, which considerably simplifies a number of 
algebraic manipulations that are performed with these types 
of twistors. In Appendix B we prove four theorems which 
serve to establish a natural map between the set of Dirac 
operators and the set of skew-symmetric twistors 
Ji a{J = D;O a{J (the covariant derivative of the origin twistor) 
at each point of the manifold. In addition, in the same appen
dix, we make use of this map to give a representation inde
pendent derivation of some properties of the Dirac gamma 
operators. 

Finally some remarks about notation: Throughout the 
text we use Latin indices to denote space-time variables, 
while lowercase Greek indices will be reserved for twistors 
and capital Greek indices for supertwistors in order to fol
low, as close as possible, the notation conventionally utilized 
in twistor theory. 

II. SUPERTWISTOR SPACE AND BUNDLE 
STRUCTURES 

A. Supertwistors 

In I we developed the concept of supertwistors by fol
lowing a procedure somewhat different to that originally 
used by Ferber.9 Here we summarize the essential aspects of 
the algebra of these structures which will be required 
throughout the paper. 

We define a supertwistor as an element of the graded 
vector space given by the orthogonal direct sum 

r 3,2 = r 2,2 Ell r l = (~e ® ~2,2)EIl(~O® YJ!, (2.1) 

where ~ e and ~ 0 are the even and odd subsets, respectively, 
of a real Grassmann algebra ~ of dimension 2d generated by 
a d-dimensional real vector space % d' 

The subspace r 2,2 is formally the same as ungraded 
twistor space, however supertwistors in r 2,2 will be repre
sented by the triple (mA,1TA' ,0), where the spinor components 
mA

, 1T A' are now complexified even elements of the Grass
mann algebra ~ . A supertwistor in r 2,2 will be denoted by 
u~ = (uU,O)~(mA,1TA"O). 
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Supertwistors in the subspace r 1 are of the form 

s~ = sr , (2.2) 

where S is a complexified odd element of the Grassmann 
algebra ~, and r is a normalized basis in the one-dimen
sional complex vector space Y 1 such that 

T~r = i, T~U~ = ii~r = 0, V U~Er2,2 . (2.3) 

Throughout the discussion, we will leave the dimen
sionality of the space % d undefined in order to allow for all 
possible supersymmetric theories with increasing degree of 
complexity as d-+ 00 • 

A supertwistor in r 3,2 is written as Z ~ = u~ + s~, 
where U.'EEr2,2 and s.'EErl' Furthermore, since the sub
spaces r 2,2 and r I are assumed to be orthogonal, a Hermi
tian inner product in r 3,2 may be defined as 

(Z I W) = Z~ W~ = uIzr + 'lIO~, (2.4) 

where W~ = zr + O~, and ZI = uI + 'l~ is the supertwis
tor conjugate to Z ~ that has values in the dual space ri,2' 

The anticommutativity of odd Grassmann numbers im
plies 

Z~ W~ = u~zr + 'l.'EO~ = zru~ - ort~ 

= uuvu + is *0 = vUUu - iOs * . (2.5) 

As pointed out in I, the graded group SU(2,2ft) is the 
set oflinear transformations which leave (2.5) invariant. 

We can now construct, in analogy to what is done with 
ordinary twistors, the tensor space r£i, rN, r~,~2, 
r~,~4, r 2,2 ®r~,2' etc. The only difference is that these 
spaces are now regarded as even-graded subspaces of the 
larger supertwistor spaces r A2 r A4 r,A2 <Y/"A4 3,2 , 3,2 , 3,2" 3,2 , 

r 3,2 ® ri,2' etc., respectively. 
In particular we will also have here the special elements: 

(a) the totally antisymmetric supertwistor Er£24, 

TJ~r,6.A = ' 
for ~,r,-j, A all different and 

values ranging from 0 to 3, 
{

TJurliJ.. 

0, for any of the indices equal to 4; 
(2.6) 

(b) the vertex of the null cone at infinity, infinity supertwis
tor, or metric supertwistor Er£i, 

(2.7) 

and (c) the origin supertwistor Er£f, 

o ~r = [ ~ url~] • (2.8) 

All these special quantities are chosen from the corre
sponding homogeneous subspaces of degree zero. 

The properties of these supertwistors are, up to a Grass
mann factor, the same as those for the corresponding ordi
nary twistors, and so is the property of certain elements of 
r £i being real elements. 

B. Gauge theory for the supergroup 

The essential aspects of the philosophy that we will 
adopt for the construction of a gauge theory of the super-
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group SU(2,2fl) [or SU(2,2IN) if internal symmetries are 
included] are fundamentally the same as those described in 
Ref. 6. For details we refer the reader to that paper. Here we 
will restrict ourselves to stressing the points of difference 
between the formalisms. 

First, in place of ~ 2,2 we start with r 3,2 as the typical 
fiber of our twistor bundle, 

If we a1so introduce I :Er as part of the structure of r 3,2 , 

superconformal invariance will be broken and we will have a 
faithful representation of the super-Poincare group, 

Now, beginning with the four-dimensional base mani
fold vii, we can construct the bundles r 3,2(vII), r~i(vII), 
r~24(vII) and rN(vII). The cross section 1:Er 
er(vII,r£i(vII))Cr(vII,r~i(vII)) is taken as part of the 
structure of r 3,2 (vii) to give the bundle (r 3,2' 1:Er) which 
from here on will be simply denoted by r 3,2 (vii), 

At each point qeJ(, (r 3,2)q is the fiber above q and 
(r 2,2)q is a subspace of (r 3,2)q' 

As in the case of the Poincare group, 1,6 no metric struc
ture is initially assumed for the manifold vii. It is by the 
selection of an origin twistor field O:Er that it becomes possi
ble to define a map which leads to a unique way of imposing a 
metric structure and connection on the tangent bundle 
Y(vII). 

C. Supertwistor connections 

Let D i be a connection on the bundle r 3.2 (vii), in 
which r 3•2 is a typical fiber. We have that Di satisfies the 
usual axioms of an arbitrary connection and is compatible 
with the inner product (2.5), i.e., 

X(Z:E W:E) = (DiZ:E) W:E + Z:E Di W:E. (2.9) 

Moreover, D i preserves the structure of the typical fiber 
(r3•2 ,I:Er) so we also have 

(2.10) 

If we now recall that two connections can differ only by 
a transformation linear in the even Grassmann coefficients, 
we can express the supersymmetric connection as 

Diz:E = DxZ:E + Bx:ErZr, (2.11) 

where Z:E(q)E(r3•2 )q' i.e., Z:E is a cross section of the 
r 3•2 (vII) bundle, Dx is the twistor connection which leaves 
invariant the subspace r 2•2 on which it acts, and B (q) is a 
tensor field with values in Y~ ® (r3•2 )q ® (r3.2 )q whose 
components areBx :E r and which represents the action of the 
connection due to the supertranslations. 

The connection D x has the properties of being compati
ble with the inner product in r 2.2 (1) and satisfies the con
ditions 

Dx'T/:Er.t.A = 0 , (2.12) 

Dx1:Er = O. (2.13) 

As an additional property, we shall require that 

Dxr = O. (2.14) 

Note that Eqs. (2.11)-(2.14) serve to determine com-
pletely the action of Dx on the bundle r 3•2 (vii). In particu-
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lar, it can be readily shown that Dx is also compatible with 
the inner product in r 3•2 (vII). 

Now let us consider in detail the action of the super
translations in (2.11). These can be given explicitly as the 
most general linear combination of the generators of super
translations as derived in I [see Eq. (3.9)]. Thus we have 

:E :E- :E-Bx r = I/lx 'Tr - 'T I/lxr, (2.15) 

where the supertwistor I/lx:E is represented by the triple 

(2.16) 

and Px A, (7x A are two-component real spinors which are odd 
in the Grassmann algebra [§ . 

D. Lie and exterior derivative connections 

In addition to the connections defined so far we will also 
need the concepts of Lie and exterior derivative connections. 
This construction will tum out to be most convenient in our 
later discussion of supertwistor curvatures. 

To this end, let us first define a torsionless connection 
D ~ on the bundle r 2.2 (1) by 

D~u:E = Dxu:E + (DxO:Er)1rAuA , UA(q)E(r2•2 )Q' (2.17) 

Note that this connection has the following properties 
[which follow directly from (2.16)]: (a) for 
U:E(q)E[§ e ® (Y/)Q' 

D ~uz = Dxuz , 

(b) for UZ (q)E[§ e ® (...9" o)Q' 

D ~uz = Dx [(So f rur ] + (DxO zr)I rA uA 

= Dx(O zr1AruA) + (DxO .Er)I rA uA 

= Ozr1ArDxuA = (So):EADxuA , 

where 

(Sofr = OZA1rA 

(2.18) 

(2.19) 

(2.20) 

is the extension of the idempotent defined by (2.13) in I, i.e., 
the projection of Dxu:E onto [§ e ® (Yo)Q gives D ~u:E. Also 

(c) D~ 1:Er = 0, (2.21) 

(d) D~ Ozr =0, (2.22) 

and 

(e) [(D~unZ = (D~uC):E, (2.23) 

where (UC).E is the charge conjugation of UZ (q), i.e., 

(UC)Z = Ur (I n: _ Or.E). (2.24) 

[Compare to the definition given by Eq. (B56) in Appendix 
B.] 

Recall that in Ref. 6, we defined the torsion tensor on 
the fiber as the action of the curvature tensor on the origin 
twistor [see Eq. (3.42) there]. Consequently, if we use the 
connection D ~ in particular, we have, by virtue of (2.22), 

(-roy).!T(X,y) = (D~ D~ - D~ D~ - D?x.y ))O:Er = 0, 

(2.25) 

i.e., D ~ is indeed torsionless as asserted previously. 
We can now introduce an operator !.t' x' the Lie deriva

tive connection, as a combined Lie derivative and twistor 
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connection acting on fields of differential p forms 
(p = 0,1,2, ... ), 

tre(Y2,2)q, 1jr==",/ dxieY~ ® (Y2,2)q , 

~=! cP[i,j]I dx,."dxjeY~1\2® (Y2,2)q , 

etc. The action of .Y x can be defined as 

.Y xUI = D ~UI , (2.26) 

(.Y x",I)(y) = .Y x [",I (y)] -1jr (.Y x y) 

= D~ [1jr(y)] -1jr([x,y]), (2.27) 

(.Y x~)(y,z) =.Y X [fIlI(y,Z)] - fIlI('y x y,z) 

- fIlI (y,.Y x z), etc., (2.28) 

where 1jr (y)= 1"'1 I, ~ (y,z) = IzjcP[ij J I, and .Y x uI , 
.Y x1jr,.Y x~' at q have values in (Y2,2)q,Y~ ®(Y2,2)q' 
Y~ 1\2®(Y2,2)q, respectively. 

An exterior derivative-connection g, is a combined ex
terior derivative and twistor connection, defined on fields of 
p forms uI , ",I, fIlI, etc., where g uI , g "1jr, g ,,~, etc., 
at q are in Y~ ®(Y2,2)q, y~1\2®(Y2,2)q, y~1\3 ® (Y2,2)q' 
etc., respectively. 

The action of g can also be defined by induction as 

(guI)(x) =D~UI, (2.29) 

(g "1jr )(x,y) = (.Y X ",I )(y) - (g [ ",I (x)])(y), (2.30) 

(g "~)(x,y,z) = (.Y XfllI)(y,Z) 

- (g" [fIlI(x)])(y,z), etc., (2.31) 

where ~(x) = XicP[ijJI dx j
• 

From (2.27), (2.29), and (2.30) we get, in addition, the 
useful result 

D~ [1jr(y)] - D~[ 1jr(x)] -1jr([x,y]) = (g "1jr)(x,y). 

(2.32) 

Note that although the above definitions are given for 
supertwistors constructed from the subspace Y 2,2' they can 
be readily generalized to supertwistors and their tensors de
rived from Y 3,2 by making use of(2.14) and (2.17). 

E. Supertwlstor curvature 

We define the supertwistor curvature tensor E5s, with 
value at q in Y~ ® Y~ ® (Y3,2)q ® (Y;,2)q' by means of the 
expression 

(E5S )Ir(x,y)Zr = (D~ D~ - D~ D~ - D[x,y J)ZI, 

(2.33) 

where ZI is a supertwistor field with ZI(q)e(Y3,2)q. 
Moreover, making use of (2.1)-(2.3) and of (2.14) and 

(2.15), one readily obtains 

(D~ D~ -D~D~ -D[x,YJ)ZI 

= (Dx Dy - Dy Dx - D[x,y J) Z I 

- r {Dx [ijjr(yl] - Dy[ijjr(xl] - ijjr([x,y])] Zr 

+ {Dx[1jr(y)] -Dy[1jr(x)] - ",I([X,y])] 7r Zr 

- i[ ",I (x)ijjr(Y) - ",I (y)ijjr(x)] Z r . (2.34) 

Now substituting (2.32) into (2.34), and using the defini
tion in (2.33) (and a similar one for the twistor curvature in 
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Y' ®Y' ® Y 2.2 ® Y~,2)' yields 

(E5s jI r(x,y) 

= (E5)Ir(x,y) - rIg "ijjr)(x,y) + (g "",I)(X,y) 7r 

- i [1jr(x)ijjr(Y) -1jr(y)ijjr(x)] . (2.35) 

In order to relate the twistor curvature tensor E5 appear
ing on the right-hand side ofEq. (2.35) to the Riemann cur
vature tensor we recall that [cf. Eq. (3.36) in Ref. 6] 

Rw (x,y)(uIvr - vIur ) 

= (Dx Dy - Dy Dx - D[x,y j)(uIvr - vIur ) , (2.36) 

where UI,~ are taken here to have values in (Y 2,2)q in gen
eral and Rw has values in Y~ ® Y~ ® (Yti)q ® (Yti)q' 

Observe now that 

(Dx Dy - Dy Dx - D[x,y J)(uIvr - vIur ) 

i.e., 

= [(Dx Dy - Dy Dx - D[x,y J)uI ] vr 

+ uI [(Dx Dy - Dy Dx - D[x,y J)vr ] 

- [(DxDy -DyDx -D[x,YJ)vI]ur 

-vI [(DxDy -DyDx -D[x,Yj)ur ] , 

Rw (X,Y)(UI~ - vIur ) 

= [(E5)I A (x,y)uA 
] vr + uI [(E5t A (x,y)vA ] 

- [(E5)I A (x,y)vA ] ur - vI [(E5t A (x,y)uA 
]. (2.37) 

Moreover, if we use the symbol 

E r n=(SIt n + (Sot n eY2,2 ® Y~,2 (2.38) 

to represent the identity twistor acting on this subspace, we 
then have 

Rif (x,y)(uIvr - vIur ) 

= [(E5)IA(x,y)E r
n + E I

A(E5tn(x,y)](uAvn - vAun ) 

(2.39a) 

and 

(Rif )Irn<l> (x,y)1Jn4>An 

= (E5)I[A (x,y)E r n J + EI[A (E5t n J(x,y). 

Putting the indices A = r in (2.39b) leads to 

(2.39b) 

(Rif )IAn<l> (x,y)1J n<l>An = - 2 E5I n(x,y) - E In E5A A (x,y) . 

(2.40) 

Equation (2.40) is our desired relation between the Rie
mann curvature and twistor curvature tensors. This expres
sion, however, can be put in more familiar terms by explicitly 
accounting for torsion. We thus have [cf. Eq. (3.47) in Ref. 6] 

(Rif )IAn<l> (x,y) 

= (Ry )IAn<l> (x,y) + H(Ty)IA(x,y}In<l> 

-IIA(Ty)n<l>(x,yl] , (2.41) 

where Ry is the curvature tensor which has its values in 
[1 e ® Y~ ® Y~ ® Yq ® Yq;Yqis the subspace of real twis
tors orthogonal both to I Ir and 0 Ir, and having a Min
kowski inner product with signature (+ - - -), and Ty 
is the torsion tensor with values in [1 e ® Y; ® Y; ® Y q' 
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The curvature Ry can be projected in tum onto the 
tangent bundle to yield the tensor Ry , with values in 
~ e ® Y; ® Y; ® Yq ® Y q, by making use of the field 

J/r ==D;Oxr , (2.42) 

which acts as a bijective map6 of Yq on the subspace 
~ e ® Y q C (r £i)q' Thus, introducing an holonomic basis 
{e;) in the tangent bundle and the dual basis {e;} in the 
cotangent bundle, we get 

(Ry )XAn4>(e;,ej ) = R/IJk XA J/4> . (2.43) 

Similarly T y is related to the torsion tensor T y in the 
tangent bundle, with values in ~ e ® Y; ® Y; ® Y q , by 

(Ty)XA(e;.ej ) = T/Jk XA. (2.44) 

Substituting (2.43) and (2.44) into (2.41), results in 

(Rw)xAn4>(e;.ej ) 

= RijklJk XAJ/4> + ~T/( Jk xAIn4> _ IXAJk n4». 

(2.45) 

Replacing now the left side of (2.41) by (2.45), yields 

2R/IJk
xAJ/An + T/(JkxAIAn -IXAJkAn ) 

= -2eXn(epej)-EXneAA(e;,ej)' (2.46) 

The value of eA 
A (e; ,ej ) in the last term of (2.46) can be 

obtained by means of one additional contraction. We find 

2R/Igkl + T/( Jk XAIxA - I XA JUA ) = 6 e A A (e;,ej ), 

where we have made use of the fact that 

JkXAJIXA =gkl 

[see (3.5a) below]. 

(2.47) 

Moreover, since Jk XA and I XA are real twistors we also 
have 

Jk XAIxA = JUA I XA = 0, 

since J k XAEY. 

It follows readily that 

eA 
A (e; ,ej ) = 0 , (2.48) 

and (2.46) reduces to 

eX n(e;.ej ) = - R/IJ fA JIAn + Tij k I XA J kAll' (2.49) 

In arriving at (2.49) we have made use of 

(2.50) 

which results directly from the identity (AI), derived in Ap
pendixA. 

Finally, as a consequence of (2.49) the expression ofthe 
supertwistor curvature tensor given in (2.35) takes the form 

(eS)ij X r==(eS)X n(ei'ej ) 

- R klJ XAJ T kIxAJ - - ij k /All + ij kAll 

-~Pfi[i¢nll +Pfi[itPjfrll-itP[/¢nll' (2.51) 

where 

(2.52) 
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III. SUPERGRAVITY LAGRANGIANS AND ACTION 
PRINCIPLES 

Making use of the results in the preceding section we 
can now set up Lagrangian densities !f [eS (~)] for the 
gauge fields (i.e., the connection D ~) as scalar functionals of 
eS(~), which by construction will be locally super-Poin
care-invariant. Note that by virtue of Eq. (2.51) these La
grangian densities will determine the allowed functional 
form of these Lagrangians in terms of the quantities Rij kl, 
T/, PfiutPnx, Pfi[;¢jf, tP/, and ¢u;. Note also that the su
pertwistor curvature has two files in the contangent bundle 
and the third and fourth files in r3.2(~) and r3.2(~)' re
spectively, i.e., in the fiber space above the base manifold. 
Thus, in order to be able to construct scalars 10 from this 
quantity we must first project (2.51) so that the resulting 
tensor has all its files in the same space or its dual. We can do 
this most directly by following a procedure analogous to that 
designed for such a purpose in Ref. 6 and which involves 
using the action of the connection on the origin twistor to 
construct a unique map from the tangent bundle to the su
pertwistor bundle. 

We digress briefly in order to review the essential prop
erties of this JS map which is explicitly defined by 

Xi-+Xi( Js)/r D~Oxr. (3.1) 

Moreover, making use of (2.14) and (2.15) it can be shown 
that 

(Js)/r = DiO xr +B/AO Ar -B/AO AX 

= J/r - ~¢iA OAr + ~¢iA OAX . (3.2) 

Observe that (Jsbr and (J S); xr can also be used to 
map fields yxr and Zxr with values at q in (rti)q and 
(r;.~2)q, respectively, into fields Yi andzi with values atq in 
~ e ® Y; according to 

Yi = (Jsbr yxr , (3.3a) 

Zi = (JS)/rzxr . (3.3b) 

A similar procedure, based on induction from Eqs. 
(3.3), can be used for the mapping of tensors constructed 
from the spaces rti and r3.~2 into cotangent bundle ten
sors. 

Consider, in particular, the tensor !7iXA4>1l which acts as 
a metric tensor on (r£i)q to give the inner product 

(3.4) 

[cf. Eq. (2.6) in I]. 
Mapping !7iXA4>1l with (JS)i xr, and making use of(3.2), 

yields 

G l(JS)XA- (JS)4>ll IJXA- J4>ll ij = 2 i 1JXA4>ll '1 = 2 i .1JXA4>ll j 

_JXAJ J JXA -i jXA=U;Aj' (3.5) 

where G is valued in ~ e ® Y; ® Y;. 
The tensor G serves to impose the metric structure giv

en in the fibers on the tangent space Y q , i.e., we can define 
an inner product in the tangent bundle by 

x • y = xiGij yj . (3.6) 

In terms of components in an holonomic basis, (3.5) and (3.6) 
read 

(3.5') 
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x • y = xiyigij . (3.6') 

We return now to the main objective of this section, 
which is the construction of scalar invariants from the su
pertwistor curvature tensor. In what follows we shall con
centrateon contractionsof(2.51) with (3.2) which lead to the 
Lagrangian for simple supergravity. The extension of the 
procedure to other permissible Lagrangians, and to Lagran
gians for extended supergravities, is suggested by the ap
proach here adopted and is rather straightforward. 

First we transvect (2.51) with (JS)m nr, to get 

(I$S)ijzn(JS)m nr 

- R kIJ ZAJ J nr+R kIJ Z<I>J OnAJ. J' - - ij klAn m ij k I<I>n Of'mA T 

+ T/lzAJkAn Jm nr - T/IZ<I>Jk<l>nOnA'ifmA".r 

- r(~[i'ifjJn)Jm nr + r".r(~[i'ifj]n)OnA'ifmA 
+ i(~[irPj]z)Orn'ifmn - irP[/'ifj]n Jm nr. (3.7) 

The above equation still has two supertwistor indices 
and three indices in the con tangent bundle free. It would 
seem natural that the next operation should then be a double 
contraction with (]S)nzr. However, if we do this, all the 
important dynamical information contained in (3.7) relating 
to the gravitational and the rPj Z fields will be lost. 

To circumvent this problem we transvect (3.7) first on 
the right with (rs)r E, where (rs)r E = (YS)E r is the transpose 
of the Dirac gamma operator defined by [see Eq. (B51a) in 
Appendix B] 

(Ys)Er = - i[(S[)Er - (Sotr] , (3.8) 

and 

(Ys)Zr(YsrA = -E Z
A , 

and contract the result from the left with (]S)nZE' 
We therefore get 

(]S)nZE(I$S)/n( JS)m nr(rs)rE 

- R klJ UAJ J aP(- ) sJ - - ij k Ua m Ys P nus 

+ T/luaJkaP JmPA(rS)AsJnus 

+ i(~ [i 'ifi1 a) Jm ua(rS)aPOPA rPn A 

+ i(~ [irPj]1 Jnua(YstpoPA'ifm.-t 

(3.9) 

+ irP[iu JlnuA(YS)Aa JmlatJ'ifilP . (3.10) 

Note that in writing the right side of (3.10), we have made 
explicit use of the fact that this expression has no free su
pertwistor indices left and that the components in r 1 and 
r; have been contracted out completely. Thus all su
pertwistors in the right of(3.1O) are valued in r 2,2' r~.2 or 
are tensor constructed from these spaces. Consequently, by 
virtue of our previous definition (cf. Sec. II), we can use 
lowercase Greek indices (running from 0 to 3) to denote these 
supertwistors. 

Also note that because of the spaces in which rPj CT, ~ ua, 
and (Ys)a P are situated, the last term in (3.10) drops out. It is 
important to point out here that this cancellation has noth
ing to do with the fact that the coefficients of the fields rPj CT 
are Grassmann variables. 
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Furthermore, making use of the relation between the 
J's and the Dirac gammas [see Appendix B, Eqs. (B61) and 
(B62)], we get 

J{aP = ~(yjtA(YS)AKCKP, 

J{atJ = - ~CaA(yj)AK(YStp , 

where 
caP = ° atJ _ laP, CatJCPK = E PK , 

we have 

- Jk CTA JUaJ maP (rs)/JnCTs 

= - ·h(Ykl"A (YI)Aa (Ym)ap(Yn) Ps(Ys)Su 

= -n,tr(YkYIYmYnYS) 

= - [1116(41)] tr(Y[kYIYmYnlYS) 

(3.11a) 

(3.11b) 

(3)2) 

= - [1I16(4!)2]E'kImn €l,sttr(Y[qY,YsYt lYS)' (3.13) 

[In (3.13) we have deleted the tensor indices in the operations 
with the Dirac gammas, since multiplication of the mixed 
tensors (yj l"A is just ordinary matrix algebra.] 

Now, by virtue of(B43), (B46), and (B47) in Appendix B, 
we have 

1 €Irst tr( ) (4W Y[qY,YsYt lYs 

=~ -g [€Irst /(41)\r=g] tr(Y[qY,YsYt]Ys) 

= ~ - g tr(ysYs) = - 4 ~ - g . (3.14) 

Hence, 

- Jk UA JUa Jm atJ(rs)psJnus =!..r=g E'kimn . (3.15) 

By analogous arguments, we find that 

- ICTaJkaP + Jm PA(rS)A sJnus 

= -;- H raOaP(Yk) PA (Ym)AK(Yn tCT ] = O. (3.16) 

Consequently, the second term in (3.10), which contains the 
torsion explicitly, also vanishes. 

Taking into account (3.8), (3.9), and (3.11)-(3.16), Eq. 
(3.10) reduces to 

(]S)nZE(I$S)ijzn(JS)m nr(rs)rE 

= +! ~ - g E'kImnRijkI 

_ (i/2)(~[j'ifj]CT)(Ym)CTArPn A 

- (i/2)(~ [irP/))(rn)u A'ifm.-t , (3.17) 

where we have also used the relations [see Eqs. (B28) and 
(B29) in Appendix B] 

(3.18) 

(3.19) 

Note that in (3.17) all twistor indices are already con
tracted. Thus, in order to get a scalar density Lagrangian, we 
have only to contract on the vector indices in the con tangent 
bundle. This can be readily accomplished by multiplication 
with the tensor element of volume dIJ ijmn = d 4X ~imn. The 
result is 

.Y d 4x = dIJ ijmn( ]S)nZE(I$S)ijzn( JS)m nr(rs)rE 

= { ..r=g Rs + (il2)~imn[(~([i'ifj]CT)(Ym)UArPn A 

+ (~[jrP/J)(rn)CT A'ifm.-t ] J d 4X , (3.20) 
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where R. is the Ricci scalar R. =Rij ij. 
Using the fact that the ordinary complex conjugate of a 

scalar formed from supertwistors is obtained by taking the 
conjugate of each of the constituent twistors [cf. Eq. (2.39), 
and (2.40) in I], and also using the properties of the Dirac 
gammas, it can be easily checked that the Lagrangian den
sity given by (3.20) is real, as required. 

We can compare (3.20) with the usual form given in the 
literature ll in terms of Majorana spinors, by noting that 

(tfl O' = CO'a'ifia = (0 O'a - /O'a)'ifia , 

tPi O' = (,r);O', 

and that 

is a Majorana spinor. 
Also note that from (3.2Ia) 

tPi O'E[§ 0 ® Y r-~(t/f)i O'E[§ 0 ® Yo , 
and 

tPi O'E[§ 0 ® Y O~(tPC)i O'E[§ 0 ® Y 1 • 

Therefore, 

(3.2Ia) 

(3.2Ib) 

(3.22) 

.2" g=E'jmn [(9" [i'ifjJO')(Y m tA tPn A + (9" [itP/J) (Yn)O' A'ifmA ] 

= E'jmn { [(9" [i(t/f)/J] (y m ),/ (If<)np 

(3.23) 

after making use of (3.18) and taking into account that 
9";C ap = 0, because ofEqs. (2.21), (2.22), and (2.29). 

But, since 9" [i(t/f)/jE[§ 0 ® Yo, and (So)ap = oaYJpy is 
the projection operator onto Yo, and (SI)ap = /ayOpy is the 
projection operator onto Y I' we can write 

9" [i(t/f)/j = 0 O'a/pa 9" [i(t/f)J1 = [9" [i(t/f)J1] //la oO'a , 

(3.24) 

(Sltp [9" [i(t/f)J1] 

= 0 = ra0/la [9" [i(t/f)J1] = [9" [i(t/f)J1] 0pa /O'a . 

(3.25) 

Substracting (3.25) from (3.24) and utilizing (3.8), results in 

9" [i(t/f)/J = - i [9" [i(t/f)J1] (Ys)p 0' • (3.26) 

By similar arguments we get 

9" [itP/j = i [9" [itPJ1] (Ys)p 0' • (3.27) 

Consequently, substituting (3.26) and (3.27) in (3.23) gives 

.2"g = - iE'jmn{ [9"[i(t/f)/I] (Ys)O' A(YmhP(lf<)nP 
0' - A- 13-+ [9" [itPjJ] (Ys)O' (Y m)A tPnp 1 . (3.28) 

Furthermore, since 
u - A- 13-[9" [i(t/f)jJ] (Ys)u (Y m)A tPnp = 0 (3.29) 

and 

(3.30) 

we can add these two noncontributing terms to (3.28) to get 

.2"g = - iE'jmn{ [9" [i(~)/j](ys)O' A(Ym)Ap(~)np 1 
= iE'jm"{(~)nP(Ym)pA(Ys)Au9"[i(~l/n 

= - iE'jm"{(~)nP(Ys)pA(Ym)AO'9"[i(~)/n . (3.31) 
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Finally, replacing this expression in (3.20), yields 

.2" d 4x = {~ -g R. _ !E'jmn 

X [('ifM)nP(YS)pA(Ym)AO'9"[i(~)/]] 1 d 4x. 

(3.32) 

Converted to ordinary Dirac bispinors and matrices, 
Eq. (3.32) reads 

.2" d 4x = {~ - gR. + (i/2) E'jmn~YsYm9" [it/1fl d 4x, 

(3.32') 

where tPjM is a one column Majorana bispinor and 'if: is the 
adjoint Majorana bispinor defined, as usual, by 
'if: = (tP:)t~. 

Aside from dimensionality factors, which can be readi
ly made explicit, Eq. (3.32) is in agreement with the first 
order formulation of simple supergravity as it is usually pre
sented in the literature. S.II 

Now we will discuss variational principles. A few re
marks concerning the derivation of field equations from our 
first-order Lagrangians seem to be in order. These equations 
of motion are obtained in our formalism by noting that the 
fundamental (gauge) quantities to be varied in an action prin
ciple are the connections D i. 

On the other hand, by virtue of (2.14) and (2.15), vari
ation of D i is equivalent to independent variations of Dx 
and the gravitino field tPx O'. 

Furthermore, since any two linear connections may dif
fer only by a linear transformation, we have 

(c5Dx}z" = c5Mx O'yzY , Vf(q)E(r2•2 )q, (3.33) 

where c5M(q)EY~ ® (r 2.2)q ® (r~.2)q. In order to obtain ad
ditional insight into the structure of c5Mx, we note that 

c5[X(Z"wO')] = 0 = [(c5Dx)ZO' ]WO' +zO' [(c5Dx )wO' ] 

=zO'[c5MxO'y + (c5M!ty ]wY , (3.34) 

i.e., c5Mx has to fulfill the same requirements as the infinitesi
mal generators of Poincare transformations. Hence, the 
most general form of c5Mx must be given as a linear combina
tion of the generators of translations and Lorentz transfor
mations. 

Recalling the expressions for the generators of transla
tions and Lorentz transformation given in Eqs. (3.12) and 
(3.16) of!, we can write in general 

(3.35) 

where 

(3.36) 

c52M(q)E[§ e ® Y~ ® [(Y1 ® Yo) ® aH(Y 0 ® Y/)]q , 

(3.37) 

and Y 1 and Yo are subspaces of ~ ~.2' conjugate to the 
Weyl spinor spaces Y 1 and Yo, respectively. That is, the 
variation of Dx acting on a twistor is made up of the two 
independent variations c5IMx O'y and c5zMx "y. 

In addition, when Dx acts on a real twistor 
VapE[§ e ® 'iff we have 
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(ISDx)Va/3 = ISBx a/3y8 Vy8 , 

where ISB(q)e[9 e ® y~ ® ~ q ® ~ q' 

(3.38) 

Also, from the compatibility with the inner product we 
get 

lS[x(Va/3Wa/3)] = 0 = Va.B [ISBXa/3y8 + ISBxy8a.B] W y8, 

i.e, 

ISBxa.By8 = -ISBxy8a/3 . (3.39) 

It follows then from (3.39) that 
ISB(q)e[9 e ® y~ ® (~q 1\ ~ q). Moreover, from 

(ISDx)Ja.B = 0 = ISB" a.By8 JY8 , (3.4Oa) 

IS[X(la/3Va/3)] = 0 = r/3ISBxa.By8 V y8=:}la.BISBxa/3Y8 = 0, 

(3.4Ob) 

2(Dx Oa/3)oa/3 = IS [x(oa/30a/3)] = 0 

= 20 a/3ISB"a.By80 y8 = 20 a/3ISJ"a/3 ' (3.4Oc) 

it is easy to conclude that ISBja/3y8 has to be further restricted 
to the form 

ISBja.By8 = !(ISN)j j( ~a.Bly8 - la.B ~y8) + (ISK)j kl ( Jka/3 ~y8) , 

(3.41) 

where 

(ISK )j kl = _ (ISK)j Ik . (3.42) 

Equation (3.41), which was derived under the assump
tion thatDx acted on real twistors, applies equally well to the 
variation of the connection acting on an arbitrary twistors 
valued in r{f, since the latter can always be expressed as a 
sum of elements in C ~. 

We can now relate the ISB and ISM variations by noting 
that 

(ISDx)(uav/3 - vau/3) 

= ISBx a.By8 (UYV8 - vYu8) 

= (ISM x ayE /38 + E ayISM,,/38)(UYV8 - vYu8). (3.43) 

Taking into account the antisymmetry of each of the 
tensor files in ISBx ' we can then write 

ISBx a.By8 = !(ISM1[yE~JJ + E [~ISM !~J)' (3.44) 

Contracting (3.44) on the second and fourth tensor indices 
yields 

ISBx a/3Y/3 = ISM" a y + !ISMx/3/3E a y , (3.45) 

where ISMx/3/3 is obtained by one additional contraction in 
(3.45), and is given by 

(3.46) 

Substituting the first term in (3.41) into (3.45) and (3.46) and 
using a holonomic basis results in 

1S 1M jay = - !(ISN)/( ~a/3l/3Y -la.B~/3Y)' (3.47) 

Similarly, from the second term in (3.41) we get 

lS~ty = - (ISK)/I( Jk a/3J1{3y). (3.48) 

Let us now consider the different quantities in (3.32) 
which are affected by these two independent variations. 
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First we have 

lSI Jja/3 = (1SIDj)Oa.B = ISIMjayOy/3 + 1S1M/yoay 

In analogy, 

= - (ISN)/[ 0 aYlYA ~ A/3 + laYOYA ~..t,8] 

= (ISN)/[(So)aA + (SItA] ~A/3 

= (ISN)/ ~ a.B . 

IS J. a/3=lSlU. a OY/3+ISM./3 oay 2 I 2"~ I Y 2 I Y 

= - (ISK)/I( Jk aAJ/..tyOY/3 - Jk/3AJ/..tyoya) 

(3.49) 

= - (ISK)/I(OaAJUY J//3 + oaYJ1YA Jk A/3) = 0 

(3.50) 

[due to (3.42)]. 
In arriving at (3.49) and (3.50) we have used repeatedly 

the identity (AI) given in Appendix A. 
Note that because of (3.11), the variation of the Dirac 

rj 's is determined by the variation of J j a.B. However, since rs 
is defined according to (3.8), it will not vary. 

Other quantities that need to be varied in (3.32) are the 
exterior derivative connections!!}. To obtian an expression 
for (IS!!} Ii )tfJ/j, we first need to evaluate ISD? This follows 
from (2.17) 

(ISD~)uU = (ISDx)uU + ISJ" urlYAUA, 

i.e., 

ISM" a y = ISM" a y + ISJ" aAlYA . 

From (3.47)-(3.50) we have, in particular, 

1S 1Mx a y = 0, 

and 

(3.51) 

(3.52a) 

IS~" a y = lS~x a y . (3.52b) 

Consequently, making use of(2.32) we get 

(lSI!!} [j )tfJ/j = (1SIM[j IYI )tfJ/; = 0, (3.53) 

(1S2!!} Ii )tfJ/j = (1S~1i I yl )tfJj~ = - (ISK h/IJlk u(3 J 11 /3y tfJj~ . 
(3.54) 

Next consider 

ISg = gijlSgij = gijlS( Jja.B ~ a/3) . 

From (3.49) and (3.50), it follows immediately that 

1S1E = 0, ISlg = 2gij(ISN)ij . (3.55) 

The last quantity that it is necessary to vary in (3.32) is 
the Ricci scalar Rs. Most of the work needed to obtain ISRs 
has already been carried out in Ref. 6. Thus, we have only to 
substitute (3.41), (3.49), and (3.50) into the expression for ISRs 
given by Eq. (4.30) in that paper. After some fairly straight
forward calculations we get 

ISIRs = - 2(1S1 J1 a/3) J ma/3g"'jlS~Rij kl 

= - 2(ISN)/gnmg"'nR/ 

~ r = - 2(uN)gRjl , (3.56) 

1S2R s = [Tkl j + 2T1m mlS~ ] (ISK)j kl , (3.57) 

where RjI is the nonsymmetric Ricci tensor and Tk/ is the 
torsion tensor in the tangent bundle. 
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Making use of (3.49), (3.50), and (3.53)-(3.57) in an ac
tion principle derived from (3.32) leads to the usual expres
sions for the field equations of simple supergravity. 

As a final remark note that from the definition of the 
torsion 

Tijk = [(D;Dj - DjDi)OaP] Jkaf3 

(3.58) 

we get 

82 Tijk = [8:J(af3
Y6 ~y6 - 82BjaPY6 J/6] Jkaf3 

= [(8K )ikj - (8K )jki] . (3.59) 

Recalling (3.42) and the antisymmetry of Tijk in the first 
two indices, we can invert (3.59) to get 

(8K )ijk = ~ [82 Tikj - 82 Tkji - 82 Tijk] . (3.60) 

The term in the right of (3.60) may be recognized as the 
variation of the contorsion tensor. Thus, we see that the vari
ation 82M is equivalent to the variation of the contorsion in 
the tangent bundle. 

IV. SUMMARY AND CONCLUSIONS 

We have proposed a formalism for the gauging of the 
super-Poincare algebra which allows one to obtain first-or
der Lagrangians for supergravity. Our theory, which uses 
supertwistors as a representation space for the construction 
of a typical fiber, does not suffer from the conceptual prob
lems which characterize some of the approaches followed in 
the literature and which are based on a direct attempt to 
extend to noncompact groups the Utimaya2 procedure for 
gauging internal groups. 

The above is made possible by means of the basic idea of 
treating the super-Poincare group as an internal group. 
However, the theory differs from internal group theories in 
some significant aspects. 

The first difference is that no metric structure or con
nection on the tangent bundle is assumed. In typical gauge 
theories the metric structure of the tangent bundle is given a 
priori together with a connection compatible with the met
ric. Nevertheless, a natural isomorphism can be achieved by 
selecting a given origin twistor field and introducing its co
variant derivative (J f)zr = D fO zr, as a means to map 
structures originating in the fibers onto the tangent bundle, 
inducing in it a metric and connection [cf. Eqs. (3.5) and (3.6) 
in the text]. Furthermore, it may be shown that the selection 
of an origin twistor field imposes no special restriction on the 
theory. 

Another way in which our procedure differs from the 
usual approach to internal gauge theories, is that there one 
starts with a principal bundle on which connections are de
fined. Gauge covariant differentiation is then specified on 
the associated vector bundle of this principal bundle. In our 
development we start with fiber bundles which may be re
garded as vector bundles associated to a principal G bundle, 
where the structural group G is the super-Poincare group. 
Note, however, that we can pass from our vector bundles to 
their associated frame bundles and vice versa by changing 
the space on which the transition functions act from the vec
tor space to the group manifold and back. 12 
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We contend also that our approach provides a means of 
resolving one of the central problems of gauge field theories 
of external symmetry groups, that is the satisfactory treat
ment of translations. 

Another important feature of our theory is that the La
grangian density is obtained as a functional of the supertwis
tor curvature. Such a curvature is constructed basically from 
spinorial entities, as opposed to the Riemann curvature ten
sor which is built up from four-vectors. 

However, the supertwistor curvature may be related to 
the Riemann tensor, the torsion, and the gravitino field by 
means ofEq. (2.51) which we derived in Sec. II. The impor
tant consequence of this is that (2.51) determines completely 
the allowed functional form of the Lagrangian in terms of 
the gravitino field and the Riemann and torsion tensors in 
the tangent bundle. Thus our theory is gauge invariant by 
construction and provides a solid structure from which one 
can investigate all possible specific Lagrangians relating 
these fields in a gauge invariant fashion. 

In addition, note that the covariant derivative ~ i' 
which is required to occur in supergravity defined according 
to its spin content only, is introduced in our theory in a 
straightforward manner through the exterior derivative con
nections defined in Eqs. (2.29)-(2.32) of Sec. II, and appears 
naturally in our supertwistor curvature tensor. 

Equally natural is the incorporation of the concept of 
Majorana spinors in our formalism. Note, however, that 
both the Majorana spinors for the gravitino field and the 
Dirac gammas that we used are completely general, i.e., we 
do not introduce any specific choice of representation for 
them. 

We remark, finally, that by enlarging the dimensiona
lity of our supertwistor spaces extended supergravity theor
ies can be readily accommodated within our formalism. 
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APPENDIX A: A TWISTOR IDENTITY 

A useful tensor identity involving contractions of skew 
symmetric twistors is proved here. This identity is applied 
repeatedly throughout the text. 

Theorem: For A 1.tV, BI.tVE~ ~i, 

A JLA.BAV + BJLA. AAV = - ~ A af3Baf38t . (AI) 

Proof: Let 

M Jl VaPYA = 8 tfJ af3YA - 8 /:fJ vf3YA - 8 IffJ aVYA 

- 8ffJaf3vA - 8ffJaPrv ' (A2) 

where 1Jaf3YA is the antisymmetric tensor in ~ ~24 normalized 
as 

'T/af3YA:y, = 4' 
'1 'laf3YA . 

and is used for constructing duals. Since ~ 2,2 is four dimen
sional and M Jl vaf3YA is antisymmetric in its five subscripts, it 
follows that 

C. P. Luehr and M. Rosenbaum 1842 



                                                                                                                                    

M ,.. vapyJ.. = 0 . 

By (A3) we have 

0= A a{:JB yJ..M ,.. va{:JyJ.. 

= 2A apBap8': + 4A p.A BJ..v + 4B p.AAJ..v , 

and (AI) follows immediately from this. 

APPENDIX B: DIRAC GAMMA OPERATORS VIA 
TWISTOR THEORY 

(A3) 

The space of Dirac r operators is related by a one-to
one correspondence to Minkowski space. We shall give here 
an explicit construction of this relationship by means of a 
map between two twistor spaces. The first space, the domain 
of the map, is isomorphic to Minkowski space, and it is the 
twistor space :7 == r 0 defined in the preceding paper. The 
second space, the range of the map, is isomorphic to the 
space of Dirac r operators, and is a real subspace of the space 
of linear transformations %' 2,2 ® %' 2,2 on the space 
%'=%' 2,2=(%' 2,2,1/a{:Jy6 ,la{:J,oap) defined in Ref. 6. Note 
that the space %' 2,2 is the twistor space, but the privileged 
elements 1/a{:Jyfj, I a{:J, 0 a{:J forming part of its structure make it 
isomorphic to the Dirac bispinor space. 

The map which establishes the above-mentioned corre
spondence is the bijection Tape%' @2-+Vape%' ® %" given 
as 

v ap = L (Tap) = 2iTaY(Iyp + Oyp). (Bl) 

The inverse map vape%' ® %"-+TaPe%' @2 is 

TaP = L -1(Vap) = ~ Way(JYp + OYP). (B2) 

We now investigate some properties of this map. We 
shall define subspaces /, /s, /4' 'if 1,4' 'if 1,3 of %' @2, and 
subspaces JY, JYs, JY4, ~ 1,4, ~ 1,3 of %' ® %,', which are 
the respective images of the above %' @ 2 subspaces under the 
mapL. 

First define the subspaces / C %' @2 and JY C %' ® %" 
by 
/ = %' A2 = {Ta{:J I Ta{:Je%' @2, T{3a = - Ta{:J 1 , (B3) 

JY= {vaplVape%' ® %,', 

(V)pa = - (Ipy + OpY)VYJ..(IJ..a + oJ..a)j . (B4) 

It is easily shown that under the map L 

/-+JY=LV) , (BS) 

where L V) denotes the image of / under the map L, i.e., 
L V)={L (Ta{:J)lTa{:Je/l· 

To define the other subspaces, we shall make use of the 
following elements: 

(E6)a{:J = Wa{:J + Oa{:J)e/ , (B6a) 

(Es)a{:J = Mla{:J - oap)e/ , (B6b) 

(U6t p = - iEap = - i [(SItp + (Sotp]eJY, (B6c) 

(Us)ap = - i [(SItp - (Sotp]eJY, (B6d) 

where E a p = (SI t P + (So)a pe %' ® %" is the identity trans
formation on %' [defined by (2.12) and (2.13) in I). Under the 
map L, it follows that 

(E6)a{:J-(U6t p =L [(E6)a{:J] , (B7a) 
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(Es)ap-+(Us)a p = L [(Es)ap] . (B7b) 

Note also that 

(E6)a{:J (Es)a{:J = 0 , (BSa) 

(E6)a{:J(E6)ap = I , (BSb) 

(Es)ap (Es)ap = - I . (BSc) 

Now we define the subspace /4C/SC/ and 
JY4CJYScJYas 

/s = {Ta{:J I Ta{:Je/, Ta{:J(E6)a{:J = 01 , (B9) 

/4 = {Ta{:J I Ta{:Je/ ' T aP(E6)a{:J = 0, Ta{:J(ES)a{:J = 01 , 
(BlO) 

JYs = {vaplVapeJY, V ap(U6)Pa =01 

= {vaplVapeJY, V a
a = 01, (Btl) 

JY4 = {vaplVapeJY, V ap(U6)Pa = 0, Vap(Us)Pa = 01 

= {vaplVapeJY, V a
a = 0, Vap(US)Pa = 01 . (B12) 

Note that for Ta{:Je/ and va p = L (Ta{:J)eJY, 

(E6)a{:JTa{:J = (i/4)(Iap + Oa{:J)[ Vay(JYp + OYP)] 

= - (i/4)(I{3a + O{3a)Vay(JYP + OYP) 

= (i/4)(V)pP = (i/4)V Pp . (B13) 

Consequently, under the map L we have 

(B14) 

In addition, we shall need the following theorem [which 
can be readily proven by writing A y6 = - A YU(IU7' 
+ 0 U'T )(1 r6 + 0 r6) = A YU(E)u 6 , and similarly for B yp in the 

left-hand side of the twistor identity (AI) derived in Appen
dix A, using once more this identity to change the order of 
the products and finally resorting to (Bl3)]. 

Theorem B.1: For (T1t P, (T2)a{:Je/, and (Vl)ap 
=L [(TltP], (V2)ap =L [(T2)a{:J]eJY, 

H(Vltp(V2)Py + (V2tp(Vl)Py] 

- H (Vlt y(V2)PP + (V2)a y(Vl) Pp ] 

= (Ttl,..v(T2)I'VEa
y . (BIS) 

Observe that for (Vlt P' (v2)a peJYs, (B 15) leads to 

H(Vl)aY(V2)Yp + (V2)ay(Vtlyp ] = (T1)l'v(T1)l'vEap . 

(B16) 

Moreover, taking the trace of(B16) results in 

(T1)l'v(T1)I'V = !(Vlt y(V2)Ya . (B17) 

Thus for (Vlt p, (Vlt peJYs, (BI6) can be restated as 

(Vlty(V2)yp + (V2ty(Vl)yp = H(Vly(Vl)Yfj] E ap . 

(BlS) 

Note also that using (T1)a{:J = (Es)a{:J and (V2t p = (Ust p 
in (B 17), leads to the result that under the map L we have 

/4-+JY4 = L (/4) . (B19) 

Next define the real subspaces 'if 2,4 C/' 'if 1,4 C/s, 

C. P. Luehr and M. Rosenbaum 1843 



                                                                                                                                    

~ 1,3 C/4, fP 1,4 cKs, and fP 1,3 cK4 as 

~ 2,4 = {TaP I TaPE/, TaP = TaP} , (B20) 

~I,4 = {TafJITafJE/ s , TafJ= TaP}, (B21) 

~ 1,3 =,Y = {TaP I TaPE/ 4 , TafJ = TaP J , (B22) 

fP I,4 = {vapwapE£'s, Vap = VapJ, (B23) 

fP 1,3 = {vap WapE£'4' Vap = V ap J • (B24) 

The space ~ 1,3 is Minkowski space, and fP 1,3 is the 
space of Dirac gamma operators. In order to relate these two 
spaces under the map L we need the following theorems. 

Theorem B.2: For TafJE/, 

TaPE/ s ¢:} TafJE/ s , (B25) 

and for va pE£', 

va pE£'s ¢:} va pE£'s . (B26) 

Relation (B25) follows directly from 

T aP(E6)afJ = T afJ(E6)afJ = [TafJ(E6)ap]· , 

where we have taken into account that (E6)ap is a real twistor. 
To arrive at (B26) note that 

Va
a = (va a) • . 

Theorem B.3: Under the map L restricted to the domain 
/s, i.e., TaPE/s __ vap = L (TaP)E£'s, we have 

TaPE/s __ vap = L (TaP)E£'s, (B27) 

and, consequently, for TaPE/ s we have 

TaP = TaP ¢:} va P = Va P . (B28) 
To prove this theorem we make use of the identity (AI) 

in order to show that 
-afJ 

2iT (I py + ° py) 

= 2i(Iyp + Oyp)T fJa = - 2iT yp(I pa + ° pa) = Vay . 

(B29) 

Using Theorems B.2 and B.3, one can easily show that 
under the map L we have 

~ 1,4 --fP 1,4 = L (~ 1,4) , (B30) 

~I,3--fPI,3 =L(~I,3)' (B31) 

Equation (B31) expresses the result that the map L es-
tablishes a one-to-one correspondence between Minkowski 
space ~ 1,3 and the space fP 1,3 of Dirac gamma operators. 

Combining the preceding results we can finally arrive at 
the following theorem. 

Theorem B.4: Suppose (WS)PaE~ ® ~' has the follow
ing properties: 

(WS)a P = - (lay + 0ay)(WsV,,(I'tP + O"p) , 

(Wsta =0, 

va y(WsVa = 0, for all vayEfP 1,3 , 

(Wstp = (Ws)ap , 

(Wsty(WS)Yp = _Eap . 

Then 

(Wsty = ± (Usty· 

(B32a) 

(B32b) 

(B32c) 

(B32d) 

(B32e) 

(B33) 

To prove this theorem, first let ( Fs)ap = (i/2)( Wst y(JYp 
+ oyP). Then by the map L we have (Wstp =L.[( FstP] 
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= 2i( FstY(!yp + Oyp). Furthermore, by (B32a), (B32b), and 
(B32d) we find that (Wst pEfP 1.4 c K s c K, and using 
(B13) and (B28) leads to (Fs)aPE~ 1,4 C/s. In addition, 
(B32c) and (B17) imply that T afJ( Fs)a

p 
= ° for all TaPE~ 1,3' 

But, by virtue of (B22) and (BlO), TaP(Es)aP = ° for all 
TaPE~ 1,3' Hence (Fs)afJ is in the same one-dimensional sub
space in which(Es)afJE~ 1,4 lies, so (Fs)/l-V = a(Es)/l-vforsome 
real number a. If we now make use of (B16), we get 
(WsV.5(Ws).5" = (Fs)/l-v( Fs)/l-VEY". Substituting (B32e) on the 
left-hand side of this equation yields (Fs) /l-v( Fs) /l-V = - l. 
Also since (Es)/l-v(Es)/l-V = - 1, we arrive at a = ± 1 and 
(Fs)ap = ± (Es)aP. Thus, (Wst p = ± 2i(Es)aY(!yp + Oyp) 
= ± (Ustp. Q.E.D. 

Having established Theorem B.4, we are now in a posi
tion to elaborate further on the relation between Minkowski 
space and the space of Dirac gamma operators. For this pur
pose let (Ei tPE~ 1,3 for i = 0, 1,2, 3 be any basis for ~ 1,3' and 
(E itPE~ 1,3 for i = 0, 1,2,3 be the corresponding reciprocal 
basis. Thus 

(Ei)afJ(Ej)afJ = 8; . (B34) 

The components gij of the metric tensor for ~ 1,3 are 

gij = (Ei)afJ(Ej)afJ . (B35) 

Including (Es)ap with the (Ei laP given above, we have the 
elements (EA )aPE~ 1,4 for A = 0, 1,2,3,5, which form a basis 
for ~ 1,4' The elements (E A )afJE~ 1,4 for A = 0, 1, 2, 3, 5, 
where (EitP for i = 0, 1, 2, 3, is given above and 
(E StP = - (Es)ap form the corresponding reciprocal basis 
for ~ 1,4 since 

(E A )afJ (E B)afJ = 8; . (B36) 

With respect to this basis the components of the metric ten
sor for ~ 1,4 are 

gAB = (EA)afJ(EB)afJ ' (B37) 

and we have gij the same as given above for i,j = 0, 1, 2, 3, 
and giS = gSi = 0, gss = - l. 

The elements (ui)a P = L [(Ei)afJ] = 2i(Ei )aY(! yp 
+ ° yp )EfP 1,3' for i = 0, 1, 2, 3, form a basis for fP 1,3' Using 
l (A ay BYa) as the inner product for A ap,B apEfP I ,3' the 
elements (Ui)ap = L [(Ei)afJ] = 2i(Ei)aY(Iyp + Oyp) form 
the corresponding reciprocal basis for fP 1,3 since 

l(Ui)ay(~Va = (EitP(Ej)ap = 8; . (B38) 

Also we have 

l(Ui)ap(~)Pa = (Ei)~(Ej)afJ =gij . (B39) 

Similarly, the elements (UA t P = L [(EA)afJ] 
= 2i(EA )aY(Iyp + Oyp)EfP 1,4 for A = 0,1,2,3,5 form a ba

sis for fP 1,4' Using l( A a p B p a) as the inner product for 
A ap, BapEfPI,4 the elements (UA)ap =L [(EA)afJ] 
= 2i(E A)aY(Iyp + Oyp)efP I ,4 form the corresponding reci
procal basis for fP 1,4' since 

l(U A tp(UB)Pa = (E A tP(EB)aP = 8~ . (B40) 

Also we have 

l(UAtp(UB)Pa = (EAtP(EB)ap = gAB . (B41) 

Note that (US)ap = - (Ustp. 

C. P. Luehr and M. Rosenbaum 1844 



                                                                                                                                    

Introducing the customary notation for the Dirac gam
ma operators, we have 

(Yi)atl = (ui)atl , for i = 0, 1,2,3, 

(Ysttl = (Usttl ' 

(y)atl = (Uittl , for i = 0, 1,2,3, 

(r)a tI = (U S)a tI . 

Note that 

(r)atl = - (Ysttl . 

Now let 

(Ws)a tI = (4!) - Wijk/(u;)aK(C!;)K"(Ukl"\,(utll'tI 

(B42a) 

(B42b) 

(B42c) 

(B42d) 

(B42e) 

= (4!) - Wijk/(y;)aK(Yj)"'" (Yk)"1' (Y/) I'tI ' (B43) 

where N 'jkl are components of an antisymmetric tensor N in 
ff U normalized such that 

N ijklN 4' ijkl= - " (B44) 

It can be shown that (Wst tI satisfies the properties given in 
Theorem B.4, therefore 

(B45) 

The choice ofN is unique up to a sign. Assume a choice ofN 
such that Eq. (B45) has a plus sign, Le., 

(Wsttl = (Us)atl = (Ys)atl . (B46) 

For this N we say that a basis (Eo)atl, (EIlaP, (E2)atl, (E3)atl for 
ff 1,3 is right handed if the components N ijkl with respect to 
this basis satisfy N0 123 > O. 

In this case, we have 

N ijkl = ~jkl/ ~ _ g , (B47) 

where ~jkl is the Levi-Civita symbol (£0123 = £0123 = 1). 
Suppose in addition that we have a basis (E; t P, for ff 1,3 

which is orthonormal, Le., such that 

gij =0, for i#j, (B48) 

goo = -gll = -g22 = -g33 = 1; 

and suppose this basis is also right handed. Then it follows 
that 

(B49) 

For convenience we summarize here some of the prop
erties of the Dirac gamma operators which can be readily 
obtained from the results so far derived: 

(y;)a P = L [(E;)aP] = 2i(E; tY(Iyp + Oyp )E~ 1,3 , 

(r;)p a = - (lp" + Op,,)(Yi)"K(IKa + OKa), 

(y;ta =0, 

(y;)a,,(YS)"a = 0, 

(r;tp = (y;)ap , 

(B50a) 

(BSOb) 

(BSOc) 

(BSOd) 

(BSOe) 

(y;tAYj)"'p + (Yj)aK(Y;)"'tI = !(y;)l'v(Yj)\,Eatl = 2gijE ap , 

(BSOf) 

(BSOg) 
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(Ys)atl =L [(Es)aP] = 2i(Es)aY(Irf3 + Orf3) 

- i [(s/)atl - (So)atl ]E~ 1,4 , (BSla) 

(Ys)ap = (YO)aK(Ylt" (Y2)"1' (Y3)I'P [if (E;)aP is a right-oriented 

orthonormal basis for ff 1,3] 

(YS)a P = - (lay + 0ay)(Ys)y" (I"P + O"tI), 

(YS)aa = 0, 

(y;tP(YS)Pa = 0 (for i = 0, 1,2,3), 

(rs)ap = (Ystp , 

(Ys)a,,(Ys)"tI = _E ap . 

(BSlb) 

(BSIc) 

(BS1d) 

(B51e) 

(BSlf) 

(BS1g) 

In the main text we have used the space Y =ff 1,3 as a 
typical fiber of a bundle Y(1):=ff 1,3(1). The (E;)aP (de
noted there by J;aP), laP + oaP, and (y;)ap are cross sec
tions of the bundles ff 1,3 (1), ff 2,4 (1), and ~ 1,3 (1), re
spectively. 

Taking note of this notational correspondence, (BSOa) 
can be written as 

(y;tp = 2iJ;aY(Iyp + Oyp), 

and its inverse, defined by (B2), is 

J/P = (i/2)(y;)ay(pP + OYP). 

Also, since J;,Ba = - J; aP, we have 

J; ap = (i/2)(ry + 0 aY)(r;)/ . 

(BS2) 

(BS3) 

(BS4) 

We now consider another map which we use extensive
ly in the text in conjunction with the yoperators. This is the 
charge conjugation operator. 

We can define explicitly the charge conjugation opera
tor caPEff 2,4 by 

cap = oaP _ laP, 

and for t/?Eo//, its charge conjugate (rf'tEo// is 

(1fT = (oaP - laP)¢p . 

(BSS) 

(BS6) 

From Eqs. (2.12) and (2.13) in I, it is trivial to show that 

caycyp = Eap , (BS7a) 

CayCYP = (E)a P' (BS7b) 

We can now express some of the relations derived above 
in terms of this charge conjugation operator. 

First, multiplication of (BSOb) by C"p on the left and by 
Cal' on the right, and the use of (BSOg) and (BS1a), yields 

(y; t p = - C aA. (r;)" KCKP . (BS8a) 

The inverse of (BS8a) is 

(r;)pa = - CpK(Y;t"c"a, (BS8b) 

which is readily obtained from (BS8a) by making use of 
(BS7b). 

By means of a similar operation on (BSlc), we also get 

(rS)a P = CaA.(YS)"K CKP . (BS9) 

Finally, note that by virtue of(BSla) and (BSlf) 

laP + oaP = - i(Yst" C"P = - iCaA.(rs)"P, (B60a) 

(B60b) 
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It follows then, from (B53) and (B60a), that 

Jj a{3 = ~(Yit.,dY5)"KCKP. (B61) 

Similarly, taking the conjugate of (B54) and making use 
of (B50e) and (B60b) results in 

J jap = !Ca,«Y5)"K(Yitp = - !Ca" (yJ\(Y5tp • (B62) 
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Gauge fixing and Gupta-Bleuler triplets in de Sitter QED 
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Binegar et al. recently developed de Sitter QED within the frame of a particular gauge fixing c = ~. 

Such a choice leads to the simplest possible structure of the Gupta-Bleuler triplets, with the 
SO(3,2) representations D (3,0) and D (1,1) appearing to describe special gauge solutions. The 
present work examines the general case c#j by considering explicitly the corresponding 
homogeneous propagators and some fundamental carrier states for the related indecomposable 
representations ofSO(3,2). The latter expressions involve "logarithmic" gauge states which 
independently carry extensions of the D (3,0) and D (1,1) Lie algebra representations. 

I. INTRODUCTION 

In a recent paper, I Binegar, Fronsdal, and Heidenreich 
have put in evidence the need for two dynamically indepen
dent potentials in de Sitter quantum electrodynamics. The 
existence of two independent Gupta-Bleuler triplets follows, 
whereas only one is required in flat space quantum electro
dynamics (QED). Each de Sitter Gupta-Bleuler triplet is a 
certain indecomposable representation of the de Sitter group 
SO(3,2), where the massless irreducible representationD (2,1) 
occupies the central part. They are obtained in Ref. 1 by 
restriction in conformal QED2 to the de Sitter subgroup. 

A first discontinuity with respect to the flat space limit 
then appears: whereas the notion ofhelicity is well defined in 
Minkowski QED, we lose its meaning in de Sitter space. 
Another unusual singularity occurs in the choice of the 
gauge, a choice which amounts to giving a precise value to a 
certain parameter c. In Minkowski QED, the simplest fixing 
is the Feynman gauge c = 0, while the value c = j is privi
leged in de Sitter QED. This discontinuity is an indication of 
the nontrivial character of the contraction de Sitter ---+Poin
care with respect to massless field theories. 

The aim of this work is to reexamine de Sitter QED with 
an arbitrary gauge fixing c (however different from 1), and 
study the differences with the case c = j; essentially, "loga
rithmic" states appear in the general case. Our approach, 
presenting itself as rather pedestrian and pedagogical, insists 
on the explicit construction of the homogeneous propaga
tors for any c. The resulting expression makes transparent 
the raison d 'etre of the value c = j. 

It was pointed out in Ref. 1 that there exists another 
formulation which allows one to overcome the difficulty due 
to a non-null gauge fixing: the a priori removal of the the 
transversality condition on the de Sitter fields in order to 
reimpose it after quantization as a Lorentz condition. Never
theless, it is not without interest to examine these questions 
of quantization on a curved space by keeping to a minimum 
the number of field components in order to stay as close as 
possible to the flat space conditions. 

The organization of this paper is as follows. Section II 
briefly reviews Minkowski QED and related notions of 

0) Pennanent address: Laboratoire de Physique Theorique et Matherna
tique, Universite Paris 7, 75251 Paris Cedex 05, France. 

Gupta-Bleuler triplets and gauge fixing through the intro
duction of the b field. Section III recalls the de Sitter formal
ism as it was developed by Fronsdal.3.4 We also write de 
Sitter QED equations explicitly. 

Introducing a b field in both cases can appear as a use
less, pedantic complication, but it is done by keeping in mind 
a future generalization of the present work to higher spins in 
the spirit of Ref. 5. 

Sections IV and V are devoted to the homogeneous 
propagators and the SO(3,2) content of their expressions. 
Section VI is a review of some results of Ref. 1 obtained for 
the case c = j, and preparation for the last two sections 
which consider the general case c#~ and display what we 
call "logarithmic" states. We then examine the indecompos
able representations of the de Sitter group associated with 
different gauge fixing c and the link that they have with the 
Gupta-Bleuler triplets of Ref. 1. 

II. MINKOWSKI QED 
A. Gauge fixing 

The free field equations of electromagnetism 

DAI' - a!, a·A = 0 (2.1) 

are identically satisfied by the gauge fields 

(2.2) 

The occurrence of such a large set of solutions brings 
trouble when one tries to solve for the field AI' in terms of an 
external source JI' 

DAI' - a!, a·A = JI" 

AI' =O-IJI' (mod. gauge field). (2.3) 

Let us note that the current has to be conserved 
(a.J = 0) consistently with (2.3). 

Equation (2.1) is derived from a gauge-invariant La
grangian density 

!f" = - !al'A val'Av + !(a.A)2 - J·A. (2.4) 

The gauge fixing can be realized by adding to !f" two terms 
involving the so-called b field6

: 

!f" = - !al'A val'Av + !(a·A f - ba·A - (a/2)b 2 - J·A. 
(2.5) 

The field equations now read 
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DAI' - [(a - l)/a]al' a·A =JI" 

a·A =ab. 

(2.6a) 

(2.6b) 

The simplest choice of gauge is taking a = 1, the Feynman 
gauge. The inhomogeneous propagator is simply 0- 1<51''' 
and no higher poles appear. 

Examining Eq. (2.6a) more closely, 

DAI' - c al' a·A = JI" c = (a - l)1a, c=/= 1, 

we are led to two conclusions. 
(1) Since a·J = 0, (1 - c)O a·A = ° and hence a·A is a 

free field. It has been shown7 that this gauge condition is the 
simplest one among those which are conformal invariant. 

(2) The gauge fields AI' = al'A satisfy the free field 
equations only if DA = 0. 

B. Gupta-Bleuler triplets 

Quantization of free fields is usually carried out after 
choosing the Feynman gauge c = ° and we are led to consid
er the space V' of the positive-energy solutions of 

DAI' = 0, 

IIA 112_ - f d 3xAJl*ial'AI' < 00. 

(2.7a) 

(2.7b) 

The form (2.7b) is indefinite. It will be positive semidefinite if 
we restrict ourselves to the subspace VC V' of vector fields 
satisfying the Lorentz condition a·A = 0, and the radical of 
(2.7b) is precisely the set Vg C V of gauge fields 
AJl = aJlA, DA = 0. 

We thus see a chain appearing: 

VgCVCV'. 

The form (2.7b) is definite positive on the quotient space 
VI Vg: it acquires there the status of a norm and VI Vg car
ries the physical content of the theory. It is the space of 
physical states or transverse photons, while Vg is the space of 
longitudinal photons. Finally the scalar photons form the 
quotient space V' 1 V, whose elements are associated with di
vergences a·A. 

A subspace V'C of the space of solutions of 

DAJl - c aJl a·A = ° (2.8) 

can be put in correspondence with the space V' when c=/= 1. 
An analogous chain is displayed: 

Vg cc VcC V'C. 

To any solution A of (2.7) corresponds at least one element 
A C of V'C: 

(2.9) 

Thus A C is obtained from A through the transformation 
A C = A + aA with 02A = 0. The application (2.9) is the 
identity when restricted to the subspace V determined by the 
Lorentz condition a·A = 0. Hence, Vg C = Vg and V C = V. 
On the quotient spaces V' 1 V and V'C 1 V, the corresponding 
(2.9) is simply described by 

a·A C = [1/(1 - c)]a·A (2.10) 

and is obviously biunivocal. 
Returning to the simplest case c = 0, we now focus on 

the Poincare invariance of the chain Vg C VC V'. Under the 
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usual Lorentz transformation of the vector field 

(2.11) 

the subspace Vg of longitudinal photons is clearly invariant 
and carries no helicity. It can be turned into a Hilbert space 
and the representation then involved is equivalent to 9 (0,0), 
9 (O,A ) being the Poincare UIR with zero mass and discrete 
helicity A. 

The subspace Vg is not invariantly complemented in the 
invariant subspace V. The completion of the quotient space 
V IVg provided with its norm (2.7b) carries the unitary rep
resentation 9 (0, I) e 9 (0, - 1). Also, V is not invariantly 
complemented in V' and, symmetrically to Vg , the space V' 1 
V of scalar photons carries a representation equivalent to 
9 (0,0). A not completely reducible or even "indecompos
able" representation Uo(a,A ) of the Poincare group has thus 
been put in evidence: 

9(0,0)-+{9(0,I)e 9(0, -1)}-+9(0,0), (2.12) 

where the arrow symbolizes a semidirect sum. 
The representation (2.12) is the simplest one among a 

family of nonequivalent indecomposable representations 
Uc(a,A ) indexed by the gauge fixing c=/= 1. Rideau8 (see also 
Ref. 9), explicitly wrote them as extensions of one zero mass 
scalar representation by a zero mass vectorial representation 
of the Poincare group, using cohomological methods. He 
proved they give rise to covariant quantizations of the Max
well field, defined in the so-called generalized Lorentz 
gauges, the latter corresponding precisely to different 
choices of c. 

The transformation (2.9) is not an ordinary gauge trans
formation since A, proportional to 0- 1 a·A, AeV;=o, be
longs to a certain subspace G ' of the space of solutions of 

02A = O. (2.13) 

The subspace G' contains an invariant subspace G of solu
tions of DA = 0 carrying the representation 9 (0,0). But Gis 
not invariantly complemented and the quotient G' IG carries 
a representation equivalent to 9 (0,0). An extension of the 
representation with helicity zero by itself has thus been put 
in evidence, 

9 (0,0)-+9 (0,0). (2.14) 

and the resulting nondecomposable representation Uc(a,A ), 
whose fields A C form a carrier space, can be pictured by the 
diagram 

9(0,0)-+9(0,1) e 9(0, - 1l--z:9(0,0) (2.15) 
9(0,0)~ . 

We should retain from Ref. 8 that a nondegenerate ses
quilinear form invariant with respect to Uc (a,A ) exists if, 
and only if, c is real and Uc (a,A ) is equivalent to Uc' (a,A ) if, 
and only if, c = c'. 

III. DE SITTER QED EQUATIONS 

The de Sitter version of Eqs. (2.1) reads 

V"V"AI' - VJl V"A" - 3pAJl = 0, (3.1) 

where the metric gJl'" the covariant derivatives V Jl' and the 
(positive) curvature p are linked together by 
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(3.2) 

Equation (3.1) is identically satisfied by the gauge fields 

(3.3) 

A local isometric embedding in a five-dimensional 
pseudo-Euclidean space PEs with signature 
( +, -, -, -, + ) = ~afJ' a,/3 = 0,1,2,3,5 permits one to 
visualize the de Sitter space as (the covering space of) a hy
perboloid: 

• .2_ ~ a.'p _ 2 -+2 + 2 - 1 / 
Y =uafJY y - Yo - Y Ys - I p. (3.4) 

A five-component vector field {ka (y) J on PEs is locally 
determined by AJ.' (x) through the relations4

: 

AJ.'(x) =YJ.' aka (y(x)), (3.5a) 

wherex-+y(x) is the embedding map, andyJ.' a = aya/axJ.'; 

ka(y) = (py2)N12xaJ.'AJ.'(x(y)), (3.5b) 

where y-+x(y) is the dilatation-invariant projection map, and 
xaJ.' = axJ.t/aya. Here, ka is transverse, 

yaka (y) = y.k (y) = 0, (3.6) 

and homogeneous with degree N, 

A A a 
Nk=Nk, N y.a=ya_. (3.7) 

aya 

The gauge fields (3.3) now take the form 

ka(y) = (aa -PYaN)A (x(y)). (3.8) 

Actually, the differential operator a =a - pyN is the trans
verse projection of the gradient a. Indeed, introducing the 
transverse projector (J, whose matrix elements are given by 

(JaP = ~afJ - PYaYp, (3.9) 

we clearly have 
- - P aa - (Ja ap, (3.10) 

and we will note the properties 
- - 2 
aaYp = (JaP' aaY = o. (3.11) 

Thus a a is intrinsically defined on the hyperboloidy2 = 1/ p. 
Transforming the covariant derivatives V is straightfor

ward. If ka corresponds to AJ.' through (3.5), 
(JpP'(Ja a' ap,ka , = (Ja a' apka' = apka + PYakp will corre
spond to V vAJ.' and so on: 

VV·· .VA-+Trpr a Trpr a·· .Trpr ak. (3.12) 

Here, Trpr designates the transverse projection of a tensor 
field with arbitrary rank, 

(Trpr k ) = (J a, . . . (J ai k 
al" ·a2 at a ai· . ·a2· 

One thus obtains the free field equations of de Sitter space: 

a2ka + 2pYa a·k - aa a·k - 2pka = O. (3.13) 

Together with the "orbital" part MaP 
= i(ya a p - y p a a) of the infinitesimal generators of the de 

Sitter group SO(3,2), the operators ip- 1/2 aa form a repre
sentation ofthe conformal algebra so(4,2) (see Ref. 3): 

[aa,ap ] = - ipMafJ, 

[aa,Mpy] = i(~afJ ay - ~ay ap). 

(3. 14a) 

(3. 14b) 

Now, Eqs. (3.13) can be rewritten in terms which show their 
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SO(3,2) content. The irreducible representations of SO(3,2) 
which are relevant here are denoted D (Eo,s) (see Ref. 4). The 
infinitesimal generators of the representation are designated 
by LaP = MafJ + SafJ, whereSafJ is the "spin" part. The "en
ergy" Eo is the lowest among the eigenvalues E of Lso and the 
"spin" s is the angular momentum of the lowest energy ei
genspace. The second-order Casimir operator 

Qs = !LafJL ap (3.15) 

is fixed on the carrier space of D (Eo,s), 

Qs = (Qs)I = (Eo(Eo - 3) +.sis + 1))1, (3.16) 

and in the flat space limit p--o, the limits of LJ.'v and 

PJ.'=.,fjiLsJ.' become the generators of the Poincare group. 
For s = 1, the action of the spin generator Sap is defined 

by 

Sapky = i(~aykp - ~pyka)' 

and it can be verified that 

LaP ayA = ayMapA, 

where A is a scalar field on PEs. 

(3.17) 

(3.18) 

Now, for spins 0 and 1, the Casimir operators Qo and Ql 
can be expressed in terms of the transverse derivatives a a: 

Qo= _p- 1 a2
, (3.19a) 

Qlka = Qoka - 2Ya a·k + 2ka, (3. 19b) 

and a·k = a·k, since k is transverse. 
Therefore, Eq. (3.13) reads 

Qlk +p-I aa.k = 0, (3.20) 

and can be derived from the Lagrangian density: 

.Y = - (1/2y2)k'Qlk + !(a.k f. (3.21) 

Similarly to flat space QED, the gauge fixing is accom
plished by adding to (3.21) two terms involving a scalar field 
b: 

.Y = - (1/2y2)k'Qlk + !(a.k)2 - b a.k + (a/2)b 2. 
(3.22) 

A variation of .Y leads to the equations 

Qlk + Cp-l aa·k = 0, 

b = (1/a)a·k, c = (a - l)1a. 

(3.23a) 

(3.23b) 

But, as we now are going to show it, the simplest choice of cis 
not zero, contrary to the example of flat space QED. 

IV. HOMOGENEOUS PROPAGATORS 

To display the remarkable feature 1 of the gauge fixing 
and its discontinuity with respect to the flat space limit, we 
will examine in this section the homogeneous propagator 
K aa, , the expansion of which will give us complete informa
tion about the states solving the equation of motion (3.23a) 
for an arbitrary c #- 1, and about the representations of the de 
Sitter group actually involved there. 

The propagator matrix element K aa, (y,y') is a de Sitter
invariant function. It must therefore be a function of the 
invariant z = py.y' only, and has to solve the equation 

Q1Kaa,(z) +Cp-l aa a.Ka,(z) =0 (4.1) 

(for the y variable). Any tensor K aa, transverse with respect 
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to y and y' (in the indices a and a', respectively) is a linear 
combination of two basic transverse tensors 

Trpr(baa,) = f)/3f) , a,f3'bf3f3 , -f)a·f) , a" (4.2) 

Trpr(y a' y' a) = y.f) 'a' y'.f) a' (4.3) 

where f) and f)' are defined in terms ofy andy', respectively. 
Now, for any function ¢ (z), it is easy to check that 

aa a 'a'¢ = pf)a·f) 'a'¢' + p2y.f) 'a,y'·f)a¢ ". (4.4) 

Therefore, it is equivalent to put K aa, under a form 
which renders apparent its gauge part: 

Kaa,(z) = f)a·f) ~,d (z) + p-I aa a 'a'¢ (z), (4.5) 

where d (z) and ¢ (z) will be determined by Eq. (4.1). To find 
the differential equations satisfied by d and ¢, we will make 
use of the commutation rules below, which statement re
quires some technical manipulations: 

(4.6) 

Qlf)a·f) 'a,d = f)a·f) 'a,(Qo + 2)d + 2p-1 aa a 'aJ d, 

(4.7) 

(4.8) 

where f designates the antiderivative operator with respect 
to z. Equation (4.1) then becomes 

f)a·f) 'a,(Qo + 2)d + p-I aa a 'a' [(1 - c)Qo¢ 

+ (2 - 3c) f d - cZd] = 0. 

Therefore, 

(Qo+ 2)d=0, (4.9) 

and 

¢(z) = l~C Qo-I[CZd(Z) + (3C-2)Fd(Z)]. (4.10) 

In terms of the variable z, the 
Qo = - p - I a 2 takes the simple form 

Qo = - [(l-Z2) :; - 4z !], 
and, consequently, 

Casimir operator 

(4.11) 

Qo-Y(z) = - F(1-z2)-2F(1-z2if(Z). (4.12) 

Two independent solutions of (4.9) are simply 
(z ± lj-I=d ± (z). Now, examining Eq. (4.10) reveals two ex
treme values of c: C = ° and c = j. At first glance, the case 
c = j is singularized by its simplicity. Indeed, since 
zd ± (z) = d ± (z) + I and Q 0- Id ± = -!d ± from (4.9), we 
obtain for c = j the two independent homogeneous propaga
tors 

Irrespective of.a certain choice of c, terms proportional to 

Qo-IO = - cste F (1 - r)-2, (4.14) 

or to 

1850 J. Math. Phys., Vol. 26, No.7, July 1985 

QO-Icste = -cste f(1-z2)-2 F(l-Z2), (4.15) 

can be arbitrarily added to the expression of ¢ given by (4.10) 
and will supplement the expression (4.5) to K ;a' with pure 
gauge field propagators without changing its physical con
tent. 

The case c = ° introduces logarithms in the expression 
of K: Equation (4.10) now turns to be a rather intricate 
expression: 

¢ ±(z) = 2 F (1 _Z2)-2 F (l-r)F d ± (z) 

=~[[lnI1!=zl ±fz lnll!=zl] 
3 l+z l+z 

+~[lnI1+zl-_1_] -~lnI1 +zl]. (4.16) 
6 1 +z 2 -

Finally, any other gauge fixing c 01= 1 will present itself as 
a mixture of the two previously considered basic ones, c = ° 
andc = i. 

v. GROUP THEORETICAL INTERPRETATION OF THE 
SOLUTIONS 

The first part of the homogeneous propagator K ;a' (z): 
f) a .f) 'a' d ± (z), has an obvious de Sitter group interpretation, 
f) a .f) 'a' = Trpr baa' is the propagator for the five-dimen
sional representation D5 of SO(3,2), and d ± (z) are solutions 
of the equation (Qo + 2) d (z) = 0, which is also satisfied by 
the homogeneous propagators of the scalar representations 
D(I,O) and D(2,0) (see Ref.3), according to Eq. (3.16). The 
choice which is left to us concerning the sign + or - re
flects the existence in the de Sitter theory of two disconnect
ed parts for the initial data surface. I Introducing, besides the 
space coordinates y, the de Sitter time coordinate t, 

Y5+ iyo= Yei,jpt, Y=(l/p+y2)1/2, (5.1) 

they correspond to t = ° and t = 1T/{ji, and neither can be 
ignored. But it has been shown3 that one cannot accommo
date both representations D (2,0) and D (1,0) in the domain of 

a single self-adjoint Hamiltonian Po = ita /at) = {ji L50. 
Taking even and odd combinations of the solutions d ± (z) 
permits us to isolate their respective propagators and to con
sider only the initial data surface t = 0. The propagator for 
D (2,0) is the even combination (even with respect to the 
transformation z~ - z) 

D+(z) = (P/W)(Z2 _1)-1 = (P/8~)[d_(z) - d+(z)]. 
(5.2) 

The propagator for D (1,0) is the odd combination 

D_(z) = (P/4~)z(Z2 - 1)-1 = (P/8~)[d_(z) + d+(z)]. 
(5.3) 

Now, f)a·f) 'a,D ± (z) are the propagators of the represen
tations D5 ® D (2,0) and D5 ® D (1,0), respectively. The 
Clebsch-Gordan reduction of these tensor products is easily 
demonstrated to bel 

D5 ® D (2,0) = D (1,0) Ell {D (3,0)~D (2, l)~D (3,0) J, 
(5.4) 
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{

D(l,l)-+D (2,1)-+D (1,1)} 

Ds®D(1,0)=D(2,0)al ~ al / ' 

D(O,O) 
(5.5) 

the arrows still denoting semi direct sums. 
Even and odd combinations of the propagators K ';a' 

now take the form (where we stress the c dependence) 

P::, (z) = (p/Sr) [K ;a' (z) + K :;" (z)] 

= ()a·()'a·D ± (z) + p-I aa a 'a.GC± (z), (5.6) 

where 

G± c=_l_[ -~DOf + (3c - 2)Qo-lfD±] 
1-c 2 

= _ D + 2 - 3c [~D - Q -lfD ] 
Of 1-c 2 Of 0 ± 

VI. THE CASE c = i: GUPTA-BLEULER TRIPLETS 

The case c = j is now particularly illuminating. The 
propagator (5.6) takes the simple form 

PZ::,± (z) = ()a'() 'a·D ± (z) - p-I aa a' a.DOf (z). (6.1) 

The second terms of the above expression remove the 
pure gauge fields carrying the representations D (1,0) and 
D (2,0) appearing in the direct sums (5.4) and (5.5) from the 
propagators P 213 ±. Weare thus left with the two distinct 
Gupta-Bleuler triplets already introduced and discussed in 
Ref. 1. 

D (3,0)-+D (2, 1 )-+D (3,0), 

D (1,I)-+D(2,1)-+D (1,1). 

~D(~'O(/ 

(6.2) 

(6.3) 

Because of the behavior of the carrier states under the 
reflection Ya -+ - Ya' the inner product associated to each 
representation is given by integration on t = 0 only. Equa
tions (6.2) and (6.3) describe two dynamically independent 
vector potentials belonging to two different domains of self
adjointness for the Hamiltonian. Understood in terms of 
conformal QED, they owe their separate existence to a spon
taneous breaking of the conformal symmetry. The confor
mal QED Gupta-Bleuler triplet is2 

D (1 ,!,!)-+D (2,1,0) al D (2,0,1 )-+D (I,M). ---- ------D(O,O,O,) 

The central representation D (2,1,0) al D (2,0,1) describes 

TABLE I. Ground states and cyclic states for the Gupta-Bleuler triplet. 

D(3,0) ---------------. D(2,J) 

physical photons with helicities A. = 1 and A. = - 1 when 
interpreted through its restriction to the Poincare subgroup. 
Instead, when considered in terms of its reduction to the de 
Sitter subgroup, the requirement of self-adjointness for the 
Hamiltonian obliges us to work with even and odd combina
tions of A. = + 1 and A. = - 1 states, and we are thus led to 
the independent sets (6.2) and (6.3). 

In order to compare them with those introduced in the 
following section, it is worthy to recall from Ref. 1 cyclic and 
ground states for the indecomposable representations (6.2) 
and (6.3). Such states are eigenstates of the energy operator 
Lso and generate the carrier spaces involved when acted on 
by energy-shifting operators LSi + Loo; = 1,2,3. 

Tables I and II explicitly show them up to normaliza
tion and the addition of gauge states. One introduces a set 
[za l of Cartesian coordinates for the tangent space of PEs 
and the complex variables Y ± = Ys ± iyo, z ± = Zs ± izo, 
with energy E = + 1. The arrows denote the sense of the 
leaking after application of infinitesimal de Sitter generators. 
One also specifies the values of the divergence a·k. Here, -0 
designates the tensor with components ()aO where; = 1,2,3 
indicates the polarization. 

One will note the appearance in the second triplet of the 
state with energy zero: 

ka =aa In.JPy+ =Y+ -I(()as +;()aO)· 

This (locally) gauge state is associated with the trival repre
sentation D (0,0). 

VII. THE CASES c#i: LOGARITHMIC STATES 

The terms Qo -I f D ± which appear in the expression 
(5.6) introduce logarithms through the following combina
tions: 

g ± (z) DOf (z)lnlz2 - 11 + D ± (z)lnl(z + l)/(z - 1)1· 
(7.1) 

By removing terms like Qo -10 ex: [D _ + f D +] and 
Qo -I const ex: [D + + f D _ ], we obtain for the propagators 

pC+(z) =p 2I3,+(z) +p-I (j-c) a a'. 
aa' aa 2(1-c) a a 

X [ir 1nl; ~ ~ 1 + g+(z) r g_(Z)], (7.2) 

P C-(z)=p 2I3,-(z)_ -I H-c) a a'. 
aa' aa p 2(1 _ c) a a 

X [ir Inl1-z21 +g_(z) + r g+(Z)]. (7.3) 

Note that SZg+(z) = (p/4r)lnI1 - zllnl1 + zI. 

• D(3,0) 
z.k=y+ -3(y+Z_ -y_z+) ~ y+ -3(y+Z_Z+Y) z.ay+ -3 

cyclic for the whole 
Gupta-Bleuler triplet 
a.k= _6y+-3 
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physical state, 
cyclic for 
D (2, l)--+D (3,0) 
a·k=O 

absolute ground 
state for D (3,0) 
a·k=O 
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TABLE. II. Ground states and cyclic states for the second Gupta-Bleuler triplet. 

D(l,ll 
zok=y+ -1().Z 

• D(l,l) 
-+ z.a(y+ -lji) 

• D(2,1) 
y+ -2ji!\Z 

The arrow on k denotes 
a p,olarization 
a-k = - 3py+ -lji 

-------.. 

cyclic vector 
for 
D(2,1)-+D(I,I) 
a·k=O 

absolute ground 
state for D(l,l) 
a·k=O -

D(O,O) 
z·aln.JPy+ 
a·k= -3p 

-
Note that SZg+(z) = (p/4,r)lnll - zlinil + zi. 

One can see from the previous expressions that the car
rier states for the Gupta-Bleuler triplets (6.2) and (6.3) are 
now added to gauge fields coming from the factors oq - c. 
A limited expansion of the latter in inverse powers of z per
mits us to identify these states: 

aa a'a'[:,rlnl;~ ~I +g+(z) + rg-(Z)] 

=(p/6,r)aa a' a' [2z-3 Inlzl + ~Z-3], (7.4) 

aa a'a' [:,r lnlr - 11 +g_(z) + r g+(Z)] 

=(p/4,r)aa a 'a' [(lnlzlf + 4Inlzl]. (7.5) 

Let us express the variable z in terms of Y and y' in order to 
isolate its lowest energy part: 

, p ,[ 2Y'Y' Y -y' + ] z=py-y =-Y+Y _ 1---, -+--, - . 
2 Y+Y_ Y+Y_ 

(7.6) 

The factor Y + = Ys + iyo = Yeiwt is an eigenstate of 

Mso = (il.,[p)(alat) with eigenvalue - 1. Because the com
mutation rule (3.18), examining the energy content of a 
gauge field aaA comes back to study the group-transforma
tion behavior of the scalar function A itself. Thus, the lowest 
definite-energy state appearing in the expansion (7.4) is 
aaY + -3, with energy 3. Besides, there appears the state 

a aY + -3 In.,[p Y + coming from the term 

z-3 In lz l=«(P/2lY+y' _) -3 (lnpy+y' _ + ... ). 
This "logarithmic" state has no definite energy; 

- 3 r:: 
LsoaaY+ - InvPY+ 

= a _1_' !.... y-3e-i3wt(ln.,[pY + i.,[pt) 
a .,[p at 

= 3aay + -3In.,[py + - aaY + -3. (7.7) 

Actually, considered as a gauge field up to the addition 
of aD (3,0) gauge field, it is an eigenstate of Lso with energy 3. 
Moreover, it is cancelled by the energy-lowering operator 
LSi + iLoi and the energy-raising operator LSi - iLoi trans

forms it into the logarithmic state aaY+ -4Yi In.,[py+ up to 
the addition of a D (3,0) state. An invariant space of gauge 
fields is thus generated. It carries the indecomposable repre
sentation of the Lie algebra so(3,2), 

D (3,0)-+D (3,0). (7.8) 

The first term aa a 'a' (lnlzW of the expansion (7.5) gives 

birth to the logarithmic vector gauge field a aY + -ly In.,[p Y + 
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up to the addition oftheD (0,0) stateaa In.,[py +. To see this, 
note the following approximations: 

aa a 'a' (Inlzl)2 
_ _, [p , 2yoy ]2 

=aa a a' In-Y +Y _ - --, -
2 Y+Y_ 

=aa a'a,(In .,[py+)(In.,[py'_) 

- - yoy' 
-4aa a 'a' --,-lnpy+y'_. 

y+y -

From the group actions, 

Lso aaY+ -ly In.,[py + = aa [y+ -ly In.,[py+ _ y+ -ly], 

(Lsi + iLoi)aaY+ -ly In.,[py+ = i(aiy)(aa In.,[py+), 

(Lsi -iLoi)aaY+ -IYln.,[py+ 

=2iaaYiY[Y+ -2_ y + -21n.JPy+] 

+ i(aJ)aaY_Y+ -lln.JPy+, (7.9) 
we easily conclude that the considered state is eigenstate of 
Lso with energy 1 up to the addition of a D (1,1) gauge state 
and the action of the energy -lowering operator makes it leak 
to aD (0,0) state. Another invariant space of gauge fields is 
thus generated; the carrier space for the indecomposable 
representation of the Lie algebra so(3,2) is 

[D(O,O)-+D(l,l)] ~ [D(O,O)-+D(I,I)]. (7.10) 

VIII. DISCUSSION 

The adding of extra gauge fields when c differs from j 
can be understood by repeating the argument presented at 
the end of the second section. The space V' c of solutions of 
Eq. (3.23a), 

QJk +p-1caa·k = 0, 

when c#j (and c# 1), can be put in correspondence with the 
space V' 2/3 through the equation 

(2 -c) 
k C =k 2

/ 3 + 3 aQo-la.k 2 / 3. (8.1) 
p(l-c) 

The correspondence is not trivial for those states k 2/3 

such that a·k 2/3 is not zero, and then we have 

a.k c = [1/3(1 _ c)]a.k 2/3. 

The cyclic state displayed by Table I can be used to build the 
carrier space of the first Gupta-Bleuler triplet. We have 
a·k 2/3 proportional to Y + -3 and (see the Appendix) 

J. P. Gazeau 1852 



                                                                                                                                    

(8.2) 
up to the addition of D (3,0) gauge states. Therefore, a loga
rithmic gauge field is involved in the expression of k C as 
expected in the previous section. 

For the cyclic vector state displayed by Table II, a'k 2/3 
is proportional to Y + -Iy and (see the Appendix) 

(8.3) 

up to the addition of D ( 1,1) gauge states. Here too, we re
cover an expected result. 

Finally, fortheD (0,0) gauge state a lnljiy + of the same 
table, a.k 2/3 = - 3p, 

aQo-la.k 2/3 = -palnljiy+, (8.4) 

and therefore 
k C = [lI3(1-c)]k 2/3. 

Actually, one can build the solution k C by adding to 
k 2/3 a gauge field aA, where A obeys 

Q02A = 0, (8.5) 

if k 2/3 is a carrier state for the first Gupta-Bleuler triplet, or 

Q02A = const#O, (8.6) 

ifit is a carrier state for the second Gupta-Bleuler triplet. A 
precise meaning is thus given to the fact that aA belongs to 
the carrier spaces of the semi direct sums 

D (3,0)_D (3,0) 

or 

[D(O,O)_D(l,l)] _ [D(O,O)_D(l,l)], 

indecomposable Lie algebra representations under which 
the spaces of solutions of (8.5) and (8.6), respectively, are 
invariant. 

The appearance of the solutions of (8.5) and (8.6) in the 
expressions of k C could already be guessed from the addi
tional terms of the propagators given by Eq. (5.6). Since 
Qo-10o::[D_+ SD+] and Qo-lconsto::[D++ SD_1. 

propagators p~~ take the illuminating form 

PC±() P2/3() _12-3c a a' Q -20 aa' Z = aa' Z - P ~ a a' 0 const· (8.7) 

Now, the set of the fields k C defined by (8.1) forms a 
carrier space for Lie algebra indecomposable representa
tions pictured by the following diagrams. When there is de
parture from the case c = ~, the occurrence of the extensions 
(7.8) and (7.10) brings c-indexed arrows which supplement 
the Gupta-Bleuler triplets of Sec. VI: 

D (3,0)-D (2, l)-D (3,0), 

c/ 
D(3,0) (8.8) 

D (l,l)-D (2,1)-D (1,1)] 

c ~ / 
[D(O,O)_D(l,l)] - [D(O,O) 

(8.9) 

A problem immediately arises: Are these c-indexed re
presentations equivalent or not, comparatively, to the flat 
space situation? A more global, less pedestrian answer of the 
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functional spaces and group actions involved here would ac
tually be necessary to answer that question. Presently, our 
conclusion is only to assert that the simplest choice of the 
gauge fixing in de Sitter QED remains c = ~: no logarithmic 
scalar photon states would appear. 
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APPENDIX: A SHORT REVIEW OF THE DE SITTER 
MACHINERY USED IN THIS PAPER 

The (global) de Sitter coordinates t, yare defined by 
(ya) = (Yo,y,Ys), 

Y ± = Ys ± iyo = Yexp( ± iljit), 

Y = (Y/ + Yo 2)1/2 = (lip + y2)1/2. 

In these terms, the most commonly used intrinsic operators 
are as follows (Latin indices i,j, ... , rank from I to 3). 

- Ya a . 
(i) aa = -2 - + ()aj a', 

pY at 
where 

Ya = 1ji(8oays - 8saYo)· 

(1'1') M - _1_' _ a .£ raj 
ap - r.: 2 qap -a + IUaP,rjY , 

ypY t 

where 

qafi = (lIljil[YaYp - YpYa ], 8aP,rfj = 8a/>pfj - 8afj 8Pr ' 

Explicitly, 

qso = y2, qSi = YoYo qOi = - Ys,Vi' qij = 0, 

i a .[ 1 a ] 
Mso = Iji at' MSi = 1 ljiy2YoYi at + Ys ai , 

MOi = i[ - dY2 YsYi :t + Yo a i ]. 

Mij =i[YA -Yj ad· 

(iii) Energy-lowering and -raising operators. The ener
gy-raising operator is 

MSi - iMoi = - y-(dY2Yi :t - i a} 

The energy-lowering operator is 

MSi +iMoi =y+(_l_Yi !"+iai). 
IjiYz at 

(iv) The Casimir operator is 

Qo = '!'MafiMap = - _1_~ + .!.Lis, 
2 pzy2 at 2 P 

where 

Lis = - ai ~ + 4PYi ai + PYiYj ai,]i. 

(v) The specific actions on scalar functions of the vari-
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able y + alone are 

Msoj(y+) = - yJ'(Y+), (MSi + iMo;}f(y+) = 0, 

(MSi - iMoi)j(y+) = 2iyJ'(Y+), 

Qoj(y+) =y+2j"(y+) + 4yJ'(Y+), 

particularly where Qo -100:: Y + -3 is an absolute ground state 

for the representation D(3,0), Qo -Icste 0:: In.JPy+, and 

a In.JPy + is an absolute ground state for the semidirect sum 
D (O,O)-..D (1,1). The specific actions on particular vector 
functions are 
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Forexample,j(y+) =y+ -I, 

Q -I -I [I -II r:: o YiY+ =Yi 3Y+ n"PY+ 

+ cstey+ -I + cstey+ -4]. 
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We study the planar graphs of a massless scalar <p 3 field theory in d Euclidean dimensions. We 
show, using a lattice cutoff, that any graph G can be expressed as a function of strings defined on 
the dual ofG (in the sense of graph theory). We furthermore obtain a series expansion of the 
Feynman graph in powers of (1/ d). The powers are proportional to the total length of the strings 
drawn on d copies of the dual of G for a given subset of these strings which never cross either 
themselves or each other on the same copy. 

I. INTRODUCTION 

In the last years a growing interestl
-

5 can be noted for 
the study of planar contributions of field theories and of 
string models. The main reason for it is that it is generally 
agreed that the 1/ N expansion is relevant to the real world. 
Organizing contributions according to their increasingly 
complex topology may provide a useful tool in disentangling 
the enormous difficulties associated with the computations 
in QeD, for instance. But, even restricting oneself to the 
leading planar contribution, it is still an important unsolved 
problem to understand how to evaluate that simple topol
ogy. Many people6 have derived (more or less heuristically) 
relationships between the planar graphs offield theories and 
string models. But it is generally impossible to know to what 
extent these relationships hold. Moreover, we lack an analy
tical framework where one could hope to compute the planar 
topology and verify, for example, if string models can repro
duce the short distance behavior of field theories. 

It is our purpose, in the present paper, to derive a new 
representation of planar Feynman graphs, using a lattice 
cutoff. This representation is obtained by using an operator
ial formalism where the creation and annihilation operators 
correspond to degrees of freedom living on the dual (in the 
sense of graph theory) graph of the original one. In fact, we 
will see that any planar graph can be expressed as a function 
of closed and open oriented paths (or strings) defined on the 
dual of G. It is interesting that, by the same token, we also 
have a power series expansion of any Feynman graph (with a 
lattice cutoff) in powers of 1/d, where d is the dimension of 
space-time used. The power of (lid) is then proportional to 
the total length of the strings with no crossing drawn on d 
copies of the dual of G. 

II. DERIVATION OF THE REPRESENTATION 

We now explain in details the derivation of this repre
sentation. As explained before, we restrict ourselves to 
planar graphs, i.e., graphs which can be embedded in a plane 
without any propagator crossing another. External lines will 
be attached to the border of the graph. We only consider the 
case of one continuous external border. That is, no hole can 
exist to which an internal border line would correspond. We 
note that, as usual with string models, more complex topolo
gies can be generated by punching holes in a planar graph 
and sewing together the internal border lines. 

a) Laboratoire assocle au Centre National de la Recherche Scientifique. 

Let us consider any connected planar Feynman graph 
for a massless scalar <p 3 field theory in an Euclidean d-dimen
sional space. If it has no loop, it is trivial to evaluate it, be
cause no integration is left over after the conservation of 
momentum and energy has been taken into account at the 
vertices. The difficulty in evaluating the Feynman graphs 
lies in the loops. Now, to each internal loop (or face) of the 
diagram is associated a d-momentum which has to be inte
grated over. A propagator inside the graph will be the line of 
contact between two faces or loops. This propagator will 
have an argument which is the difference of momenta at
tached to the loops of which it is the border. One can also say 
that if two loops are adjacent, they will share a propagator. 
In fact, one can characterize any planar diagram by its inci
dence matrix. This symmetric matrix will have its rows and 
columns corresponding to the loops. Whenever a loop j and a 
loop k will have a propagator in common a nonzero matrix 
element ajk will exist. 

The definition of loops can be extended to "external" 
ones which are defined in the following way: An external 
loop is formed by a line of propagators on the border of the 
graph and the external lines coming at the ends of this line of 
propagators. Therefore external faces or loops extend to in
finity and they correspond to momenta which are not inte
grated over contrary to the internal ones. An internal loop j 
will correspond to a momentum p 't and an external loop k 
will correspond to a momentum (pr)o' Using the Feynman 
parametrization, a propagator can be written as 

(Pk - pj)-2 = 1"0 dajk exp[ - ajk(Pk - py]. (1) 

(Notice that the Feynman parameters a jk will be the ele
ments ofthe incidence matrix.) 

Now, we make use of a lattice cutoff in order to define 
the theory in an arbitrary number of dimensions. If the lat
tice spacing is a, the square of momenta (p p)2 in the propaga
tors will be replaced by p Pp p. with 

pP = a-1[exp( - ipPa) - 1]. 

Moreover, the Pp's will be integrated over the interval 
[ - 1Tla, 1Tla]. Introducing the angle 

()P =p Pa, 

we can write ~pp Pp: as 

'LPPP: =a-2'L[2-(e- i9
" +ei9

")]. 

P P 
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Therefore, we write a propagator on the lattice as 

IPk - pj)-2 = a2i"" dajkexp{ - ajk~[2 
_ (e-i(/}~-/},!) + /(/}~-/}'!))]}. 

Each internal momentum carries an integration factor 

(211') - dftrla d'P = (21Ta)-d ('IT d d8. 
- 7Tla J1T 

(2) 

(3) 

The momentum conservation holds on the lattice in the same 
way as in continuous space because 

<~:exp{{2:P )x} = (21Ta)dn=~ "" 8d(2:8 - 21Tn) 

acts as an ordinary 8 function on functions of 8 defined on 
the interval [ - 11',11'] as the propagators. 

Let us now make another change of variable by defining 

¢ f = p f exp(i8 f)· 
Of course, the measure will now contain new 8 functions in 
order that p f = 1. Then, the product of all the integrands in 
(2) of the propagators of a given planar graph G can be writ
ten 

d II exp{ -IA 1 + cf» I'Acf» 1'. + cf»1'·Accf»~ 
1'=1 

+ cf»fA ~cf»I'-lAclo -loA ~ll, (4) 

where cf» I' is a n-component vector, n being the number of 
internal loops; cf»t is the vector corresponding to the external 
loops. Here, A is the n X n internal loops incidence matrix 
andAc is the n X no incidence matrix connecting internal and 
external loops; Ac is therefore defined on the border of the 
graph; and 1 and 10 are vectors with unit elements of dimen
sions n and no, respectively. 

The.integration factors (3) are replaced by factors 

J~.I (21Ta) -I L"" 2p 1'8( P 1'2 - 1 )dp I' L -'IT d8 I' 

= iJ.?1Ta)-1(1T)-J d 2¢ I' 

f + "" 
X _ "" exp { - i{3 I'(¢ I'¢ 1'. - l)j d{3 1', (5) 

for each component of cf» 1'. 
Collecting all powers of the coupling constant g and of 

a2
, we finally get the following expression for a planar one

particle irreducible graph G: 

1G = KG ( - ga2)"o(ig2a6
)" - 'L"" DA L"" DAc 

X iJ., f-+ ",,"" DB I' J D¢ I' 

Xexp{l(iBI'-A )l-lAclo 

-loA ~l- cf»1'(iBI'-A )¥. 

+cf»I'·Accf»~ +~·A~¥l, (6a) 

KG = ill {ia2[ ~2(1 - cos(861 - 861+ I))] - 1}(21Ta)d8d(O), 

(6b) 
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where B I' is a diagonal n-dimensional matrix with elements 
{31'. The definition of the measure is given by 

n 

D¢I'= II(1T)-'d 2¢j, 
j= 1 

n 

DBI'= II(21Ta)-'d{3f, 
j=1 

DA = IIdaij' 
i<j 

Of course, the integration over D¢ I' can be performed giving 

1G = K G ( - ga2 )"O(ig2a6
)" - I 

X l""DA i""DA<uJ_+",,""DBI' 

Xexp{l(iBI'-A )l-lAclo -loA ~ll 

Xdet-'(iBI'-A) 

Xexp{cf»t·A~(iBI'-A)-'Ac~l. (7) 

If we define A I' and A ;: by 

A I' = (iBI')-1/2A (iBI')-1/2, 

A;: = (iBI')-1/2Ac> 

we have 

det-'(iBI'-A )exp{cf»t·A ~(iBI'-A )-'Ac~1 

= det-'(iB I')det-I(l - AI') 

Xexp{cf»t·A ;:T(I_A I')-'A ;:~I. (8) 

But we know thae (dropping here Lorentz indices for the 
sake of clarity) 

Tr[ exp(a+ Accf»o) :exp{ a+(A - l)al: exp(cf»~A ~a)] 

= [)X(1T)-Jd
2
Zj exp( -IZjI2)] 

X (zlexp(a+ Accf»o) :exp{a+(A - l)aJ: 

exp(cf»~A ~a)lz) 

= det-'(l - A )exp{ cf»~A nl - A )-IAccf»ol, (9) 

where I z) = IIi = I IZj) is a product of coherent states.7 Cre
ation and annihilation operators a/ and aj have been intro
duced which satisfy the usual commutation rules 

[aj,a/ ] = 8jk , 
all other commutators being equal to zero. 

The similarity between the kernel (8) and the right-hand 
side of(9) allows us to draw a connection between the general 
expression (7) for planar diagrams and the operator formal
ism which was used for string models. We therefore write 

1G = KG ( - ga2)"O(ig2a6
)" - 'L""DA L"" DAc 

X )JJ_+",,""DBI'(irY{3f)-' 

Xexp{l(i{3I'-A )1-lAclo -loA ~IITr 01', 
(lOa) 

01' = exp(a I' + A ~~) :exp{ a I' + (A I' - l)a 1'1: 

Xexp(cf»t·A tTal'), (lOb) 
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[ a1,at "] = 81-''V8jk • (lOc) 

(As usual, colons indicate a normal ordered expression.) 
We shall now evaluate (lOa) by taking into account the 

fact that (dropping again Lorentz indices) 

:exp( -a/aj): = 10j)(Ojl, (11) 

where 10j ) means the vacuum state for a "particle" of indexj. 
Exp~ding the exponentials giving the definition of the 

operator 0 and gathering for each term in the expansion the 
powers of a/ and aj for a definite value of the indexj we get 
factors like (neglecting powers of ajk , the factorials attached 
to them and Lorentz indices) 

(iPj ) - (I/2)(p + q + "')(a/ )I'(a/ )q ••• /Oj) {OJ /(al (aj)m 

X •.. (iP
j

) - (1/2)(1 + m + ... ) 

= (i,8j) - (1/2)VJ(a/ tJIO) (OJ 1 (aXW'j) - (112)'1. (12) 

Taking the trace through the sandwiching factor, 

(1T)-Jd 2Zj exp( -/Zj/2)(zjl",/zj)' 

transforms expression (12) into 

I( 'Q ) - vJ£ 
vj' IfJj u vjYJ ' (13) 

Performing the integration over the,8 1 we get 

vj'!(21Ta)- J-+ ",,"" d,81 exp(i,81)(i,81) - vf - I = a-I. (14) 

Remarkably, the dependence over the loop index j is now 
concentrated in the powers of ajk and the factors 8

vjYJ
' 

If we associate to each power of ajk an oriented arc 
jk, defined on the graph G' dual to G (see Ref. 8), we see 
that the factors 8

vjYj 
ensure that to each arc going into j 

there corresponds an outgoing arc stemming from j. 
Thus, to ajk and akj correspond two opposite arcs jk and 
kj. This induces a dependence on "elementary" oriented 
paths. These paths never intersect themselves and each 
of them uses a given oriented arc only once.9 There are 
closed and open paths. Open paths must necessarily 
end up at "external" indices corresponding to external 
loops. 

Let us define by {Pj j some lO set of connected elemen
tary oriented paths Pj, defined on G', which do not cross 
each other, although they may overlap. (A given path can be 
contained more than once in [Pjj.) Here, n~ will be the 
number of times the oriented arc kl is used by the paths of 
IPf}. Using 

r"" d [ ~ nfk] Jo dakl,..II exp( - 2akrl(akrl + 

= (U) - nkl- I nkl !, (15) 

with nkl = ~; = I nld + n~, one can perform all integrals, 
and one finds 
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IG =KG ( -ga2tO(ira6)-1[ira6 -
d ]n 

X ~ (n (2d) - nkC- Ink/!) 
\p],I.\ Pj21 •...• \P1

d
l keG' 

X IT {[ II,(nldl)-I][ II (f/I/tpf/lt:).r:]}, (16) 
I-' = I ldeG P.qe\P!ijl 

with ¢ 6;, = exp(iO 6;, ),¢ ~ = exp(iO ~). Here, p and q are in
dices of external loops of G and {P bj I indicates the subset of 
the open paths of {P J:.l; and n~ counts the number of times a 
path P t,. is taken in {P &i }. Let us remark that there are only 
a finite number of distinct elementary paths on a finite 
graph. Using this fact one can show the above series is cer
tainly convergent if d > M where M is the number of con
nected elementary (nonoriented) paths of G '. 

One also remarks that the sum of all nld , IdEG', is the 
total length of all paths of a set [P J. j, {P J2 }, ... , { P ~}. Then, 
any planar Feynman graph G with a lattice cutoff is a func
tion of nonlocal objects which can be interpreted as strings 
on the dual of G. 

'G. 't Roaft, Phys. Lett, B 119, 369 (1982). 
'A. M, Polyakov, Phys. Lett. B 103, 207 (1981); Phys. Lett. B 103, 211 
(1981). 

3A. A. Migdal, Phys. Rep. 102,199 (1983), and references therein. 
4J. L. Gervais and A, Neveu, Preprint LPTENS 83/37. 
sH. Bohr and R. B. Nielsen, Nucl. Phys. B 227.547 (1983). 
6In our opinion, the cleanest derivations of this kind have been made by G. 
't Roaft, Nucl. Phys. B 72, 461 (1974) and A. A. Migdal, Phys. Lett. B 96, 
333 (1980). See, however, the papers ofR. B. Nielsen and P. Olesen, Phys. 
Lett. B 32, 203 (1970); B. Sakita and M. A. Yirasoro, Phys. Rev. Lett. 24, 
1146 (1970). 

7y. Alessandrini, D. Amati, M. Ie Bellac, and D. Olive, Phys. Rep. 1, 269 
(1971). We remind the reader that a coherent state /z) is defined as 

00 z'} 
IZj) = L ..L (a/ )"10). 

"~O nf 

8In graph theory, the graph G' dual to another one G is constructed by 
putting a vertex inside each loop of G and by drawing new edges across 
those of G and in one to one correspondence with them, Of course, this 
definition is only valid for planar graphs. 

'Note that our definition of an elementary path differs from the usual one 
where a given elementary path is not allowed to go through a given vertex 
more than once. 

U)Every term in the expansion of 0" has to be counted only once, so we put 
restrictions on the P !'S of a given! prJ. To each area bounded by arcs we 
associate an integer m~O which is the sum of positively oriented elemen
tary circuits minus the sum of negatively oriented elementary circuits sur
rounding it. If two areas of same index m touch each other at a vertex, no 
path should be crossed in going from one area to the other one through 
this vertex. Priority is given to the minimum m in case of conflict. Paths 
are not allowed to cross either themselves or each other, As a conse
quence, (i) paths of opposite orientations cannot overlap on any are, (ii) the 
only path which contains both orientations of the same arc is the simple 
circuit formed by these oppositely oriented arcs, and (iii) a negatively ori
ented circuit cannot touch the inside of a positively oriented circuit or the 
outside of another negatively oriented circuit, 
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On the general solution to equations modeling a homogeneously 
broadened injection laser 

I. Lerche 
Gulf Research and Development Corporation, P. O. Box 37048, Houston, Texas 77236 

(Received 24 May 1984; accepted for publication 1 March 1985) 

The strongly coupled, nonlinear, differential equations which describe the amplification of modal 
intensities for propagation through a homogeneously broadened amplifier are shown to be 
generally reducible to a linear integral equation which is readily soluble by Laplace transform 
techniques. The mode intensities are shown to be generally expressible in terms of simple 
quadratures taken over the solution to the linear integral equation, which we also provide. 

I. INTRODUCTION 

Cassidy 1 has pointed out that, "To describe fully the 
spectral properties of an injection laser amplifier2 or injec
tion laser3 the nonuniform distribution of the photon and the 
carrier densities along the length of the device must be taken 
into account." He goes on to note that "In steady-state, and 
for a perfect device in which the waveguide scattering/ab
sorption loss is zero, the mth mode intensity I ~ in the ( + ) 
forward- and ( - ) backward-traveling directions is found by 
solving the set of nonlinear coupled differential equations3,4 

±!I~ = {grn(N-nIS)I~ +{3Bm 

X[N+nl~Ui(I/ +Ii-)]} 

x[s+ ~ui(I/ +Ii-)]-I." (1) 

The notation is that employed previously, 1 but see Ref. 4 for 
a synopsis. 

The set of equations (1) has so far proven very difficult 
to solve numerically or analytically2.3 although, quite re
cently, an analytic solution has been given 1 when the lower 
level population is zero (i.e., n l = 0). 

The purpose of this paper is to provide the general re
duction of the set of equations (1) to a simple, linear integral 
equation so that these prevailing difficulties are, at the least, 
diminished and, in particular, removed; and to then provide 
the most general solution for the mode intensities in terms of 
simple quadratures over the solution to the integral equa
tion, which we also give. 

II. REDUCTION AND SOLUTION 

Set 

Change dependent variables in Eq. (2) by setting 

I ~(z) = -{3Bm/grn + U ~(z), (3) 

when 

dU~(z) 

dz 
± N'gm U ~(z)[S + U(z)] -I ±{3Bmn l. 

(4) 

In place of z as the fundamental independent variable 
introduce r with dr = dz (S + U (z)) -I and with r = 0 on 
z = O. Then from (4) we obtain 

U ~(r) = U ~(O)exp( ± N'grnr) ±{3Bmn l 

xL' [S + U(r')]exp[ ± N'grn(r - r')] dr', 

(5) 

where U ~ (0) = I ~ (0) + {3Bm/gm and I~ (0) are the initial 
(z = 0) conditions needed to specify the solutions to the first
order equations (1). Note from Eqs. (1) and (5) that 
I ;;; ( - z) = I ;: (z) provided the values I ;;; (0) and I ;: (0) are 
interchanged. Hence, without loss of generality, it suffices to 
consider the solution to Eq. (5) in r;>O. 

We have 

U(z)=Lui(Ii+(z) + Ii-(z)) =p + LUi(U/(z) + Ui-(z)), 

wherep = - 2{3~UiB;lgi' 
Multiply Eq. (5) by Urn and sum over all modes in both 

the forward ( + ) and backward ( - ) directions to obtain 

with 

U(r) = p + F(r) + 2{3n l Lr 

U(r')H(r - r')dr', (6) 

F(r) = L {um [I'; (O)eN
'
gmT + I;;; (O)e - N'gmT] 

m 

+ (2Sn l/N') {3(Bm/gm)[cosh(N'gm r ) - 1] J 
(7a) 

U(Z) =Lui[I/(z) + Ii-(z)], N'=N-nIS, and 

and write Eqs. (1) in the form 

1858 

!I~ = ±N'[gmI~(z)+{3Bm] 

X [S + U(z)] -I ±{3Bmn l. 

J. Math. Phys. 26 (7), July 1985 

(2) 

(7b) 
m 

We recognize Eq. (6) as being of the convolutional type 
and subject to simple solution by the Laplace transform 
method. 5 Let Lu denote the Laplace transform operation 

0022-2488/85/071858-02$02.50 @ 1985 American Institute of Physics 1858 



                                                                                                                                    

and L T- 1 its inverse. Then from (6) we obtain6 

U(r) = LT-1[Lu(P + F(r))[l - 2,BnlLuH(r)]-I). (8) 

From (3) and (5), we can express the solutions for the I ;; as 
functions solely of r. The final transformation to provide an 
explicit representation for the I ;; as functions solely of z is 
provided through the quadrature 

z = [(S + U(r'))dr'. (9) 

This completes the solution to the problem. The only 
"messy" part is in computing U(r) from Eq. (8) (Ref. 6), and 
the only numerical arithmetic part in most cases is the con
struction of the final transformation (9) between r and z and, 
perhaps, of the integral in (5). 

The analytic solution is valid for all parameter values 
and all initial conditions on the I ;; . 

Note that ifnI = 0, U(r) is explicitly given by (6) and the 
integral in (5) can be done simply in closed form, as can the 
transformation (9) between rand z leading to the solution in 
parametric form 

U(r) =p +F(r), (10) 

U;; (r) = U;; (O)exp( ± N 'gm r), (11) 

O'm 
z=(S+p)r+ I-, - [I';;(O)(exp(N'gmr)-l) 

m N gm 

-I,;;-(O)(exp(-N'gmr)-l)], (12) 
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2D. Marcuse, J. Quantum Electron. QE-19, 63 (1983). 
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4Cassidy' notes that "Equation (1) results from considering the time-depen
dent multimode rate equations for a two-level system in which the popula
tion of the lower level n, is taken to be constant and the time dependence of 
the upper level population n2 is described by 

ddn2 = N - (n2 - n ,)l:juj(1 / + 1;-) _ n2 , 
t r 

which may be interpreted as explaining that the time rate of change of the 
upper level population n2 equals the pumping rate N minus the loss of popu
lation due to stimulated and spontaneous emission events. In the equations 
the variables have the following definitions: r is the tota1lifetime of the 
upper state to spontaneous transitions, Bm is the spontaneous emission pro
file and specifies which fraction of the spontaneous events falls within the 
wavelength interval of the mth mode, and u, is a saturation profile which 
denotes the efficiency of the ith mode intensity in reducing the inversion. 
Equation (1) results from setting the time derivative dn 21dt equal to zero, 
solving for the steady-state population n2 and letting the gain be propor
tional to the population inversion (n2 - nil and the spontaneous emission 
proportional to the upper level population n2• Equation (1) allows for the 
possibility that the mth mode gain coefficient gm may not equal u m' sets 
r-' = S, and allows for the fact that only a fraction P of the spontaneous 
emission events couples into the laser mode." 
'P. M. Morse and H. Feshbach, Methods o/Theoretical Physics (McGraw
Hill, New York, 1959). 

6With L"Q= S;'e-""'Q(r) dr, we have 

L"H=!~ B;;m {(u-N'gm)-'-(u+N'gm)-'j 

and 

L,,(p+F] = [P-P~UmBm 2(Sn,IN')g';']U-' + ~Um 

X! [1 ';:-(0) + (pBmlgm)(Sn,IN')](u- N'gm)-' 

+ [1.;(0) + (pBmlgm)(Sn,IN')](u+ N'gm)-'j 

in Reu>N'max (gm). Thus the inverse transform in Eq. (8), with 
L T- 'Q ==(21Tlr' S c exp(ur)Q (u) du, merely amounts to sorting out the 
pole positions of L,,1p + F) and of (1 - 2/ln, L"H)-', and of then writing 
down the expression for U (r) in terms ofthe residues at the poles. 

I. Lerche 1859 
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Under some simplifying assumptions often used in the thermal design of heat exchangers, a 
system of two coupled linear homogeneous first-order partial differential equations with variable 
coefficients is used to describe a steady-state convective heat exchange process. Using an integral 
representation for the outlet temperatures as functions of the inlet ones, a symmetry property is 
proved for the transformation that inverts the velocity fields of both fluids. In particular, the 
average thermal effectiveness is shown to coincide for the direct and reversed processes. 

I. INTRODUCTION 

The thermal design of heat exchangers is often per
formed on the basis of the following idealized premises. 

(a) Two fluids are in thermal contact through a flat two
dimensional surface (exchange surface). If the surface is not 
flat, a flat model should adequately represent it. 

(b) A temperature is assigned to each of the fluids as a 
function only of the coordinates on the surface. Therefore, 
this temperature represents a steady-state value averaged 
over the direction normal to the exchange surface. 

(c) Likewise, a two-dimensional velocity field is defined 
for each fluid on the exchange surface, and represents the 
corresponding velocity averaged over the direction normal 
to it. For the purpose of thermal design, these velocities are 
assumed to be known. 

(d) The heat flow per unit area and time across the ex
change surface is proportional to the difference between the 
temperatures of the two fluids at the point considered. The 
proportionality factor U (heat exchange coefficient) may be a 
function of the coordinates but not of the temperatures of the 
fluids. 

(e) No change of phase is assumed to occur, and the 
specific heats of the fluids are temperature independent. 

(t) The fluid densities may depend on the coordinates 
but not on the temperatures. 

In this simplified scheme, the solution of the thermal 
problem is the expression of the outlet temperatures as func
tions of the inlet ones. Quite often, the inlet and outlet fluids 
are assumed to be bunched into a finite number of perfectly 
mixed streams. In such cases, the outlet temperatures can be 
expressed as linear combinations of the inlet ones. The coef
ficients of these linear combinations are the elements of a 
thermal matrix, the knowledge of which amounts to the so
lution of the thermal problem. 1.2 

It was recently argued3 that the solution just mentioned 
is symmetric under flow reversal, i.e., under the inversion of 
the directions of flow of both fluids, keeping the geometry 
and the fluid properties unchanged. As a consequence of this 
symmetry, the matrix which describes the reverse process is, 
apart from some known factors, the transpose of the matrix 
which solves the original problem. In Ref. 3, arguments are 
given to support the validity of this property for all geome
tries with a finite number of perfectly mixed inlet and outlet 
streams, and practical consequences of the symmetry are 
discussed. In this article, we relax the assumption of perfect 
mixture of inlet and outlet streams, and allow for continuous 

inlet and outlet stream temperature distributions. The ther
mal matrix becomes a 2 X 2 matrix integral kernel, and we 
formulate and give a rigorous proof of its transformation 
properties under flow reversal. The equality of the average 
thermal effectiveness of the direct and reversed processes is 
obtained as a particular consequence of this more general 
approach. 

II. FORMULATION OF THE PROBLEM 

Let :I be the simply connected two-dimensional ex
change surface, (Tits boundary, and n an external unit vector 
normal to (T on the plane of :I. The known vector fields 
Vi (x,y), i = 1,2 are defined on:I, and physically are equal to 
the velocities of the corresponding fluid times its density and 
specific heat. From the assumptions (e) and (t) of the previous 
section, it follows that 

div vi(x,y) = 0, i = 1,2. (1) 

Figure 1 shows the basic features of a configuration obeying 
the above description. 

On the boundary (T we define 

Pi = vi"n, i = 1,2 

and we consider two different partitions of (T 

(T == (TI-U dtu (TI+ == (T2-U ~u (T2+' 

(2) 

(3) 

such that a point (x,y) on the boundary belongs to either (Ti- , 

d/, or (T/ depending on whether 

(4) 

n V, 

FIG. I. Basic features of the heat exchange process considered. Field lines 
corresponding to the vector fields VI and V2 are shown in full and broken 
Jines. The exchange surface I and the external unit normal n are also indi
cated. 
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respectively. Therefore, u;- and u;+ denote the parts ofthe 
boundary through which the ith fluid enters and leaves the 
domain I. 

The equations governing the steady-state solution for 
the process described in the Introduction are 

vdx,y)·VTI(x,y) + U(x,y)[TI(x,y) - T2(x,y)] = 0, (5a) 

v2(x,y)'VT2(x,y) + U(x,y)[T2(x,y) - TI(x,y)] = O. (5b) 

This is a set of coupled, linear, homogeneous, first-order, 
partial differential equations for the unknown temperatures 
TI and T2, with variable coefficients VI' V2, and U. The 
boundary conditions are 

T;(x,y) = t ;- (s;-) for (X,y)E u j- , i = 1,2, (6) 

where Sj- are the arc-length coordinates defined on u;- , and 
t j- are arbitrary but known inlet temperature distributions. 
In a similar way, the unknown temperatures T; (x,y) on the 
outlet boundaries u/ are written as functions of the varia
bles s/ and are denoted t / (s/ ). 

The solution of the thermal problem can be expressed in 
the form of the following linear relation between the outlet 
and inlet temperature distributions: 

t / (s/) = jtlL- Kjj(s;~ Sj-) t j- (Sj-) Pj(Sj-) dsj- . (7) 

This equation is the generalization of the matrix relation 
between inlet and outlet discrete temperatures, to the case of 
continuous temperature distributions. The P factor, which 
could be omitted in Eq. (7), thus implying a different defini
tion of the matrix K, has been included explicitly in order to 
simplify the results to be found later. We do not deal here 
with the problem of proving Eq. (7) from Eqs. (5a) and (5b), 
but, rather, assume its validity and proceed to consider a 
different problem, which may be called a dual problem. 

The variables of the dual problem are labeled as the 
original variables with a A symbol on top. The dual problem, 
depicted in Fig. ;. is defined as having the same geometry as 
the original one (I I, n = n) and the same properties of the 
fluids involved, but opposite velocity fields. How this inver
sion of the velocity fields can be achieved is not discussed 
here. With these assumptions 

(8) 

n 

FIG. 2. Basic features of the dual problem corresponding to the exchange 
process of Fig. 1. 
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The boundary conditions are now the functions t ;- (Sj- ), de
fined on u;- , and the solution can be expressed, in complete 
analogy to Eq. (7), as 

(9) 

It is clear that, because of the generality of the geometry and 
the vector fields Vj involved, the original and the dual prob
lems are quite different, except in particular instances in 
which the original configuration possesses a geometrical 
symmetry. Indeed, examples can be found in the literature in 
which considerable efforts were devoted to independently 
solving a heat exchange problem and its dual problem. 4,5 

The aim of this work is to prove that, once the direct problem 
has been solved, and, therefore, Kij(s/ ,sj-) is known, the 
solution of the dual problem is just given by 

(10) 

This equation is the expression of flow-reversal symmetry, 
i.e., it gives the transformation property of the matrix K un
der the inversion of the velocity fields. 

III. PROOF OF THE SYMMETRY 
A 

In the dual problem the unknown temperatures T j sa-
tisfy equations analogous to (5a) and (5b). Remembering 
Vj = - V; and omitting the arguments we can write 

A A A 

vl·VTI - U(TI - T2 ) = 0, 

v2·VT2 - U (1'2 - 1'1) = o. 
A A 

(1Ia) 

(lib) 

Multiplying Eqs. (5a) by T I, (5b) by T2, (lla) by T I, and (lIb) 
by T2 and adding the resulting equations, we find 

vl·V(T}d + v2·V(T2T2) = 0, (12) 

whence, using Eq. (1), 
A A 

div(TITlVI + T2T2V2) = O. (13) 

Integrating over I and using Gauss' theorem we obtain 

.± [l_t;-t/p; ds;- +l+t/t;-Pj dS/] =0. (14) 
1=1 U j CTj 

Replacing t / and t / from Eqs. (7) and (9) into (14) and 
using Eq. (8) yields 

. ± 1 +t ;-(s/)p;(s/) ds/l_ K;j(s;~Sj-) tj-(Sj-) 
I.}= 1 Uj Uj 

(15) 

Interchanging the dummy indices i andj in the first summa
tion, we finally obtain 

.± I_ t ;-(S;-)P;(S;-)dS;- l+t)-(S/)P)(S/) 
1.]= 1 Uj Uj 

(16) 

From this equation, because the inlet temperatures t ;- (S;- ) 

and tj-(s/) are arbitrary, Eq. (10) follows. 
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IV. CONSEQUENCES OF THE SYMMETRY 

Equation (10) has the immediate consequence of pro
viding the solution of the dual problem once the solution of 
the original problem is known. In particular, this relation 
between the two problems implies that the average effective
ness of both processes is the same. Before reaching this con
clusion, however, two integral properties of the representa
tion (7) should be discussed. 

It is apparent that Eqs. (5) are invariant under the trans
formation Ti (X,yj---+Ti (x,y) + 6, which, when applied to the 
solution (7), implies the first integral relation 

jtlij_Kij(Si~Sj-)Pj(Sj-)dSj-=I' i=I,2, (17) 

valid for all values of s/ . 

The same argument applied to the solution ofEqs. (IIa) 
and (lIb) using Eqs. (8) and (10), gives 

itlL+ Kij(Si~Sj-)pds/) ds/ = - 1, j = 1,2. (18) 

Multiplying this equation by Pj(Sj-)' integrating over Sj-' us
ing Eq. (17) and the relation 

i+pj(S/)dS/ + i_Pj(Sj-)dSj- =0, (19) 
Uj Uj 

which follows from Eqs. (1) and (2), we find 

i 
+PI(st)dSI+i _ K 12(st. S2-)P2(S2-) dS2 

0'1 0'2 

= i +P2(sl )dSli _ K 21(st,sl- )PI(SI-) ds l-· (20) 
0'"2 0'1 

This is the second integral relation sought. It establishes that 
K, when averaged over its variables with weights given by Pi' 
is a symmetric matrix. 

We now define the average effectiveness of the heat ex
change process as 

p=(it -t l-:-c )/(t 2-:;, -t l-:-c )' 

where 

(21) 

t t = L+ t t (SI+) Pl(St) dst (L+PI(SI+ )dsl+ ) - 1 (22) 

is the average outlet temperature of fluid 1, and t 1-:;' and t 2-:;' 
are any constant inlet temperatures. Therefore, for the pur
pose of defining P, the inlet fluids are assumed to be separate
ly perfectly mixed. The average effectiveness so defined 
turns out to be independent of the inlet temperatures. In
deed, from Eq. (21), (22), and (17) we obtain 
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X (L+p 1 (st)dst ) - I. (23) 

In the same fashion, for the dual process we have 

p = L}t!St)dSt 1
2

- Kdst.s2-) P2(S2-) dS2-

X (L}t!st)dSI+ )-1 
= - i _PI(SI- )dSI-i + K 21(st,SI-)P2(S2+) ds2+ 

0'. 0'"2 

(24) 

A 

From Eqs. (19), (20), (23), and (24), the equality P = P fol-
lows. 

V. CONCLUSION 

This work provides the first mathematically rigorous 
proof of the validity of the flow-reversal symmetry originally 
proposed in Ref. 3. In addition, the treatment is generalized 
to continuous temperature distributions and proved to hold 
for arbitrary geometries under the assumptions spelled out 
in the Introduction. 

Though simple to state, the symmetry property dis
cussed here is by no means intuitive, because, except for tri
vial cases, it relates configurations that are apparently quite 
different, such as those illustrated in Figs. 1 and 2. A particu
lar consequence of this analysis is the invariance of the aver
age thermal effectiveness under the inversion of the veloc
ities of both fluids. 
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